发变组保护(包括励磁变)继电保护整定
- 格式:doc
- 大小:49.50 KB
- 文档页数:3
发变组保护与励磁系统保护之间的配合关系摘要:在发变组保护装置中,自动控制系统是一个非常重要的系统,其中励磁系统和发变组保护在自动控制系统中发挥着重要的作用,是两个最重要的核心系统。
要想使整个系统发挥良好的作用,就一定要确保励磁系统和发变组保护的安全运行。
如果其发生了一定的障碍或者配合问题,就会对机组本身造成重大的损坏,使整个电网运行的安全性得不到保障。
所以,对励磁系统限制器与发变组保护定制配合关系进行判定,能有效地降低事故发生的概率,维护电网安全运行。
关键词;发变组;励磁系统;配合;发电机励磁系统具有完善的励磁电流、发电机电压和发电机过励等限制措施。
而发变组保护主要包括励磁绕组过负荷以及发电机过电压等。
为确保机组正常运行,需要对励磁调节器以及发变组的参数进行优化,最终实现完美的配合。
一、励磁系统和发电机保护的基本概念发电机励磁系统(AVR)在电气系统中起着极其重要的作用,可以有效地提高发电机的稳定性。
其核心作用是控制运行的稳定性、电压和功率。
而对于自对准励磁系统,由于其自运行响应快、安全可靠、结构简单,具有维护和保护方便的功能。
静态励磁系统对电力系统有很好的作用,因为它的稳定性在动态方面和静态方面都很好。
特别是对于整个网络的运行,与常规励磁相比,其稳定性特别优越。
励磁系统在工作性能上具有良好的保护和限制单元,主要是指在电压不稳定的情况下,对过励磁或欠励磁的保护和预防。
然而,对于发电机群,其保护装置这是不一样的。
一方面具有过励磁、过负荷极限和过电压保护的维护性能。
若忽略励磁系统限幅器与发电机保护值的匹配问题,当励磁系统异常时,发电机立即失效。
为避免这种情况,维护电力系统的正常运行,应协调励磁系统限幅器与发电机保护设定值。
二、发变组保护与励磁系统的配合1.发变组过励保护与励磁系统限制过励的配合。
在发电机出现过励磁的情况下,首先,系统必须在发电机进行一系列保护行为之前产生限定措施。
并且与此同时,它的限定数值必须远远小于限定过励磁反时保护的最小值。
第一篇 三峡右岸电站发变组保护整定用短路电流计算一、为发电机、变压器(包括升压主变、高厂变、励磁变)继电保护整定用的短路计算比较简单,短路形式有:两相和三相短路、单相接地短路,根据保护原理的要求,选定最大运行方式和最小运行方式。
保护短路计算用系统等效电路和参数如图1所示,图中标么电抗均以发电机额定容量(777.8MVA )为容量基值(MVA 8.777=S )。
500kV #22#21#23#24#25#26#15~#20图1 全厂等值电路图(正、负序,MVA 8.777=B S )注:正序阻抗/零序阻抗,最小运行方式最大运行方式;最大运行方式:500kV 系统为最大,本厂12台机;最小运行方式:500kV 系统为最小,本厂1台机。
发电厂设备的原始参数(括号内的数值为换算后的标么值,MVA 8.777=B S ): 1)#21~#22发电机(ALSTOM 机组):700MW ,777.8MVA ,)203.0(203.0''=d X ;#21~#22主变:840MVA ,)156.0(16838.0=T X ; #22高厂变:15MVA ,)111.3(06.0=T X ;#21~#22励磁变:8.115MVA ,)668.7(08.0=T X 。
2)#23~#26发电机(HEC 机组):700MW ,777.8MVA ,)205.0(205.0''=d X ;#23~#26主变:840MVA ,)156.0(16838.0=T X ; #24高厂变:15MVA ,)111.3(06.0=T X ;#23~#26励磁变:8.775MVA ,)091.7(08.0=T X 。
二、#24(HEC )发变组保护整定用等值电路#24K 2K图2 #24发变组保护整定用等值电路图(MVA 8.777=B S )1、最大运行方式:)156.0205.0(31//)156.0203.0(41//)156.02.0(41//0459.0min .+⨯+⨯+⨯=S X 0191.01203.0//08975.0//089.0//0459.0==; 2、最小运行方式:0614.0max .=S X 。
