物理化学第一章知识点解析
- 格式:ppt
- 大小:371.50 KB
- 文档页数:44
物理化学各章节汇总————————————————————————————————作者:————————————————————————————————日期:23物理化学每章总结第1章 热力学第一定律及应用1.系统、环境及性质热力学中把研究的对象(物质和空间)称为系统,与系统密切相关的其余物质和空间称为环境。
根据系统与环境之间是否有能量交换和物质交换系统分为三类:孤立系统、封闭系统和敞开系统。
性质⎩⎨⎧容量性质强度性质2.热力学平衡态系统的各种宏观性质不随时间而变化,则称该系统处于热力学平衡态。
必须同时包括四个平衡:力平衡、热平衡、相平衡、化学平衡。
3.热与功 (1) 热与功的定义热的定义:由于系统与环境间温度差的存在而引起的能量传递形式。
以Q 表示,0>Q 表示环境向系统传热。
功的定义:由于系统与环境之间压力差的存在或其它机、电的存在引起的能量传递形式。
以W 表示。
0>W 表示环境对系统做功。
(2) 体积功与非体积功功有多种形式,通常涉及到是体积功,是系统体积变化时的功,其定义为:V p W d δe -=4式中e p 表示环境的压力。
对于等外压过程 )(12e V V p W --= 对于可逆过程,因e p p =,p 为系统的压力,则有V p W V V d 21⎰-=体积功以外的其它功,如电功、表面功等叫非体积功,以W ′表示。
4.热力学能热力学能以符号U 表示,是系统的状态函数。
若系统由状态1变化到状态2,则过程的热力学增量为 12U U U -=∆对于一定量的系统,热力学能是任意两个独立变量的状态函数,即 ),(V T f U = 则其全微分为V V U T T U U TVd d d ⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=对一定量的理想气体,则有0=⎪⎭⎫⎝⎛∂∂TV U 或 U =f (T ) 即一定量纯态理想气体的热力学能只是温度的单值函数。
5.热力学第一定律及数学表达式 (1) 热力学第一定律的经典描述① 能量可以从一种形式转变为另一种形式,但在转化和传递过程中数量不变。
第一章 理想气体1、理想气体:在任何温度、压力下都遵循PV=nRT 状态方程的气体。
2、分压力:混合气体中某一组分的压力。
在混合气体中,各种组分的气体分子分别占有相同的体积(即容器的总空间)和具有相同的温度。
混合气体的总压力是各种分子对器壁产生撞击的共同作用的结果。
每一种组分所产生的压力叫分压力,它可看作在该温度下各组分分子单独存在于容器中时所产生的压力B P 。
P y P B B =,其中∑=BBB B n n y 。
分压定律:∑=BB P P道尔顿定律:混合气体的总压力等于与混合气体温度、体积相同条件下各组分单独存在时所产生的压力的总和。
∑=BB V RT n P )/(3、压缩因子ZZ=)(/)(理实m m V V 4、范德华状态方程 RT b V V ap m m=-+))((2 nRT nb V Van p =-+))((225、临界状态(临界状态任何物质的表面张力都等于0)临界点C ——蒸气与液体两者合二为一,不可区分,气液界面消失; 临界参数:(1)临界温度c T ——气体能够液化的最高温度。
高于这个温度,无论如何加压 气体都不可能液化;(2)临界压力c p ——气体在临界温度下液化的最低压力; (3)临界体积c V ——临界温度和临界压力下的摩尔体积。
6、饱和蒸气压:一定条件下,能与液体平衡共存的它的蒸气的压力。
取决于状态,主要取决于温度,温度越高,饱和蒸气压越高。
7、沸点:蒸气压等于外压时的温度。
8、对应状态原理——处在相同对比状态的气体具有相似的物理性质。
对比参数:表示不同气体离开各自临界状态的倍数 (1)对比温度c r T T T /= (2)对比摩尔体积c r V V V /= (3)对比压力c r p p p /= 9、rr r c r r r c c c T Vp Z T V p RT V p Z =⋅=10、压缩因子图:先查出临界参数,再求出对比参数r T 和r p ,从图中找出对应的Z 。
热力学第一定律一、基本概念1.系统与环境敞开系统:与环境既有能量交换又有物质交换的系统。
封闭系统:与环境只有能量交换而无物质交换的系统。
(经典热力学主要研究的系统)孤立系统:不能以任何方式与环境发生相互作用的系统。
2.状态函数:用于宏观描述热力学系统的宏观参量,例如物质的量n、温度T、压强p、体积V等。
根据状态函数的特点,我们把状态函数分成:广度性质和强度性质两大类。
广度性质:广度性质的值与系统中所含物质的量成正比,如体积、质量、熵、热容等,这种性质的函数具有加和性,是数学函数中的一次函数,即物质的量扩大a倍,则相应的广度函数便扩大a倍。
