油气沉积学研究进展
- 格式:ppt
- 大小:55.77 MB
- 文档页数:52
文章编号:1000-0550(2003)01-0137-05收稿日期:2002-12-26 收修改稿日期:2003-01-10油气沉积学发展回顾和应用现状顾家裕 张兴阳(中国石油勘探开发研究院 北京 100083)摘 要 将我国解放后油气沉积学的发展分为三个阶段,即向国外学习和创建实践阶段(1949~1970年)、油气沉积理论的充实和完善阶段(1970~1990)和油气沉积学与层序地层学、地震、测井和实验、计算机新技术相结合的生产实用阶段(1990年以后)。
同时论述了现阶段油气沉积学在油气勘探中的应用;特别强调了层序地层学、测井沉积学和地球物理学全面应用于油气沉积研究中所产生的良好效果,它们使沉积研究在宏观和微观上都得到了充分的展示,研究更全面、更精确可靠,并实现了沉积研究的三维可视化。
关键词 油气沉积学 地震 测井 反演 模拟第一作者简介 顾家裕 男 1944年出生 教授 石油地质与沉积储层中图分类号 T E 12 文献标识码 A 沉积学是研究沉积物(岩)的特征及其形成过程的学科。
它主要探讨沉积物(岩)的物质组成、结构、构造、产状及接触关系,并进一步阐明其成因和分布规律,总结沉积物(岩)形成的理论,包括风化、剥蚀、搬运和沉积作用过程其及后期变化等。
在此基础上,明确成岩、成矿机理,分析沉积物(岩)的发育特征和空间分布规律,恢复沉积物形成时的古地理和大地构造环境,并以此推测矿床的生成、储集条件,预测其层位和地点。
1 解放后中国沉积学发展的三个阶段这里所说的三个阶段实际上是相互穿插、逐渐过渡的,不是绝然分开的,它反应了一个发展趋势。
1.1 第一阶段:向国外学习阶段和创建实践阶段(1949~1970年)上个世纪70年代以前,我们的老一辈沉积学家、地貌学家和石油地质学家主要是留学归国、热心爱国的人士主要向前苏联及少量西方国家学习并吸收他们的精华。
他们翻译了部分国外著作来教学和应用,如鲁欣的《沉积岩石学原理》、《普通古地理学原理》,马尔克维奇的《相的概念》、列兹尼可夫的《沉积岩相与建造》等〔1〕。
第39卷第1期2021年2月Vol.39No.1Feb.2021沉积学报ACTA SEDIMENTOLOGICA SINICA中国非常规油气沉积学新进展——“非常规油气沉积学”专辑前言邹才能1,2,3,邱振1,2,41.中国石油勘探开发研究院,北京1000832.国家能源页岩气研发(实验)中心,河北廊坊0650073.国家能源致密油气研发中心,北京1000834.中国石油非常规油气重点实验室,北京100083摘要经过近20年不断探索,中国陆上非常规油气勘探开发取得了重大进展。
2019年全国非常规油气产量占油气总产量的23%,2020年非常规油气产量接近7000万吨油当量,标志着中国进入非常规油气革命发展新阶段。
非常规油气沉积学作为非常规油气地质学理论体系的重要组成部分之一,受到越来越多的关注和重视,形成了“陆相深水砂质碎屑流等重力流沉积模式”、“海陆相富有机质页岩沉积模式”、“细粒沉积岩发育微纳米级孔喉系统”、“多地质事件沉积耦合形成非常规油气甜点区(段)”等重要认识。
专辑主要是由从事非常规油气相关的沉积学专家对中国近几年非常规油气层系沉积研究新进展的系统性和及时性总结,内容涵盖了鄂尔多斯、四川、松辽、渤海湾、准噶尔等近50个大中型及中小型含油气盆地,地层时代跨度自元古代至新生代,涉及致密油/页岩油、页岩气、致密气、煤层气、油页岩油等非常规油气层系(段)近30个。
这些研究成果为我国非常规油气资源勘探开发提供了重要理论基础与技术支撑。
提出未来非常规油气沉积学需以非常规油气工业开发的“甜点箱体”和“甜点群”为重点研究方向,指导非常规油气资源高效勘探开发。
