物理化学(傅献彩)11-12章_化学动力学基础(总结)
- 格式:ppt
- 大小:344.50 KB
- 文档页数:29
热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。
如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫⎝⎛∂∂+dp p H T ⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BAB A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=VT p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T V T S ⎪⎭⎫ ⎝⎛∂∂ C p =T pT S ⎪⎭⎫⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。
物理化学傅献彩版知识归纳一、热力学第一定律1、内容:能量守恒定律在化学反应中的应用,内容为:封闭系统中发生的能量转化等于该系统内所有物体能量的总和。
2、公式:ΔU = Q + W,其中ΔU为系统内能的变化,Q为系统吸收的热量,W为系统对外做的功。
3、应用:判断反应是否自发进行;计算反应过程中的焓变等。
二、热力学第二定律1、内容:熵增加原理,即在一个封闭系统中,自发进行的反应总是向着熵增加的方向进行。
2、公式:ΔS = Σ(δQ/T),其中ΔS为系统熵的变化,δQ为系统热量的变化,T为热力学温度。
3、应用:判断反应是否自发进行;计算反应过程中的熵变等。
三、化学平衡1、定义:在一定条件下,可逆反应达到平衡状态时,反应物和生成物的浓度不再发生变化,各组分的浓度之比等于系数之比。
2、公式:K = [C]^n/[D]^m,其中K为平衡常数,C和D分别为反应物和生成物的浓度,n和m分别为反应物和生成物的系数。
3、应用:判断反应是否达到平衡状态;计算平衡常数;计算反应物的转化率等。
四、电化学基础1、原电池:将化学能转化为电能的装置。
主要由正极、负极、电解质和隔膜组成。
2、电解池:将电能转化为化学能的装置。
主要由电源、电解液、电极和导线组成。
3、电池的电动势:E = E(标准) - (RT/nF)ln(a(正)/a(负)),其中E为电池的电动势,E(标准)为标准状况下的电动势,R为气体常数,T为热力学温度,n为电子转移数,F为法拉第常数,a(正)和a(负)分别为正极和负极的活度。
4、电解的电压:V = (RT/nF)ln[(a(正)·a(阴))/(a(阴)·a(阳))],其中V为电解电压,R为气体常数,T为热力学温度,n为电子转移数,F为法拉第常数,a(正)、a(阴)和a(阳)分别为正极、阴极和阳极的活度。
《物理化学》第五版是南京大学傅献彩等编著的教材,该教材是化学、化工类专业本科生的基础课教材,也可作为从事化学、化工领域科研和工程技术人员的参考书。
《物理化学》笔记第一章热力学第一定律二、热力学平衡n 如果体系中各状态函数均不随时间而变化,我们称体系处于热力学平衡状态。
严格意义上的热力学平衡状态应当同时具备三个平衡:2. 机械平衡:n 体系的各部分之间没有不平衡力的存在,即体系各处压力相同。
§2、热力学第一定律n 对于宏观体系而言,能量守恒原理即热力学第一定律。
n 热力学第一定律的表述方法很多,但都是说明一个问题¾能量守恒。
例如:一种表述为:n “第一类永动机不可能存在的”n 不供给能量而可连续不断产生能量的机器叫第一类永动机。
一、热和功热和功产生的条件:n 与体系所进行的状态变化过程相联系,没有状态的变化过程就没有热和功的产生。
符号表示:n 功W:体系对环境作功为正值,反之为负值。
n 热Q:体系吸热Q为正值,反之Q为负值。
二、热力学第一定律的数学表达式DU = Q-W (封闭体系)•如果体系状态只发生一无限小量的变化,则上式可写为:dU = dQ-dW (封闭体系)例1:设有一电热丝浸于水中,通以电流,如果按下列几种情况作为体系,试问DU、Q、W的正、负号或零。
(a)以电热丝为体系;(b)以电热丝和水为体系;(c)以电热丝、水、电源和绝热层为体系;(d)以电热丝、电源为体系。
解答:DU Q W(a)+ --(b)+ --(c)0 0 0(d)--0三、膨胀功(体积功):Wen 功的概念通常以环境作为参照系来理解,微量体积功dWe可用P外×dV表示:dWe = P外×dV式中P外为环境加在体系上的外压,即环境压力P环。