强度性质:强度性质的值只与系统自身的特点有关,与物质的量无关,如温度,压力,密度,摩尔体积等。
注:状态函数仅取决于系统所处的平衡状态,而与此状态的历史过程无关,一旦系统的状态确定,其所有的状态函数便都有唯一确定的值。
二、热力学第一定律热力学第一定律的数学表达式:对于一个微小的变化状态为:dU=公式说明:dU表示微小过程的内能变化,而δQ和δW则分别为微小过程的热和功。
它们之所以采用不同的符号,是为了区别dU是全微分,而δQ和δW不是微分。
或者说dU与过程无关而δQ和δW却与过程有关。
这里的W既包括体积功也包括非体积功。
以上两个式子便是热力学第一定律的数学表达式。
它们只能适用在非敞开系统,因为敞开系统与环境可以交换物质,物质的进出和外出必然会伴随着能量的增减,我们说热和功是能量的两种传递形式,显然这种说法对于敞开系统没有意义。
三、体积功的计算1.如果系统与环境之间有界面,系统的体积变化时,便克服外力做功。
将一定量的气体装入一个带有理想活塞的容器中,活塞上部施加外压。
当气体膨胀微小体积为dV时,活塞便向上移动微小距离dl,此微小过程中气体克服外力所做的功等于作用在活塞上推力F与活塞上移距离dl的乘积因为我们假设活塞没有质量和摩擦,所以此活塞实际上只代表系统与环境之间可以自由移动的界面。
第一章 热力学第一定律一、基本概念系统与环境,状态与状态函数,广度性质与强度性质,过程与途径,热与功,内能与焓。
二、基本定律热力学第一定律:ΔU =Q +W 。
焦耳实验:ΔU =f (T ) ; ΔH =f (T ) 三、基本关系式1、体积功的计算 δW = -p e d V恒外压过程:W = -p e ΔV可逆过程:1221ln ln p p nRT V V nRT W ==2、热效应、焓等容热:Q V =ΔU (封闭系统不作其他功) 等压热:Q p =ΔH (封闭系统不作其他功) 焓的定义:H =U +pV ; d H =d U +d(pV )焓与温度的关系:ΔH =⎰21d p T T T C3、等压热容与等容热容热容定义:V V )(T U C ∂∂=;p p )(T H C ∂∂=定压热容与定容热容的关系:nR C C =-V p 热容与温度的关系:C p =a +bT +c’T 2 四、第一定律的应用1、理想气体状态变化等温过程:ΔU =0 ; ΔH =0 ; W =-Q =⎰-p e d V 等容过程:W =0 ; Q =ΔU =⎰T C d V ; ΔH =⎰T C d p 等压过程:W =-p e ΔV ; Q =ΔH =⎰T C d p ; ΔU =⎰T C d V 可逆绝热过程:Q =0 ; 利用p 1V 1γ=p 2V 2γ求出T 2,W =ΔU =⎰T C d V ;ΔH =⎰T C d p不可逆绝热过程:Q =0 ; 利用C V (T 2-T 1)=-p e (V 2-V 1)求出T 2,W =ΔU =⎰T C d V ;ΔH =⎰T C d p2、相变化可逆相变化:ΔH =Q =n Δ_H ;W=-p (V 2-V 1)=-pV g =-nRT ; ΔU =Q +W3、热化学物质的标准态;热化学方程式;盖斯定律;标准摩尔生成焓。
摩尔反应热的求算:)298,()298(B H H m f B m r θθν∆=∆∑反应热与温度的关系—基尔霍夫定律:)(])([,p B C T H m p BB m r ∑=∂∆∂ν。
气体的pVT关系一、理想气体状态方程pV=nRT (R=8.314472Pa·m3·mol·K-1)根据V m=V/n,n=n/M可得pV m=RTpV m=(m/M)RT根据ρ=m/V和理想气态方程可以求出气体的ρ、V、T、n、M、ρ各种性质。
ρ=pM/RT、M=ρRT/p=RTM/Pv、m=Pvm/RT、n=Pv/RT二、理想气体模型(一)、分子间作用力:两个分子间的相互吸引势能与距离r的6次方成反比,相互排除势能与距离r的12次方成反比。
E=E吸引+E排斥=-A/r6+B/r12(二)、理想气体的微观上的两个特征1、分子间无相互作用力。
2、分子本身不占体积。
(三)、在任何温度和压力下均符合理想气体模型或服从理想气体状态方程的气体称为理想气体图一:兰纳德-琼斯势能曲线示意图(四)、摩尔气体常数当压力趋于零的极限条件下,各种气体pVT均服从pV m=RT的定量关系,R是一个对各种气体都适用的常数。
R=8.314472Pa·m3·mol·K-1三、真实气体状态方程(一)、范德华方程(p+a/V2m)(V m-b)=RT将V m=V/n带入可得(p+n2a/V2)(V-nb)=nRTa只与气体的种类有关,与温度条件无关。
(a/V m2)又称为内压力说明了分子间相互吸引力对压力的影响反比于分子间距离r的6次方。
