6.第7章 径向基函数网络
- 格式:pdf
- 大小:1.28 MB
- 文档页数:42
径向基函数神经网络模型及其在预测系统中的应用传统的神经网络模型在处理非线性问题时存在一定的限制,而径向基函数神经网络(Radial Basis Function Neural Network,RBFNN)模型则能够有效地处理这类问题。
本文将介绍径向基函数神经网络模型的基本原理,并探讨其在预测系统中的应用。
1. 径向基函数神经网络模型的基本原理径向基函数神经网络模型是一种三层前馈神经网络,包含输入层、隐含层和输出层。
该模型通过将输入向量映射到高维特征空间,并利用径向基函数对输入数据进行非线性变换。
其基本原理如下:1.1 输入层:输入层接收原始数据,并将其传递给隐含层。
1.2 隐含层:隐含层中的神经元使用径向基函数对输入数据进行非线性变换。
径向基函数通常采用高斯函数,其形式为:φ(x) = exp(-(x-c)^2/2σ^2)其中,x为输入向量,c为径向基函数的中心,σ为径向基函数的宽度。
隐含层神经元的输出由径向基函数计算得到,表示了输入数据距离每个径向基函数中心的相似度。
1.3 输出层:输出层根据隐含层的输出和相应的权值进行计算,并生成最终的预测结果。
2. 径向基函数神经网络模型在预测系统中的应用径向基函数神经网络模型在各种预测系统中具有广泛的应用,包括金融预测、气象预测、股票价格预测等。
2.1 金融预测径向基函数神经网络模型能够对金融市场进行有效预测,例如股票价格、外汇汇率等。
通过输入历史数据,可以训练神经网络模型,利用其中的非线性变换能力来预测未来的价格走势。
实验表明,基于径向基函数神经网络模型的金融预测系统能够提供较高的准确度和稳定性。
2.2 气象预测径向基函数神经网络模型在气象预测中的应用也取得了良好的效果。
通过输入历史气象数据,神经网络模型可以学习到不同变量之间的关系,并预测未来的天气情况。
与传统的统计模型相比,径向基函数神经网络模型能够更好地捕捉到非线性因素对气象变化的影响,提高了预测的准确性。
径向基函数网络的隐式曲面方法
李道伦;卢德唐;孔祥言;吴刚
【期刊名称】《计算机辅助设计与图形学学报》
【年(卷),期】2006(18)8
【摘要】将径向基函数网络与隐式曲面构造原理相结合,提出一种构造隐式曲面的方法.首先以描述物体曲面的隐式函数为基础构造三元显式函数,然后用径向基函数网络逼近显式函数,最后从神经网络的仿真超曲面得到描述物体的封闭曲面;并证明了在理论上此等值面可以以任意精度逼近物体曲面.该方法具有光滑度高、稳定性好,尤其适用少量采样点情形等特点.实验表明,它具有很强的造型能力.
【总页数】7页(P1142-1148)
【作者】李道伦;卢德唐;孔祥言;吴刚
【作者单位】中国科学技术大学安徽省计算与通讯软件重点实验室,合肥,230026;中国科学技术大学计算机科学与技术系,合肥,230026;中国科学技术大学安徽省计算与通讯软件重点实验室,合肥,230026;中国科学技术大学安徽省计算与通讯软件重点实验室,合肥,230026;南京财经大学电子商务重点实验室,南京,210003
【正文语种】中文
【中图分类】TP3
【相关文献】
1.简单交互式医学图像隐式曲面配准方法 [J], 马林;黄惠
2.基于广义多项式神经网络的点云数据隐式曲面重构方法 [J], 肖秀春;姜孝华;张雨
浓
3.一种三维点云自适应隐式曲面重构方法 [J], 江盟;蔡勇;张建生
4.隐式与参数曲面间的混合曲面设计方法 [J], 高旭
5.隐式曲面梯度多孔结构拓扑优化设计方法 [J], 孙鹏飞;张跃;尹鹏;刘宏磊;李宝童因版权原因,仅展示原文概要,查看原文内容请购买。
径向基函数神经网络模型与学习算法1985年,Powell提出了多变量插值的径向基函数(Radical Basis Function, RBF)方法。
1988年,Moody和Darken提出了一种神经网络结构,即RBF 神经网络,属于前向神经网络类型,它能够以任意精度逼近任意连续函数,特别适合于解决分类问题。
RBF网络的结构与多层前向网络类似,它是一种三层前向网络。
输入层由信号源结点组成;第二层为隐含层,隐单元数视所描述问题的需要而定,隐单元的变换函数RBF()是对中心点径向对称且衰减的非负非线性函数;第三层为输出层,它对输入模式的作用作出响应。
从输入空间到隐含层空间的变换是非线性的,而从隐含层空间的输出层空间变换是线性的。
RBF网络的基本思想是:用RBF作为隐单元的“基”构成隐含层空间,这样就可以将输入矢量直接(即不需要通过权接)映射到隐空间。
当RBF的中心点确定以后,这种映射关系也就确定了。
而隐含层空间到输出空间的映射是线性的,即网络的输出是隐单元输出的线性加权和。
此处的权即为网络可调参数。
由此可见,从总体上看,网络由输入到输出的映射是非线性的,而网络输出对可调参数而言却又是线性的。