励磁系统限制器与发变组保护定值配合整定分析[摘要] 励磁系统限制器与发变组保护定值的配合问题在现场应用时,有时容易忽略,致使励磁系统发生异常现象,发变组保护立即作出停机动作。
为了避免这样现象的发生,有效的将励磁系统限制器与发变组保护定值实施配合至关重要。
文章主要分析了励磁系统与发变组保护配合原则,及励磁系统限制器与发变组保护定值配合事例。
[关键词] 发变组保护;励磁系统限制;配合整定;0引言发变组保护和励磁系统在电站中为两个关键的自动控制系统。
假如这两个重要系统出现故障,不仅仅会损害机组本身,同时还会严重影响电网正常工作。
为切实加强并网机组安全管理,提升网源协调运行水平,需重点核查励磁系统过励限制于保护的配合关系。
大多数电厂进行发变组保护计算时,关于励磁系统限制器与发变组保护定值的配合非常容易忽略,致使励磁系统一旦发生异常现象,发变组保护立即作出停机动作,为机组的安全稳定运行埋下隐患。
1 励磁限制与涉网保护协调配合校核原理发电机组励磁限制与涉网保护的协调配合主要包括低励限制与失磁保护之间的协调配合,过励限制与转子过负荷保护之间的协调配合,V/ Hz限制与过激磁保护之间的协调配合,定子电流限制器与定子过负荷保护配合等关系。
本章节分析这些涉网保护与限制配合关系的校核原理。
1.1 低励限制和失磁保护的协调配合低励限制检测到机组励磁水平降低动作值时,即产生控制作用增大励磁使机组运行点回到运行范围,提高机组和系统的安全稳定性。
低励限制线的设置通常依据发电机组进相试验的结果,在功率坐标系中进行整定,同时注意不能束缚发电机组的进相运行能力。
失磁保护是在发电机励磁突然消失或部分失磁时,采取减出力、灭磁解列或跳闸等方式确保机组本身安全。
失磁保护的动作依据是发电机的热稳定性和静态稳定极限等条件,通常在阻抗坐标系中整定。
发电机组低励限制应与失磁保护协调配合,在任何扰动下的低励限制灵敏度应高于失磁保护,先于失磁保护动作。
2.1 发变组比率制动差动保护2.1.1 保护采用三侧差动保护(作为发电机定子绕组、主变压器高压侧绕组、套管、高厂变低压侧之间故障的主保护。
2.1.2 保护元件电流取自主变高压侧,高厂变低压侧、发电机中性点。
2.2 发电机主变压器保护2.2.1发电机差动保护(1)采用比率制动原理构成,是发电机内部相间故障的主保护(2)差动保护动作条件:三相任一相比率差动动作;软压板和硬压板均在投入位置;差动启动元件动作;TA断线闭锁控制为不闭锁状态(0).2.2.2发电机定子接地保护作为发电机定子回路单相接地故障保护,当发电机定子绕组任一点发生单相接地时,该保护按要求的时限动作于信号或跳闸。
(1)保护原理:由基波零序电压保护发电机从机端算起的85%~95%的定子绕组单相接地;三次谐波电压保护发电机中性点附近定子绕组的单相接地。
(2)基波零序电压取自发电机端部,三次谐波零序电压保护是检测发电机端部对地与中性点对地零序三次谐波电压比值的变比;工作电压取自发电机端部电压互感器和发电机中性点侧PT。
(3)基波零序电压保护动作后跳发变组出口开关1DL、MK、厂用A、B分支、启动A、B分支快切、关主汽门、启动失灵保护。
(4)三次谐波零序电压保护动作于发信号。
2.2.3发电机匝间保护发电机匝间保护采用DP2+3U0和DP2两种保护方式。
不仅可以作为发电机内部匝间短路的主保护,还可以作为发电机内部相间短路及定子绕组开焊的保护。
(1)动作条件:在正常运行时,匝间保护软压板和硬压板投入;启动元件动作;故障分量负序方向和纵向零序电压动作.在并网前,由纵向零序电压和电流小于0.06Iset作为判据,且匝间保护软压板和硬压板投入;启动元件动作.(2)保护用电流量取自发电机尾. 电压2.2.4转子一点接地(1)采用乒乓开关切换原理,作为监视发电机励磁回路对地绝缘的保护。
(2)保护电压取自转子电压:601、602及大轴。
(3)转子一点接地保护动作情况:经延时动作于信号。
电厂运行发变组继电保护系统发电机组的继电保护配置原则应该以能可靠地检测出发电机可能发生的故障及不正常运行状态为前提,同时,在继电保护装置部分退出运行时,应不影响机组的安全运行。
