水力机械空化与空蚀
- 格式:ppt
- 大小:4.13 MB
- 文档页数:33
浅谈水轮机的空化和空蚀技术报告——浅谈水轮机的空化和空蚀水轮机在运行中存在四大问题:动能指标(流量、出力、转速)、效率、空化性能、稳定性。
在上述问题中,空化、空蚀被喻为水轮机的“癌症”。
所以在水电厂水轮机运行生产过程中空化、空蚀是一个必须注意和避免的问题,我们必须了解其物理性质,然后找到避免和处理的方法。
空化是一种液体现象,固体或气体都不会发生空化。
当液体温度一定时,降低压力到某一临界压力时,液体也会汽化或溶解于液体中的空气发育成空穴,这种现象称为空化。
沸腾也是一种汽化,但沸腾是液体在衡定压力下加热,液体温度高于某一温度时发生的汽化,与空化不同之处就在于沸腾主要是热能交换的过程,而空化可近似看作是一个冷过程。
空化包括了空穴的出生、发育和溃灭。
当液体的压力降到某一临界值时,液体中便会产生空穴,这些空穴进入压力较低区域时,就开始发育成较大的气泡,气泡被流体带到高于压力临界值的区域时就会溃灭。
在空化区,空泡的不断产生又不断溃灭过程中,将产生高频高压的微观水击,由于高频高压的水击直接作用于过流表面,形成机械破坏,长期反复作用形成疲劳破坏。
同时空泡在溃灭时产生高温(可达到300—500摄氏度),与周围介质形成温差,产生温差电势,造成电化学腐蚀,而高温作用下产生氧,并增加其他有害气体的活性,产生腐蚀。
由于以上几种因素的联合作用,加快了过流表面的腐蚀破坏,这就是空蚀。
空蚀是空化的直接结果,空蚀只发生在固体表面。
由以上分析我们知道空化、空蚀的根本原因是水轮机自身产生的低压造成的。
而液体在混流式机组过流管道中低压的形成主要有:1)、翼型绕流:当水流绕流水轮机翼型叶片时,叶片背面的压力往往为负压,当叶片背面压力降低到环境汽化压力以下时,将会出现空化区空蚀水轮机叶片,对水轮机叶片造成破坏,即翼型空蚀。
2)、狭小空隙:当水流流过混流式机组导叶上下断面、立面密封、迷宫环等狭小通道或间隙时,将会导致局部流速升高,压力降低,当压力降低到环境汽化压力以下时,同样会产生空化区,空蚀导叶、叶片等,即间隙空蚀。
空化和空蚀的原理及应用1. 空化的原理空化是指在流体力学中,流动速度超过临界速度时,液体或气体中的压力下降到饱和蒸汽压以下,形成气蚀现象。
空化通常在高速液体流动或液体泵中特别容易发生。
空化的原理主要是因为流动速度增加,密度降低,从而导致流体的压力下降。
当压力下降至饱和蒸汽压以下,液体中的液体蒸发成气体,形成气蚀。
空化还会导致液体流体的流速增加,从而加剧空化现象。
2. 空蚀的原理空蚀是指在机械装置中,由于液体中的气泡或气体在压力变化下沉积或爆裂,导致液体中出现空隙或气泡的现象。
空蚀通常在液压系统、液体泵或涡轮机等设备中产生。
空蚀的原理主要是液体中的气泡或气体在压力变化下,由于气泡或气体的容积变化引发的空隙或气泡。
当压力变化引起气泡或气体的容积变化时,液体中的空隙或气泡会导致流体流动的中断或减弱,从而导致空蚀现象。
3. 空化和空蚀的应用空化和空蚀现象在工程领域中有着重要的应用。
以下是一些常见的应用场景:3.1 液体泵设计和维护在液体泵的设计和维护中,空化和空蚀是需要考虑的关键因素。
液体泵在高速运行时容易发生空化现象,导致泵的效率下降甚至损坏。
因此,在液体泵的设计和维护中,需要采取措施来避免空化和空蚀的发生,如增加泵的压力容降、增加泵的进口压力或降低泵的运行速度等。
3.2 水力发电站设计和优化在水力发电站的设计和优化中,空化和空蚀的控制是非常重要的。
由于水力发电站的高速水流,空化和空蚀往往会导致设备的损坏和效率下降。
因此,在水力发电站的设计和优化过程中,需要对流体的流速和压力进行适当控制,以避免空化和空蚀的发生。
此外,还需要合理选择材料,以提高设备的抗空蚀能力。
3.3 液压系统的设计和维护在液压系统中,空化和空蚀往往会导致系统压力下降,从而降低液压设备的工作效果。
因此,在液压系统的设计和维护中,需要合理选择液压材料,并采取措施来避免空化和空蚀的发生。
常见的方法包括增加液压系统的进口压力、优化液压系统的管道设计、定期维护和检查液压设备等。