关键词非常规油气沉积学;地质事件;页岩油气;致密油气;煤层气;油页岩油;甜点箱体;甜点群第一作者简介邹才能,男,1963年出生,中国科学院院士,非常规油气地质学、常规油气地质理论与实践、新能源发展战略等,E -mail:******************.cn通信作者邱振,男,高级工程师,非常规油气沉积学,E -mail:******************;**********************.cn中图分类号P618.13文献标志码A国际沉积学会(IAS )将沉积学(Sedimentology )定义为:它是研究沉积(物)岩的物理和化学特征及其形成过程(包括沉积物搬运、沉积过程、成岩作用等)的一门科学。
沉积体系及层序地层学研究进展沉积学的发展整体上经历了从萌芽到蓬勃发展,再到现今的储层沉积学、层序地层学、地震沉积学等派生学科发展阶段。
这期间,沉积学的形成和发展一直服务于油气和其他沉积矿产的勘探和开发。
到目前为止,针对层序研究,相关的理论和方法已比较系统、成熟。
但在层序内部体系域划分、裂谷盆地层序地层模式研究及层序地层控制因素分析等方面仍然需要开展大量的研究工作才能使沉积体系及层序地层学研究更精细。
1 层序地层学研究现状及发展趋势层序地层学是近20年来发展起来的一门新兴学科,其基础是地震地层学与沉积相模式的结合。
层序的概念最初由Sloss(1948)提出,当时将层序作为一种以不整合面为边界的地层单位。
但层序地层学的真正发展阶段是在P. R. Vail, R. M. Mitchum, J.B.Sangree1977年发表了地震地层学专著之后,层序的概念定义为“一套相对整合的、成因上有联系的地层序列,其顶底以不整合或与这些不整合可对比的整合为界”,并将海平面升降变化作为层序形成与演化的主导因素。
1987年Vail和Wagoner等在AAPG上发表的文章首次明确了层序地层学的概念,开始了层序地层学理论系统化阶段,提出了体系域等一系列新概念,建立了层序内部的地层分布规律和成因联系。
进入二十世纪九十年代,层序地层学理论出现了多个分支学派,丰富发展了理论,也扩展了应用领域。
层序地层学经历了三个发展阶段,现已发展为与岩石地层、年代地层、生物地层及地震资料相结合的综合阶段,并且已从在理论上有争议的模型演化成一种在实践上可采纳的方法(蒋录全,1995)。
1.1 国内外层序地层学研究现状层序地层学理论建立之初是以海相层序地层为基础的,国外应用较多的有三种海相层序概念模式,发展至今,理论上形成了Vail层序地层学、Cross高分辨率层序地层学、Galloway成因层序地层学三大主流派系。
沉积层序与成因层序的最根本区别在于层序界面的不同,沉积层序以不整合和与该不整合可对比的整合面为界,强调海平面变化是层序形成的主导控制作用;成因层序是以最大海侵面为界,强调从成因角度选择界面;高分辨率层序认为基准面变化是层序发育的控制因素,以基准面由下降转为上升的转换点为层序边界。
深水沉积及海底扇相模式研究进展刘喜玲;刘君荣【摘要】随着全球油气勘探与开发技术的不断推进,海洋深永区逐渐成为油气勘探的新热点。
海底扇作为深水区油气主要储集体,其独特的深水沉积相模式一直是业内人士关注的焦点,而其沉积相模式的复杂性也是研究者久攻不克的难点。
从“深水沉积”研究历史及进展着手,分析不同时期“海底扇”理论的成因机理、沉积模式的异同点,总结了深水沉积研究的不断发展与逐步深入的历程,深水海底扇的成因机理、沉积模式仍是需要继续探索解决的海洋石油地质科学中的难点问题,对深水扇沉积内幕结构的认识已经从早期对现象的描述发展到探究其沉积的动力学机理。
同时,基于大量岩心、测井与地震资料,越来越多的接近实际的深水海底扇模型得以建立,为深水油气勘探中海底扇储层的有效预测奠定了基础。
