线性代数—3.2 向量组的秩
- 格式:ppt
- 大小:889.00 KB
- 文档页数:18
86线性代数规定只含零向量的向量组的秩为0. 由定义3.3.2可知,例1中()123 ,,2r =ααα.一般来说,要求向量组的秩,首先需要求出极大无关组,若按照定义3.3.1去求极大无关组比较麻烦,尤其是定义3.3.1中的第二个条件的判断很困难,在3.3.2节我们还将介绍另外的方法求向量组的极大无关组以及秩.由向量组秩的定义可得:(1)向量组12,,,s "ααα线性相关()12,,,s r s ⇔<ααα";向量组12,,,s "ααα线性无关(1,r ⇔α)2,,s s =αα"(线性无关的向量组的极大无关组就是该向量组本身). (2)任何一个部分组的秩≤向量组的秩≤向量组中向量的个数. (3)若向量组12,,,s "ααα可由向量组12,,,t βββ"线性表示,则()()1212,,,,,,s t r r αααβββ""≤.证 设12,,,r i i i ααα"是向量组12,,,s "ααα的极大无关组,12,,,m j j j βββ"是向量组12,,,t βββ"的极大无关组. 因为向量组12,,,s "ααα可由向量组12,,,t βββ"线性表示,而向量组与极大无关组是等价的,所以12,,,r i i i ααα"可由12,,,m j j j βββ"线性表示. 又因为12,,,r i i i ααα"线性无关,根据推论3.2.7,得r m ≤,即()()1212,,,,,,s t r r αααβββ""≤.证毕.(4)等价的向量组具有相同的秩.证 设向量组12,,,s "ααα与向量组12,,,t βββ"等价,它们的秩分别为r 和m . 一方面,向量组12,,,s "ααα能由向量组12,,,t βββ"线性表示,则有r m ≤;另一方面,向量组12,,,t βββ"能由向量组12,,,s "ααα线性表示,则m r ≤. 综合这两方面的结论,可得r m =,即等价的向量组的秩相等.证毕.需要注意的是,若两个向量组的秩相等,它们不一定等价.如向量组()()121,2,1,2,4,2=−=−αα,1α是向量组12,αα的极大无关组,秩为1;而向量组()()120,2,1,0,4,2==ββ,1β是向量组12,ββ的极大无关组,秩为1. 两个向量组的秩相等,但是这两个向量组不等价.例2 试证:若一个向量组的秩为r ,则在向量组内,任意r 个线性无关的向量都构成它的一个极大无关组.证 设12,,,r i i i ααα"为向量组12,,,s "ααα中r 个线性无关的向量. 任取{}12,,,j s ∈αααα",如果 {}12,,,rj i i i ∈αααα",则12,,,,r ji i i αααα"线性相关;如果{}12,,,rj i i i ∉αααα",因为向量组12,,,,r j i i i αααα"的秩不超过向量组12,,,s "ααα的秩,所以()12,,,,1r j i i i r r r <+αααα"≤,于是向量组12,,,,r j i i i αααα"线性相关. 从而12,,,r i i i ααα"是向量组12,,,s "ααα的一个极大无关组.3.3.2 向量组的秩与矩阵的秩的关系由于矩阵和向量组之间存在着一定的关系,所以向量组的秩与矩阵的秩之间也有一定的关系.。
求向量组的秩的三种方法一、概述向量组的秩,即向量组中线性无关向量的个数。
秩是线性代数中非常重要的概念,涉及到向量组的基、解空间及解的唯一性等概念。
本文将详细介绍求向量组秩的三种方法:高斯消元、矩阵的秩和行列式的秩,同时附上实例说明。
二、高斯消元法高斯消元法是解决线性方程组的一种基本方法,用于消元、求解下三角矩阵和上三角矩阵。
在求向量组秩时,可以将向量组构成增广矩阵,通过高斯消元将其变为简化阶梯形矩阵,然后根据主元的数量,即非零行数,即可得到向量组的秩。
对于向量组:\begin{bmatrix}1\\2\\3\end{bmatrix},\begin{bmatrix}2\\4\\6\end{bmatrix},\begin{bmatrix}1\\3\\5\end{bmatrix}构成增广矩阵:\begin{bmatrix} 1 & 2 & 3\\ 2 & 4 & 6\\ 1 & 3 & 5 \end{bmatrix}通过高斯消元可得简化阶梯形矩阵:\begin{bmatrix} 1 & 2 & 3\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}可知主元是1,非零行数是1,因此向量组的秩是1。
三、矩阵的秩矩阵的秩是线性代数中非常基础的概念之一,也是求向量组秩的一种方法。
矩阵的秩是指在矩阵的行(或列)空间中,线性无关的向量的个数。
对于一个m\times n矩阵A,如果它的秩为r,则有以下三条性质:1. 行秩:A的行空间的秩为r;2. 列秩:A的列空间的秩为r;3. 行列式:A的任意r\times r子式的行列式不为0,而r+1阶子式的行列式为0。
由此可知,对于一个向量组,可以将其构成矩阵,然后求出矩阵的秩来得到向量组的秩。
对于向量组:\begin{bmatrix}1\\2\\3\end{bmatrix},\begin{bmatrix}2\\4\\6\end{bmatrix},\begin{bmatrix}1\\3\\5\end{bmatrix}构成矩阵:A=\begin{bmatrix} 1 & 2 & 3\\ 2 & 4 & 6\\ 1 & 3 & 5 \end{bmatrix}通过对A做初等行变换,得到简化阶梯形矩阵:R=\begin{bmatrix} 1 & 2 & 3\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}可知A的秩为1,因此向量组的秩也为1。