在对故障进行处理时,应保证满足机组和系统两方面的要求,因此,主保护应双重化。
关于后备保护,发电机、变压器已有双重主保护甚至已超双重化配置, 本身对后备保护已不做要求,高压主母线和超高压线路主保护也都实现了双重化,并设置了开关失灵保护,因此,可只设简单的保护来作为相邻母线和线路的短路后备,对于大型机组继电保护的配置原则是:加强主保护(双重化配置),简化后备保护。
继电保护双重化配置的原则是:两套独立的CT x PT检测元件,两套独立的保护装置,两套独立的开关跳闸机构,两套独立的控制电缆,两套独立的蓄电池供电。
保护配置特点双主双后,即双套主保护、双套后备保护、双套异常运行保护的配置方案。
其思想是将主设备(发电机或主变、厂变)的全套电量保护集成在一套装置中,主保护和后备保护共用一组CT o配置两套完整的电气量保护,每套保护装置采用不同组CT z PT z均有独立的出口跳闸回路。
配置一套非电量保护,出口跳闸回路完全独立。
主变高压侧不设刀闸时,不设短引线保护。
如果发电机和主变可能分开运行,可不装设象常规发变组的所谓大差动保护。
主变和发电机过激励保护需要分开来配置,并且分别按自己的励磁特性来整定,作用于不同出口。
发电机差动保护,主变差动保护,厂变差动保护CT保护区相互交叉衔接,防止出现保护死区。
主变低压侧设置电压互感器,为发电机并网提供系统侧同期电压,同时, 为主变复合电压闭锁过流保护、主变低侧接地保护、主变过激磁保护提供测量电压。
为防止短路电流衰减导致后备保护拒动,发电机采用带记忆的复合电压闭锁过流保护作为后备保护。
主变压器后备保护采用复合电压闭锁过流保护,为保证保护对各侧母线有足够灵敏度,应采用低压侧复合电压闭锁。
在发电机非电量保护中设置发电机灭磁开关联跳保护,作用于发电机全停。
发电厂励磁限制与发变组保护配合解析摘要:发变组保护与励磁系统是发电厂继电保护中重要的一部分,同时也是继电保护整定计算的重点、难点所在。
发变组保护与励磁系统限制的合理配合、整定,关系到机组、电网的安全稳定,同时也是网源协调参数核查中的重要部分。
通过对本厂继电保护的整定计算,分析阐述了发电机失磁保护与励磁系统低励限制、发电机转子过负荷保护与励磁系统强励限制、发变组过激磁保护与励磁系统伏赫兹限制、发电机定子绕组过负荷保护与励磁系统定子过电流限制的配合关系,对其它发电企业的网源协调参数核查、励磁和发变组保护装置的整定计算、配合、校核有着较好的参考意义。
关键词:网源协调;励磁限制;发变组保护大型发电机继电保护装置中配有失磁、励磁绕组过负荷和发电机过励磁保护,在低励、励磁绕组过流、发电机过励磁等异常运行方式下保护发电机。
自动励磁调节器(AVR)通过调节、限制、切换等手段,对发电机起到限制和保护的作用。
当超过发电机允许的正常工作状态到达一定程度时,励磁调节器的限制器应首先动作,将异常状态迅速拉回至正常状态,如仍不能把发电机拉回正常的工况,到达发电机保护动作值时,机组停机。
1、低励限制与失磁保护的配合运行中的发电机组,由于某种异常的突发状况(励磁系统故障,转子回路发生短路、灭磁开关误跳等),导致励磁电流急剧降低,发电机感应电势Ed降低,电磁转矩小于原动机转矩,转子加速,功角变大,当功角大于静稳极限功角时,发电机失稳,转入异步运行。
发电机保护中的失磁保护,是当发电机失磁越过静稳极限后机端测量阻抗从等有功圆越过静稳圆进入异步圆,机组进入不稳定工作区时动作停机。
励磁调节器中低励限制的作用是:当励磁电流下降到限制值时,限制励磁电流下降或增加励磁电流,使机组不越过静稳极限。
失磁保护、低励限制相互配合的依据为:在P/Q平面上失磁保护阻抗圆处在低励限制线的下方,并保持一定的裕度。
1.1 发变组失磁保护定值的整定安阳电厂#9发电机100MVA下标幺值电抗:Xd′=0.3456Ω,Xd =2.264Ω根据失磁保护公式:圆心:(0,(Xd′/2+ Xd)/2)半径:(Xd- Xd′/2)/2#9机失磁保护异步阻抗圆方程为:R2+(X+1.22)2=1.0521.2 调节器低励限制定值整定欠励限制动作曲线是按发电机不同有功功率静稳极限及发电机端部发热条件确定的。