【期刊名称】《长江大学学报:农学卷》【年(卷),期】2013(010)005【总页数】4页(P30-33)【关键词】深水沉积;海底扇;成因机理;沉积模式【作者】刘喜玲;刘君荣【作者单位】;;【正文语种】中文【中图分类】TE121.31 “深水”和“深水沉积”的概念“深水”和“深水沉积”的概念在海洋石油勘探中使用多年,但是长期以来对它们的定义和看法存在一定分歧。
目前看来,深水有地质和工程2个方面的定义。
地质意义的深水是陆棚边缘朝海的区域内储集砂岩沉积时的水深,不一定是现今油气勘探开发中的深水;工程意义的“深水”是钻井工程师用来表示深水钻探深度,无论埋藏的储层是否属于深水起源[1-2]。
目前,水深400~500m以下海域的勘探技术比较成熟,因而常称之为浅水区;公认的深水定义为500~2000m,超过2000m为超深水[1]。
“深水沉积”是指在重力搬运作用下沉积在深水环境下的沉积物,或称之为“海底扇”[3]。
2 “深水沉积”Forel于1885年第一次提出了密度流(浊流)的概念[4-5],从此揭开了深水沉积研究的序幕。
直到19世纪末,传统的观点都一直认为在宁静的深海中仅仅包含远洋泥沉积[4-5]。
油气成藏机理研究进展摘要:对前人在油气成藏机理方面的研究进行总结,主要在成藏基础理论、油气输导体系和异常压力与油气关系等3方面的研究进展进行综述,同时对这3个方面进行了详细而且全面的调研,并提出了在各个方面亟待解决的问题和研究的难点。
关键词:油气;成藏机理;研究进展油气成藏过程包括油气的生成、运移、聚集以及保存和破坏各个环节,既是石油地质理论的核心问题,又是有效解决油气勘探活动的关键问题。
许多油气生成、运移、聚集和保存中的重大理论和实际问题,目前仍停留在推理阶段,严重地影响了油气资源分布规律和预测油气藏的准确性,制约着许多盆地(或区带)的油气勘探和开发过程。
因此,需要从典型沉积盆地和典型区带的实际油气藏解剖分析出发,采用系统的、动态的和定量的研究方法,将典型油气藏解剖分析与计算机技术、物理模拟技术模拟相结合,综合考虑油气的生成、运移、聚集与保存过程,建立油气成藏定量模式。
1 成藏基础理论研究进展Dahlberg在Hubbert流体势理论的基础上,将流体势理论与石油勘探实际工作相结合,提出了LVZ法则;England等(1987)建立了独立二相、二维(侧向运移、垂向运移)、基于流体势和达西定律的渗流运移模型,研究油气二次运移和聚集。
同时国内也进行了二维三相(二相)油气运移和聚集的数值模拟和物理模拟;Hunt(1990)将油气生成、运移、聚集统一研究,提出了“流体封存箱理论”;张义刚(1991)建立了封存箱内渗流成藏、对流成藏和封存箱外涌流成藏三种油气成藏模式。
含油气系统理论(成油系统)提出了研究油气藏形成时必不可少的所有地质要素和地质作用以及合适的时空匹配,对指导油气勘探研究工作指出了新的思路,体现了系统的整体性、综合性、动态性等特征[1]。
其核心是“源”,对单源成藏效果较好,但对于多源多期成藏的叠合盆地应用效果不理想。
成藏动力学(系统)包括成藏动力学条件和动力学过程和结果,核心是研究油气等流体的运移和聚集的动力条件和过程。
细粒沉积学研究进展摘要:细粒沉积学的发展,对于盆地内富有机质页岩分布预测、页岩油气甜点段/区评价有重要的指导意义。
本文就细粒沉积学研究进展从概念、分类、内涵及国内外研究现状及关注点进行了详细阐述。
关键词:细粒沉积岩;细粒沉积学;研究进展前言随着非常规油气勘探开发的不断深入,出现了现有适用于常规油气开发的理论与非常规油气开发不相适应的矛盾,非常规油气开发亟需新的理论发展支撑。
本文在对国内外细粒沉积学研究的系统调研基础上,梳理了目前该领域的研究现状,分析了细粒沉积学研究的关键科学问题,介绍了中国细粒沉积中的有机质富集机理、非均质性分布特征、纹层类型及组合特征、沉积模式等方面取得的进展,基于目前的认识,提出了未来发展趋势及研究重点。
总体上,细粒沉积学的发展,将推动常规和非常规油气勘探不断创新前进。