一般分子间作用力越大,a越大。
a的单位是Pa·m6·mol-2b应该与气体的温度有关。
b是体积修正项,表示每摩尔真实气体分子本身占有体积儿时分子自由活动空间减少的数值。
b的单位是m3·mol-1。
范德华认为真实气体由于分子间的相互作用力会导致气体的压强比理想气体小即p=(p理+a/V2m),体积在考虑了分子本身占有的体积b之后自由活动空间应该是(V m-b)。
范德华方程是一种被简化了的真实气体的数学模型,在任何温度、压力条件下均符合范德华方程的气体叫范德华气体(二)、维里方程pV m=RT(1+Bp2+Cp3+Dp4+……)维里方程是纯经验方程,当压力p→0,摩尔体积V m→0时,维里方程还原为理想气态方程。
物理化学基础知识总结上册第一章热力学第一定律及其应用1.体系与环境:我们用观察,实验等方法进行科学研究时,必须先确定所要研究的对象,把一部分物质与其余的分开(可以是实际的,也可以是想像的)。
这种被划定的研究对象,就称为体系或系统,而在体系以外与体系密切相关,影响所能及的部分,则称为环境。
根据体系和环境之间的关系,可以把体系分为三种:体系完全不受环境的影响,和环境之间没有物质或能量的交换者,称为隔离体系或孤立体系;体系与环境之间没有物质的交换,但可以发生能量的交换者,称为封闭体系;体系不受上述限制,即体系与环境之间可以有能量以及物质交换者,称为敞开体系。
明确所研究的体系属于何种体系是至关重要的。
由于处理问题的对象不同,描述他们的变量不同,所适用的热力学公式也有所不同。
描述体系宏观性质的热力学变量可分为两类:广度性质(容量性质)和强度性质。
广度性质的数值与体系的数量成正比。
此种性质具有加和性,即整个性质的某种广度性质是体系中各部分该种性质的总和。
广度性质在数学上是一次齐函数。
强度性质此种性质不具有加和性,其数值取决于体系自身的特性,与体系的数量无关。
强度性质在数学上是零次齐函数。
体系的某种广度性质除以总质量或物质的量(或者把体系的两个容量性质相除)之后就成为强度性质。
若体系中所含物质的量是单位量,即一摩尔,则广度性质就成为强度性质。
2.热力学平衡态和状态函数:热平衡,力学平衡,相平衡,化学平衡。
当体系处于一定的状态时,其广度性质和强度性质都具有一定的数值。
但是体系的这些性质彼此之间是相互关联的,通常只需要指定其中的几个,其余的也就随之而定了。
也就是说,在这些性质之中只有部分是独立的。
体系的某些性质的改变只与始态和终态有关,而与变化时所经历的途径无关。
在热力学中,把具有这种特性的物理量叫做状态函数。
热和功与其改变的途径有关,是过程函数,从微观角度来说,功是大量质点以有序运动而传递的能量,热量是大量质点以无序运动方式而传递的能量。
第一章化学热力学基础1.1 本章学习要求1. 掌握化学热力学的基本概念和基本公式2. 复习热化学内容;掌握Kirchhoff公式3. 掌握熵变的计算;了解熵的统计意义1.2内容概要1.2.1热力学基本概念1. 体系和环境体系(system):热力学中,将研究的对象称为体系。
热力学体系是大量微观粒子构成的宏观体系。
环境(surroundings):体系之外与体系密切相关的周围部分称作环境。
体系与环境之间可以有明显的界面,也可以是想象的界面。
①敞开体系(open system):体系与环境间既可有物质交换,又可有能量交换。
②封闭体系(closed system):体系与环境间只有能量交换,没有物质交换。
体系中物质的量守恒。
③孤立体系(isolated system):体系与环境间既无物质交换,又无能量交换。
2. 体系的性质(property of system)用来描述体系状态的宏观物理量称为体系的性质(system properties)。
如T、V、p、U、H、S、G、F等等。
①广度性质(extensive properties):体系这种性质的数值与体系物质含量成正比,具有加和性。
②强度性质(intensive properties):这种性质的数值与体系物质含量无关,无加和性。
如T、p、d(密度)等等。
3. 状态及状态函数状态(state):是体系的物理性质及化学性质的综合表现,即体系在一定条件下存在的形式。
热力学中常用体系的宏观性质来描述体系的状态。
状态函数(state function):体系性质的数值又决定于体系的状态,它们是体系状态的单值函数,所以体系的性质又称状态函数。
根据经验知,一个纯物质体系的状态可由两个状态变量来确定,T、p、V是最常用的确定状态的三个变量。
例如,若纯物质体系的状态用其中的任意两个物理量(如T、p)来确定,则其它的性质可写成T、p的函数Z = f (T、p)。
状态函数的微小变化,在数学上是全微分,并且是可积分的。