n 不同过程膨胀功:u (1)向真空膨胀We = P外×DV = 0u (2)体系在恒定外压的情况下膨胀We = P外×DVu (3)在整个膨胀过程中,始终保持外压P外比体系压力P小一个无限小的量dP此时,P外= P-dP,体系的体积功:We =∫V1V2 P外·dV =∫V1V2 (P-dP)dV= ∫V1V2 P dV此处略去二级无限小量dP·dV,数学上是合理的;即可用体系压力P代替P外。
目 录第1章 气 体1.1 复习笔记1.2 课后习题详解1.3 名校考研真题详解第2章 热力学第一定律2.1 复习笔记2.2 课后习题详解2.3 名校考研真题详解第3章 热力学第二定律3.1 复习笔记3.2 课后习题详解3.3 名校考研真题详解第4章 多组分系统热力学及其在溶液中的应用4.1 复习笔记4.2 课后习题详解4.3 名校考研真题详解第5章 相平衡5.1 复习笔记5.2 课后习题详解5.3 名校考研真题详解第6章 化学平衡6.1 复习笔记6.2 课后习题详解6.3 名校考研真题详解第7章 统计热力学基础7.1 复习笔记7.2 课后习题详解7.3 名校考研真题详解第8章 电解质溶液8.1 复习笔记8.2 课后习题详解8.3 名校考研真题详解第9章 可逆电池的电动势及其应用9.1 复习笔记9.2 课后习题详解9.3 名校考研真题详解第10章 电解与极化作用10.1 复习笔记10.2 课后习题详解10.3 名校考研真题详解第11章 化学动力学基础(一)11.1 复习笔记11.2 课后习题详解11.3 名校考研真题详解第12章 化学动力学基础(二)12.1 复习笔记12.2 课后习题详解12.3 名校考研真题详解第13章 表面物理化学13.1 复习笔记13.2 课后习题详解13.3 名校考研真题详解第14章 胶体分散系统和大分子溶液14.1 复习笔记14.2 课后习题详解14.3 名校考研真题详解第1章 气 体1.1 复习笔记一、气体分子动理论1.理想气体理想气体:在任何压力、任何温度下都符合理想气体状态方程pV=nRT 的气体。
理想气体状态方程中,p为气体压力,单位是Pa;V为气体的体积,单位是m3;n为物质的量,单位是mol;T为热力学温度,单位是K;R是摩尔气体常数,。
2.气体分子动理论的基本公式(1)气体分子运动的微观模型①气体是大量分子的集合体;②气体分子不断地作无规则的运动,均匀分布在整个容器之中;③分子彼此的碰撞以及分子与器壁的碰撞是完全弹性的。
物理化学(第五版)公式总结傅献彩版专业:化学姓名:XXX学号:XXX物化公式总结第五章 相平衡一、主要概念组分数,自由度,相图,相点,露点,泡点,共熔点,(连)结线,三相线,步冷(冷却)曲线,低共熔混合物(固相完全不互溶)二、重要定律与公式本章主要要求掌握相律的使用条件和应用,单组分和双组分系统的各类典型相图特征、绘制方法和应用,利用杠杆规则进行有关计算。
1、相律: F = C - P + n , 其中: C=S-R-R’ (1) 强度因素T ,p 可变时n =2 (2) 对单组分系统:C =1, F =3-P(3) 对双组分系统:C =2,F =4-P ;应用于平面相图时恒温或恒压,F =3-P 。
Clapeyron 方程(任何纯物质的两相平衡):m vap m vap V T H dT dp ∆∆=(气-液),mfus mfus V T H dT dp ∆∆=(液-固)Clausius -Clapeyron 方程:2ln RT H dT p d mvap ∆=(Δvap H 与T 无关,气体参与,V 凝聚相体积忽略)2、相图(1)相图:相态与T ,p ,x 的关系图,通常将有关的相变点联结而成。
(2)实验方法:实验主要是测定系统的相变点。
常用如下四种方法得到。
对于气液平衡系统,常用方法蒸气压法和沸点法; 液固(凝聚)系统,通常用热分析法和溶解度法。
3、单组分系统的典型相图对于单组分系统C =1,F =C -P +2=3-P 。
当相数P =1时,自由度数F =2最大,即为双变量系统,通常绘制蒸气压-温度(p-T )相图,见下图。
pT lBC AOsgC 'pTlBCA Os gFGD单斜硫pT液体硫BCAO正交硫硫蒸气(a) 正常相图 (b) 水的相图 (c) 硫的相图图6-1 常见的单组分系统相图B Apx B (y B )B Apx B (y B)BApx B (y B )(a) 理想混合物 (b) 最大负偏差的混合物 (c) 最大正偏差的混合物图6-2 二组分系统恒温下的典型气液p -x 相图BAtx B (y B )BAtx B (y B)BAtx B (y B )(a) 理想或偏差不大的混合物 (b) 具有最高恒沸点(大负偏差) (c) 具有最低恒沸点(大正偏差)BAtxBBAtx B DCGFOgg + l g + ll 1 + l 2p = 常数lBAtx B (y B )(d) 有最高会溶点的部分互溶系统 (e)有最高和最低会溶点的部分互溶系统 (f) 沸点与会溶点分离x B (y B )BAtx B (y B )BAtBAtx B (y B )(g) 液相部分互溶的典型系统 (h)液相有转沸点的部分互溶系统 (i) 液相完全不互溶的系统图6-3 二组分系统恒压下的典型气液相图(2)液-固系统相图: 通常忽略压力的影响而只考虑t -x 图。