1细粒沉积岩的概念及分类细粒沉积岩是由细粒物质所组成的岩石。
细粒物质是指颗粒粒级小于0.0625mm的组分,主要包括碳酸盐、粘土矿物、有机质、生物碎屑、石英等[1-2]。
对于细粒沉积岩的分类,目前没有比较公认统一的分类方案。
一般原则是从矿物成分因素和适用因素来考虑的,但由于细粒沉积岩的研究与油田的非常规油气实际生产开采关系紧密,另一类细粒沉积岩的分类方案则偏向于更具有实际生产的工业用途意义,如郝运轻根据工业用途将泥岩页岩分为室内和录井两大类。
Milliken 基于对传统的以沉积结构、颗粒大小及成分为标准的细粒沉积岩分类的改进,提出根据颗粒来源和成分,以细粒沉积岩的主要组分陆源—粘土、碳酸盐—粘土和硅质—粘土为三端元,陆源—粘土的盆外来源超过75%、碳酸盐—粘土的盆外碎屑来源少于75%,生物成因的盆内碳酸盐颗粒占优势、硅质—粘土的盆外碎屑来源少于75%且生物硅质成因颗粒比碳酸盐颗粒占优势为界分为3大类。
2细粒沉积学内涵细粒沉积学是研究细粒沉积岩的物质成分、结构构造、分类和成因、沉积过程与分布模式的基础学科。
主要研究对象是黑色页岩、泥岩、粉砂质泥岩、页岩、混积页岩等;主要研究内容包括岩石组分、结构构造、命名与分类、物源、古气候、水深、介质环境、火山灰影响、有机质富集分布模式等;主要研究方法包括薄片分析、X衍射分析、X射线荧光分析技术(XRF)、扫锚电子显微镜矿物分析技术(Quemscan)、元素地球化学分析、物理模拟技术、测井解释技术、地球物理预测技术等;研究重点包括细粒沉积层序地层分析、纹层结构类型、组合方式及沉积动力学条件、有机质富集因素、“混源沉积”模式、细粒沉积水槽实验等。
三角洲沉积储层构型研究进展读书报告报告编写人:蒋民心(1002040135)年级:2010级课程:油气储层研究进展任课教师:赵晓明西南石油大学地球科学与技术学院2014年3月24号三角洲沉积储层构型研究进展蒋民心(1002040135)西南石油大学地球科学与技术学院成都 610500摘要:本文从储层构型概念出发,大致概括了国内学者对三角洲沉积领域的储层构型研究方法和取得的成果,针对油田三角洲储层精细表征及剩余油挖潜,以河控三角洲河口坝地下储层构型以及东营凹陷永安镇油田沙二段三角洲储层为例,利用地震、测井、地质等资料,研究三角洲储层沉积旋回、层次界面等不同层次构型要素,界定和划分构型单元,建立三角洲储层构型模式,分析构型单元对剩余油分布的控制作用.结果表明:三角洲前缘水下分流河道发育是单一河口坝边界识别的重要标志;构型单元韵律变化是造成剩余油局部富集的重要因素,正韵律水下分流河道砂体中上部剩余油相对集中,反韵律河口坝砂体下部剩余油富集。
在此基础上了归纳总结了现阶段储层构型研究所遇到问题,针对目前的研究现状和存在的问题,并根据所查阅的文献分析了储层构型研究的发展趋势。
关键词:储层构型;河流相;储层非均质;剩余油分布;东营凹陷;永安镇油田;沙二段;三角洲相;构型单元1.储层构型概念的提出储层构型是指沉积砂体内部由各级次沉积界面所限定的砂质单元和不连续“薄夹层”的几何形态、规模大小、相互排列方式与接触关系等结构特征[1]。
其概念在储层沉积学研究方面的应用可以追溯到上个世纪70 年代。
1977 年Allen,J.R.L.在第一届国际河流沉积学会议上明确提出了储层构型的概念,用以描述河流层序中河道和溢岸沉积的几何形态及内部组合。
1985 年,Miall,A.D.第一次完整地提出了河流相的储层构型分析法[3],全面介绍了该方法中的界面等级、岩相类型、结构单元等概念,这代表了储层构型分析法的诞生。
之后Maill,A.D.对该方法进行了完善,并最终将河流相划分为6 级界面、20种岩相类型、9 种结构单元。