水力机械空化空蚀问题的研究进展摘要:根据水力学能量方程可知,水轮机的空蚀是由于流经水轮机的水流,因某些因素的影响,导致水流在某些部位的流速突然增快,而引起该部位的压力出现局部降低的现象。
当水流流速增长较快,快到足以使该处的压力降低到该水温下的汽化压力时,在此低压区域的水便开始发生汽化,空蚀也就随之而产生。
关键词:水轮机空蚀;危害;原因;措施前言:水轮机空蚀的危害在水轮机运行过程中,对其运行极为不利的影响因素是空化和空蚀的存在,其影响主要表现在以下几方面:(1)会对水轮机的导叶、转轮室、转轮、上下止漏环及尾水管等过流部件产生破坏力。
(2)由于水流的能量转换规律和正常运行规律受到空化和空蚀的破坏作用,使得水流的漏损和水力损失显著增加,最终导致水轮机的出力和效率降低。
(3)使机组检修的复杂性和难度增大了,检修周期随之缩短。
由于空化和空蚀的存在,不仅会对金属部件产生疲劳破坏,还会引发水力振动、压力脉动和空蚀噪音等。
导致机组在检修时,不可避免的要耗用大量的钢材和辅材,还使得检修的工期也相应延长了,极大的影响了机组运行的效率和经济性。
(4)当空化和空蚀较严重时,可使得机组的噪音、负荷波动及振动的程度均加剧,甚至会导致机组无法稳定、安全地运行。
可见,空蚀对机组带来的破坏力是多方面的,同时它又是水轮机运行过程中不可避免的一种现象。
对于任何选取优良抗空蚀材料而制成,且设计优良的水轮机,在实际运行中,由于运行环境的改变仍不可避免地会发生空蚀现象。
空蚀问题讫今为止仍然是一个世界性的难题,这就提醒我们在机组运行的过程中,对这个问题要引起足够的重视。
并应设法采取积极有效的措施去削弱或消除空蚀的影响,以提高水轮机过流部件抗空蚀破坏的能力,这不仅可延长检修的周期,还有助于机组使用寿命的延长。
对提高机组的安全、稳定运行具有极重要的现实意义。
1 水轮机空蚀的成因1.1 空化现象当通过水轮机的水流在某些区域的流速突然增快,必然会导致相应区域的水流压力出现局部的降低。
第四章+水轮机的空化与空蚀第四章水轮机的空化与空蚀第一节水流的空化一、水流的空化现象认识到空化空蚀的破坏:发现轮船高速金属螺旋桨在很短时间内就被破坏。
固体围绕固定位置振动液体质点位置易迁移常温下液体质点会从液体中离析,取决于该种液体的汽化特性。
标准大气压力下,水温达到100℃时,发生沸腾汽化;当周围环境压力降低到0.24mH2O时,发生空化现象。
由于液体具有汽化特性:液体汽化:1、恒压加热;2、恒温降压沸腾:液体在衡定压力下加热,当温度高于某一温度时,液体开始汽化形成汽泡。
空化:当液体温度一定,降低压力到某一临界压力时,液体也会汽化或溶解于液体中的空气发育形成空穴。
气蚀现象:包括空化和空蚀两个过程。
空化:液体中形成空穴使液相流体的连续性遭到破坏,发生在压力下降到某一临界值的流动区域,空穴中主要充满着液体的蒸汽以及从溶液中析出的气体。
可以发生在液体内部,也可以发生在固定边界上。
空蚀:当空穴进入压力较低的区域时,就开始发育成长为较大的气泡,然后气泡被流体带到压力高于临界值的区域,气泡就将溃灭,在空泡溃灭过程中伴随着机械、电化、热力、化学等过程的作用,引起过流表面的材料损坏。
只发生在固体边界上。
空蚀是空化的直接后果。
水轮机气蚀:水流通过水轮机时,如果某些地方流速增高了,根据水力学能量方程,必然引起该处的局部压力降低,如果该处水流速度增加很大,以致使压力降低到在该水温下的汽化压力时,则此低压区的水开始汽化,便会产生气蚀。
水轮机的空化现象是水流在能量转换过程中产生的特殊现象。
二、空蚀机理空蚀的形成与水的汽化现象有密切的联系。
水的汽化压力:在给定温度下水开始汽化的临界压力。
水在各种温度下的汽化压力值水的温度(℃)汽化压力(mH2O) 0 0.06 5 0.09 10 0.12 20 0.24 30 0.43 40 0.72 50 1.26 60 2.03 70 3.18 80 4.83 90 7.15 100 10.33空蚀对金属材料表面的侵蚀破坏有机械作用、化学作用和电化作用三种,以机械作用为主。