6.第7章 径向基函数网络
- 格式:ppt
- 大小:1.08 MB
- 文档页数:42
径向基函数神经网络模型及其在预测系统中的应用传统的神经网络模型在处理非线性问题时存在一定的限制,而径向基函数神经网络(Radial Basis Function Neural Network,RBFNN)模型则能够有效地处理这类问题。
本文将介绍径向基函数神经网络模型的基本原理,并探讨其在预测系统中的应用。
1. 径向基函数神经网络模型的基本原理径向基函数神经网络模型是一种三层前馈神经网络,包含输入层、隐含层和输出层。
该模型通过将输入向量映射到高维特征空间,并利用径向基函数对输入数据进行非线性变换。
其基本原理如下:1.1 输入层:输入层接收原始数据,并将其传递给隐含层。
1.2 隐含层:隐含层中的神经元使用径向基函数对输入数据进行非线性变换。
径向基函数通常采用高斯函数,其形式为:φ(x) = exp(-(x-c)^2/2σ^2)其中,x为输入向量,c为径向基函数的中心,σ为径向基函数的宽度。
隐含层神经元的输出由径向基函数计算得到,表示了输入数据距离每个径向基函数中心的相似度。
1.3 输出层:输出层根据隐含层的输出和相应的权值进行计算,并生成最终的预测结果。
2. 径向基函数神经网络模型在预测系统中的应用径向基函数神经网络模型在各种预测系统中具有广泛的应用,包括金融预测、气象预测、股票价格预测等。
2.1 金融预测径向基函数神经网络模型能够对金融市场进行有效预测,例如股票价格、外汇汇率等。
通过输入历史数据,可以训练神经网络模型,利用其中的非线性变换能力来预测未来的价格走势。
实验表明,基于径向基函数神经网络模型的金融预测系统能够提供较高的准确度和稳定性。
2.2 气象预测径向基函数神经网络模型在气象预测中的应用也取得了良好的效果。
通过输入历史气象数据,神经网络模型可以学习到不同变量之间的关系,并预测未来的天气情况。
与传统的统计模型相比,径向基函数神经网络模型能够更好地捕捉到非线性因素对气象变化的影响,提高了预测的准确性。
径向基函数神经网络模型与学习算法1985年,Powell提出了多变量插值的径向基函数(Radical Basis Function, RBF)方法。
1988年,Moody和Darken提出了一种神经网络结构,即RBF 神经网络,属于前向神经网络类型,它能够以任意精度逼近任意连续函数,特别适合于解决分类问题。
RBF网络的结构与多层前向网络类似,它是一种三层前向网络。
输入层由信号源结点组成;第二层为隐含层,隐单元数视所描述问题的需要而定,隐单元的变换函数RBF()是对中心点径向对称且衰减的非负非线性函数;第三层为输出层,它对输入模式的作用作出响应。
从输入空间到隐含层空间的变换是非线性的,而从隐含层空间的输出层空间变换是线性的。
RBF网络的基本思想是:用RBF作为隐单元的“基”构成隐含层空间,这样就可以将输入矢量直接(即不需要通过权接)映射到隐空间。
当RBF的中心点确定以后,这种映射关系也就确定了。
而隐含层空间到输出空间的映射是线性的,即网络的输出是隐单元输出的线性加权和。
此处的权即为网络可调参数。
由此可见,从总体上看,网络由输入到输出的映射是非线性的,而网络输出对可调参数而言却又是线性的。
这样网络的权就可由线性方程直接解出,从而大大加快学习速度并避免局部极小问题。
1.1RBF神经网络模型径向基神经网络的神经元结构如图1所示。
径向基神经网络的激活函数采用径向基函数,通常定义为空间任一点到某一中心之间欧氏距离的单调函数。
由图1所示的径向基神经元结构可以看出,径向基神经网络的激活函数是以输入向量和权值向量之间的距离dist 作为自变量的。
径向基神经网络的激活函数的一般表达式为()2dist dist eR -= (1) dist 1x m x 2x 1h ω2h ωihωbn y图1 径向基神经元模型随着权值和输入向量之间距离的减少,网络输出是递增的,当输入向量和 权值向量一致时,神经元输出1。
在图1中的b 为阈值,用于调整神经元的灵敏度。
径向基函数(rbf)
径向基函数(radial basis function,简称RBF)是一类基于距
离的函数,在机器学习和统计模型中被广泛使用。
它们的主要方法是
将观测数据空间映射到一个高维特征空间,然后在特征空间中选择一
个合适的核函数,以此来建立模型。
RBF函数主要有三种类型:高斯函数、多次项函数和反函数。
其中高斯函数是RBF中最常见的一种,它可以有效地表示各种距离之间的
相似度,具有很好的非线性特性。