01绪论Chapter物理化学概述物理化学的定义01物理化学的研究范围02物理化学在化学科学中的地位03物理化学的研究对象与任务研究对象研究任务实验方法通过实验手段观测和记录物质的物理现象和化学变化,获取实验数据。
理论方法运用数学、物理学等理论工具对实验数据进行处理和分析,揭示物质的基本规律。
计算方法利用计算机模拟和计算等方法,对物质的性质、结构和变化规律进行预测和研究。
物理化学的研究方法030201物理化学的学习方法与要求学习方法学习要求02热力学基础Chapter热力学基本概念与术语热力学系统状态与状态函数过程与途径热力学平衡态热力学第一定律能量守恒定律能量不能创造也不能消灭,只能从一种形式转化为另一种形式。
热力学能系统内能的变化等于传入系统的热量与外界对系统做功之和。
焓定义为系统的热力学能与体积的乘积,用于描述等压过程中的能量变化。
热力学第二定律热力学第二定律表述热力学温标熵增原理热力学函数与基本方程热力学函数热力学基本方程麦克斯韦关系式热力学在化学中的应用化学反应的热效应化学平衡相平衡03化学动力学基础Chapter化学反应速率的概念与表示方法化学反应速率表示方法摩尔浓度变化率、质量浓度变化率、气体分压变化率等化学反应速率理论简介碰撞理论过渡态理论01020304浓度越高,反应速率越快。
反应物浓度温度越高,反应速率越快。
温度催化剂可以降低反应的活化能,从而加快反应速率。
催化剂对于有气体参与的反应,压力的变化会影响反应速率。
压力影响化学反应速率的因素复杂反应动力学简介平行反应竞争反应连续反应根据反应条件(如温度、压力、浓度等)预测反应的速率。
预测反应速率通过调整反应条件(如温度、压力、催化剂等)来优化反应速率和选择性。
优化反应条件通过分析反应速率与各种因素的关系,可以推断出反应的机理和过渡态的性质。
研究反应机理化学反应速率理论的应用04电化学基础Chapter电化学基本概念与术语电化学电极电解质电离电导率将化学能转变为电能的装置。
第一章 气体的pVT 关系1. 理想气体状态方程式nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。
m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。
R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。
此式适用于理想气体,近似地适用于低压的真实气体。
2. 气体混合物 (1) 组成摩尔分数 y B (或x B ) = ∑AA B /n n体积分数 /y B m,B B *=V ϕ∑*AVy Am,A式中∑AA n 为混合气体总的物质的量。
A m,*V 表示在一定T ,p 下纯气体A 的摩尔体积。
∑*AAm,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。
(2) 摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中 ∑=BB m m 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。
上述各式适用于任意的气体混合物。
(3) V V p p n n y ///B B B B *===式中pB 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。
*B V 为B气体在混合气体的T ,p 下,单独存在时所占的体积。
3. 道尔顿定律p B = y B p ,∑=BB p p 适用于任意气体。
V RT n p /B B = 适用于理想气体4. 阿马加分体积定律V RT n V /B B =* 此式只适用于理想气体。
5. 范德华方程RT b V V a p =-+))(/(m 2m n R T nb V V an p =-+))(/(22式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为范德华常数。