油气成藏机理研究进展和前沿研究领域郝 芳1,2,邹华耀2,王敏芳1,杨旭升2(1.中国地质大学资源学院石油系,湖北武汉430074;2.石油大学资源与信息学院,北京102249)摘 要:随着地质工作者刻划和认识地下地质体构成、结构的能力及研究和预测沉积盆地能量场(温度场、压力场和应力场)及其演化能力的不断提高,以流体流动和油气运移为核心的油气成藏机理研究取得了重要进展:①证实了油气的优势通道运移并初步揭示了优势运移通道的微观和宏观控制机制,从而使基于油气运移路径三维预测的油气藏定位预测成为可能;②证实了幕式快速成藏过程并初步揭示了幕式成藏的驱动机制、有利场所和地球化学识别标志,突破了油气成藏是一个缓慢渗流过程的传统模式;③深盆气勘探和成藏机理研究取得了进展,从而突破了背斜成藏的传统观念,使“向斜”(盆地凹陷区)成为一些盆地寻找大型天然气藏的重要场所。
沉积盆地深层油气成藏过程和保存条件、活动构造背景下油气晚期快速成藏过程是油气成藏机理研究的重要前沿研究领域。
关键词:油气成藏机理;优势通道运移;幕式快速成藏;深盆气中图分类号:P618.13 文献标识码:A 文章编号:1000-7849(2002)04-0007-08 油气的运移、聚集和成藏,是在沉积盆地演化过程中,源岩生成的烃类在输导格架和能量场(包括温度场、压力场和应力场)共同控制下的自然流动过程[1]。
由于地震采集和处理技术的改进、层序地层学和沉积学的不断发展、各种模拟技术和可视化技术的引进和完善及断裂流体行为研究的不断深入[2~9],地质工作者认识、刻划地质体和输导格架的能力大大提高[10]。
与此同时,由于沉积盆地温度场[11~13]、压力场[14~17]控制因素研究的进展及温度场、压力场和应力场正演和反演分析技术的改进和完善,地质工作者研究和认识沉积盆地能量场及其演化的能力明显提高。
在此基础上,沉积盆地流体的流动和油气的运移成为油气成藏机理研究的核心。
沉积学在油气勘探开发中的应用进展摘要:沉积学在油气勘探开发中的应用进展摘要:沉积学是研究地球表层沉积物形成、演化和分布规律的学科,对于油气勘探开发具有重要意义。
本文通过综述相关文献和研究成果,总结了沉积学在油气勘探开发中的应用进展。
沉积学在油气勘探开发中的应用进展丰富多样,为油气勘探开发提供了重要的理论和技术支持。
然而,仍然存在一些挑战和问题,需要进一步深入研究和探索。
关键词:沉积学;油气勘探开发;应用进展引言沉积学是研究地球表层松散沉积物的学科,其在油气勘探和开发中具有重要的应用价值。
随着科技的发展和勘探深度的增加,沉积学的应用也不断得到拓展和深化。
本文将探讨沉积学在油气勘探开发中的应用进展。
一、沉积学在勘探目标识别中的应用沉积学在勘探目标识别中的应用是油气勘探中的重要环节。
通过对沉积学原理和方法的应用,可以帮助勘探人员确定潜在的油气勘探目标。
以下是沉积学在勘探目标识别中的应用方面:1.沉积环境解释:沉积学可以通过对岩心、地震数据和地层剖面的分析,解释沉积环境的类型和特征。
不同的沉积环境对油气的形成和保存具有不同的影响,因此沉积环境解释可以帮助勘探人员确定潜在的油气勘探目标区域。
2.储层预测:沉积学可以通过对岩心和地震数据的分析,预测储层的分布和性质。
通过分析沉积相、岩性、孔隙度等参数,可以确定潜在的储层区域,并评估其储集能力和流体性质,从而帮助勘探人员确定勘探目标。
3.沉积体系分析:沉积学可以通过对沉积体系的分析,揭示沉积体系的演化过程和沉积体系的特征。
不同的沉积体系对油气的形成和保存具有不同的影响,因此沉积体系分析可以帮助勘探人员确定潜在的油气勘探目标区域。
沉积学在勘探目标识别中的应用可以帮助勘探人员确定潜在的油气勘探目标区域,并评估其储集能力和流体性质。
通过合理应用沉积学原理和方法,可以提高勘探的效率和成功率。
二、沉积学在储层评价中的应用沉积学在储层评价中具有重要作用,主要包括孔隙结构与沉积特征的关系研究和地震反演技术在储层预测中的应用。