RBF在机器学习领域中的应用非常广泛,尤其是在监督学习算法中。
其中最经典的应用是径向基函数神经网络(radial basis function neural network,简称RBFNN),它是一种三层前向式神经网络,由输入层、隐含层和输出层组成。
RBFNN的隐含层是一组集中的RBF节点,用于对输入数据进行特征提取和非线性映射,而输出层则是一个线性
模型。
RBFS的主要优点是可以处理非线性问题,能够在高维特征空间中
实现有效的决策边界,具有很好的鲁棒性和泛化能力。
此外,RBF也可
以作为一种优秀的插值和拟合方法,用于函数逼近、信号处理和图像处理等领域。
然而,在实际应用中,RBF也存在一些问题。
首先,RBF无法处理参数多样性的问题,需要通过选择合适的核函数和调整参数来解决。
其次,RBF的计算复杂度较高,需要对大量数据进行处理,会导致处理速度慢。
此外,RBF也容易陷入局部极小值和过拟合等问题,需要通过一系列的优化方法来解决。
在未来的研究中,RBF可以通过结合其他机器学习算法和深度学习技术来进一步优化和完善,以实现更高效和准确的模型训练和预测。
径向基函数(RBF)神经⽹络RBF⽹络能够逼近任意的⾮线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能⼒,并有很快的学习收敛速度,已成功应⽤于⾮线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。
简单说明⼀下为什么RBF⽹络学习收敛得⽐较快。
当⽹络的⼀个或多个可调参数(权值或阈值)对任何⼀个输出都有影响时,这样的⽹络称为全局逼近⽹络。
由于对于每次输⼊,⽹络上的每⼀个权值都要调整,从⽽导致全局逼近⽹络的学习速度很慢。
BP⽹络就是⼀个典型的例⼦。
如果对于输⼊空间的某个局部区域只有少数⼏个连接权值影响输出,则该⽹络称为局部逼近⽹络。
常见的局部逼近⽹络有RBF⽹络、⼩脑模型(CMAC)⽹络、B样条⽹络等。
径向基函数解决插值问题完全内插法要求插值函数经过每个样本点,即。
样本点总共有P个。
RBF的⽅法是要选择P个基函数,每个基函数对应⼀个训练数据,各基函数形式为,由于距离是径向同性的,因此称为径向基函数。
||X-X p||表⽰差向量的模,或者叫2范数。
基于为径向基函数的插值函数为:输⼊X是个m维的向量,样本容量为P,P>m。
可以看到输⼊数据点X p是径向基函数φp的中⼼。
隐藏层的作⽤是把向量从低维m映射到⾼维P,低维线性不可分的情况到⾼维就线性可分了。
将插值条件代⼊:写成向量的形式为,显然Φ是个规模这P对称矩阵,且与X的维度⽆关,当Φ可逆时,有。
对于⼀⼤类函数,当输⼊的X各不相同时,Φ就是可逆的。
下⾯的⼏个函数就属于这“⼀⼤类”函数:1)Gauss(⾼斯)函数2)Reflected Sigmoidal(反常S型)函数3)Inverse multiquadrics(拟多⼆次)函数σ称为径向基函数的扩展常数,它反应了函数图像的宽度,σ越⼩,宽度越窄,函数越具有选择性。
完全内插存在⼀些问题:1)插值曲⾯必须经过所有样本点,当样本中包含噪声时,神经⽹络将拟合出⼀个错误的曲⾯,从⽽使泛化能⼒下降。
径向基函数径向基函数是一种常用的函数类型,通常用于数学计算、信号处理、图像处理及机器学习等领域。
它们的主要特点是具有局部特性和无限可微性,因此能够适应多种复杂数据的建模需求。
下面,我们来逐步阐述径向基函数的相关概念和应用。
第一步:径向基函数的定义径向基函数(Radial Basis Function,简称RBF)是以某一点为中心,以此点到其他所有数据点的距离为核心的一类函数。
常见的径向基函数有高斯径向基函数、多孔径向基函数等。
高斯径向基函数的公式为:φ(r) = e^(-r^2/2σ^2)其中r为点到中心点的距离。
第二步:径向基函数的应用径向基函数在多个领域有着广泛的应用。
以下是其中几个领域的应用举例:1. 信号处理:在信号处理中,径向基函数可以用于特征提取和去噪处理。
例如,将信号分解为多个径向基函数的线性组合,可以提取出信号中的有用信息。
2. 图像处理:在图像处理中,径向基函数可以用于图像配准、图像分割和图像重建等方面。
例如,将图像中的每个像素点看作一个数据点,使用多个径向基函数将图像进行拟合,可以得到更清晰的图像信息。
3. 机器学习:在机器学习中,径向基函数可以用于分类、聚类和回归等方面。
例如,在支持向量机中,径向基函数可以用于定义支持向量的核函数,以实现非线性分类。