这样网络的权就可由线性方程直接解出,从而大大加快学习速度并避免局部极小问题。
1.1RBF神经网络模型径向基神经网络的神经元结构如图1所示。
径向基神经网络的激活函数采用径向基函数,通常定义为空间任一点到某一中心之间欧氏距离的单调函数。
由图1所示的径向基神经元结构可以看出,径向基神经网络的激活函数是以输入向量和权值向量之间的距离dist 作为自变量的。
径向基神经网络的激活函数的一般表达式为()2dist dist eR -= (1) dist 1x m x 2x 1h ω2h ωihωbn y图1 径向基神经元模型随着权值和输入向量之间距离的减少,网络输出是递增的,当输入向量和 权值向量一致时,神经元输出1。
在图1中的b 为阈值,用于调整神经元的灵敏度。
径向基函数(RBF)神经⽹络RBF⽹络能够逼近任意的⾮线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能⼒,并有很快的学习收敛速度,已成功应⽤于⾮线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。
简单说明⼀下为什么RBF⽹络学习收敛得⽐较快。
当⽹络的⼀个或多个可调参数(权值或阈值)对任何⼀个输出都有影响时,这样的⽹络称为全局逼近⽹络。
由于对于每次输⼊,⽹络上的每⼀个权值都要调整,从⽽导致全局逼近⽹络的学习速度很慢。
BP⽹络就是⼀个典型的例⼦。
如果对于输⼊空间的某个局部区域只有少数⼏个连接权值影响输出,则该⽹络称为局部逼近⽹络。
常见的局部逼近⽹络有RBF⽹络、⼩脑模型(CMAC)⽹络、B样条⽹络等。
径向基函数解决插值问题完全内插法要求插值函数经过每个样本点,即。
样本点总共有P个。
RBF的⽅法是要选择P个基函数,每个基函数对应⼀个训练数据,各基函数形式为,由于距离是径向同性的,因此称为径向基函数。
||X-X p||表⽰差向量的模,或者叫2范数。
基于为径向基函数的插值函数为:输⼊X是个m维的向量,样本容量为P,P>m。
可以看到输⼊数据点X p是径向基函数φp的中⼼。
隐藏层的作⽤是把向量从低维m映射到⾼维P,低维线性不可分的情况到⾼维就线性可分了。
将插值条件代⼊:写成向量的形式为,显然Φ是个规模这P对称矩阵,且与X的维度⽆关,当Φ可逆时,有。
对于⼀⼤类函数,当输⼊的X各不相同时,Φ就是可逆的。
下⾯的⼏个函数就属于这“⼀⼤类”函数:1)Gauss(⾼斯)函数2)Reflected Sigmoidal(反常S型)函数3)Inverse multiquadrics(拟多⼆次)函数σ称为径向基函数的扩展常数,它反应了函数图像的宽度,σ越⼩,宽度越窄,函数越具有选择性。
完全内插存在⼀些问题:1)插值曲⾯必须经过所有样本点,当样本中包含噪声时,神经⽹络将拟合出⼀个错误的曲⾯,从⽽使泛化能⼒下降。
径向基函数网络算法在分类问题中的应用随着计算机技术的不断发展和深入,人工智能技术越来越受到人们的重视和关注。
其中,机器学习算法作为人工智能的一个重要分支,其应用广泛。
在很多分类问题中,径向基函数网络算法作为一种常用的机器学习算法,其性能表现优异,得到了广泛的应用。
一、径向基函数网络算法简介径向基函数网络算法(Radial Basis Function Network,简称RBFN)是一种人工神经网络算法。
它的核心思想是将高维空间中的数据映射到低维空间中,通过对映射后的数据进行分类来解决分类问题。
RBFN算法的基本结构包括输入层、隐藏层和输出层。
其中,隐藏层是一个非线性的映射函数,它利用径向基函数将输入数据从高维转化到低维,同时隐藏层的神经元数量也是一个关键参数,它的大小会直接影响分类器的性能。
当数据映射到低维空间后,就可以使用输出层的线性分类器来对数据进行分类。
二、径向基函数网络算法的优点1.非线性逼近能力强径向基函数网络算法通过使用非线性映射函数实现了非线性变换,使得它具有很好的逼近复杂函数的能力。
因此,它在解决高维复杂问题方面比其他线性分类器具有更好的性能。
2.分类速度快与其他机器学习算法相比,径向基函数网络算法在分类时的速度较快。
这是因为它在训练时能够快速地找到合适的分类器,从而大大缩短了分类时间。
3.容易并行化处理随着计算机硬件和软件的不断发展,多核处理器的应用越来越普遍。
对于很多大规模数据处理的应用,径向基函数网络算法能够被很好地并行化处理。
这使得它在分布式计算环境下的并行计算有着很好的应用前景。
三、径向基函数网络算法在分类问题中的应用实例1.手写数字识别手写数字识别是图像处理中一个经典的问题,很多机器学习算法都会应用于此类问题中。
在手写数字识别中,数据的特征维度很高,而且数据本身也很复杂。
径向基函数网络算法可以有效地解决这类问题,在很多实验中表现出了良好的分类效果。
2.互联网安全领域在互联网安全领域,径向基函数网络算法被广泛用于恶意代码检测、垃圾邮件过滤等问题中。