第三步:径向基函数的优点与其他函数类型相比,径向基函数具有以下优点:1. 局部特性:径向基函数在计算权重时只使用局部数据点,可以适应非线性和复杂的数据分布。
2. 无限可微性:径向基函数是无限可微的函数类型,可以在数据中心点处获得连续可导的导函数,因此可大幅降低过拟合的可能性。
3. 灵活性:径向基函数可以使用不同的核参数,如高斯核、多孔核等,以适应不同数据类型和建模需求。
总之,径向基函数在多个领域有着广泛的应用,并且具有许多优点。
不过,在使用径向基函数时也需要注意其参数的选择和模型调参,以获得更好的建模效果。
径向基函数神经网络的训练与预测近年来,人工智能技术的快速发展使得神经网络成为了热门的研究领域之一。
径向基函数神经网络(Radial Basis Function Neural Network,简称RBFNN)作为一种非常有效的神经网络模型,被广泛应用于各种领域的训练与预测任务中。
RBFNN是一种前向反馈神经网络,其神经元模型的激活函数采用径向基函数。
径向基函数是一种基于距离的非线性函数,常用的径向基函数有高斯函数、多项式函数等。
RBFNN的训练与预测过程相对简单,但却能够提供较高的准确性和泛化能力。
在RBFNN的训练过程中,首先需要确定网络的结构。
网络结构包括输入层、隐藏层和输出层。
输入层接收外部数据,并将其传递给隐藏层。
隐藏层中的神经元使用径向基函数计算输入数据与神经元中心之间的距离,并将计算结果作为激活函数的输入。
输出层根据隐藏层的输出进行计算,并产生最终的预测结果。
确定网络结构后,接下来需要进行权重的训练。
权重的训练过程可以通过最小二乘法、梯度下降法等方法进行。
最小二乘法是一种常用的训练方法,它通过最小化预测结果与实际结果之间的误差来调整权重。
梯度下降法则是一种迭代的优化算法,通过不断调整权重来最小化损失函数。
RBFNN的预测过程相对简单,只需要将输入数据传递给网络,并根据输出层的结果进行预测。
由于RBFNN具有较强的非线性拟合能力,因此在许多实际应用中取得了良好的效果。
例如,在股票市场的预测中,RBFNN能够根据历史数据和市场情况准确预测未来的股价走势。
除了股票市场预测外,RBFNN还被广泛应用于其他领域,如医学诊断、图像识别、语音识别等。
在医学诊断中,RBFNN可以根据患者的病历数据和临床特征,准确预测患者是否患有某种疾病。
在图像识别中,RBFNN可以通过学习大量图像数据,实现对图像内容的准确分类和识别。
在语音识别中,RBFNN可以根据语音信号的频谱特征,实现对语音内容的准确识别和理解。
径向基函数神经网络模型及其在预测系统中的应用概述:径向基函数神经网络(Radial Basis Function Neural Network, RBFNN)是一种基于神经网络的非线性模型,具有广泛的应用领域。
在预测系统中,RBFNN能够准确预测未知输入与输出之间的关系,从而为预测问题的解决提供了有效的方法。
一、径向基函数神经网络模型的基本原理1.1 RBFNN的结构径向基函数神经网络由输入层、隐含层和输出层构成。
输入层接受原始数据,隐含层通过径向基函数对输入数据进行转换,输出层将转换后的数据映射到期望的输出。
1.2 径向基函数的选择径向基函数的选择对RBFNN的性能有重要影响。
常用的径向基函数有高斯函数、多项式函数和细分函数等。
根据问题的需求和特点选择合适的径向基函数,以提高模型的预测能力。
1.3 模型的训练与优化通过使用已知输入与输出的训练数据,结合误差反向传播算法,可以对RBFNN的参数进行学习和优化。
训练的目标是使得模型的输出与实际输出之间的误差最小化,从而提高预测的准确性。
二、径向基函数神经网络模型在预测系统中的应用2.1 股票市场预测股票市场价格的预测一直是金融领域的研究热点。
RBFNN通过学习历史价格与因素的关系,能够预测未来的股票价格走势。
通过准确的预测,投资者可以做出更明智的决策,提高投资回报率。
2.2 污染物浓度预测环境污染是当今社会面临的严重问题之一。
RBFNN可以利用区域内的环境数据,如气象数据、监测数据等,预测出某个时刻某地区的污染物浓度。
这有助于预警系统的建立,提前采取措施避免污染的扩散。
2.3 交通流量预测交通流量的预测在城市交通管理中具有重要意义。
通过收集历史交通流量和相关影响因素的数据,RBFNN能够准确预测未来某个时间段某条道路的交通流量。
这有助于交通规划和拥堵疏导的决策。
2.4 预测市场需求在制造业和零售业等领域,准确预测市场的需求对企业决策具有重要影响。
RBFNN可以通过学习历史销售数据和市场因素的关系,预测未来某段时间内产品的需求量。