锂离子电池导电剂简介
- 格式:pdf
- 大小:1.31 MB
- 文档页数:56
2024年锂电池导电剂市场调研报告1. 引言锂电池是一种高效率、高能量密度的电池,被广泛应用于便携式电子设备、电动车辆和储能系统等领域。
导电剂作为锂电池的重要组成部分,对电池的导电性能起着至关重要的作用。
本报告旨在对锂电池导电剂市场进行调研,分析市场的规模、发展趋势以及主要参与者等方面的情况。
2. 市场规模根据调研数据显示,锂电池导电剂市场在过去几年中保持了快速增长的势头。
预计在未来几年内,市场规模将进一步扩大。
据统计,2019年,全球锂电池导电剂市场规模达到X亿美元,预计在2025年将达到X亿美元。
3. 市场细分3.1 产品类型锂电池导电剂市场主要分为石墨烯、碳黑、导电聚合物和金属导电剂等几类产品。
- 石墨烯导电剂:具有优异的导电性能和高的比表面积,被广泛应用于高端锂电池领域。
- 碳黑导电剂:具有良好的导电性能和较低的成本,是市场主流产品之一。
- 导电聚合物:由于其柔韧性和可塑性,被广泛应用于柔性锂电池领域。
- 金属导电剂:具有高导电性和良好的化学稳定性,适用于特殊环境下的锂电池。
3.2 应用领域锂电池导电剂主要应用于以下领域: - 便携式电子设备:如智能手机、平板电脑等。
- 电动车辆:包括电动汽车和电动自行车等。
- 储能系统:用于可再生能源的储存和利用。
- 其他领域:如航空航天、医疗器械等。
4. 市场竞争状况目前,全球锂电池导电剂市场竞争激烈,主要参与者包括国内外知名企业和新兴企业。
其中,国际企业的市场占有率较高,但国内企业在技术研发、成本控制和市场适应能力等方面逐渐崭露头角。
5. 市场发展趋势5.1 技术创新随着锂电池产业的发展,市场对导电剂品质和性能的要求也在不断提高。
未来,导电剂行业将继续推动技术创新,提高产品的综合性能,以满足不同领域锂电池的需求。
5.2 环保可持续发展环保问题一直是全球关注的焦点之一,导电剂行业也不例外。
未来导电剂市场将注重环境保护,加强可持续发展,推动绿色生产和循环利用。
引领市场的锂电池导电剂——碳纳米管作为一种结构特殊的新型碳材料,碳纳米管具有优异的机械性能和电化学性能,一直在各领域备受关注。
在锂电池的应用中,碳纳米管作为导电剂时,其独特的网络结构不仅能够有效地连接更多的活性物质,出色的电导率也可以大幅降低阻抗。
此外,较大长径比的碳纳米管具有更大的比表面积,与传统导电剂Super P、石墨相比,它只需很少的添加量便足以在电极内组建高效的三维高导电网络并达到提升电池能量密度的目标。
因此,更深入的研发新型碳纳米管导电剂是未来重点关注的方向。
据权威部门统计,到2023年碳纳米管导电剂在中国锂离子动力电池市场的渗透率将达到 82.2%NO.01碳纳米管的类型从结构上看,碳纳米管是蜂巢状的一维纳米空心管,其中每层的碳纳米管的侧壁是由碳原子通过sp2杂化,与周围3个碳原子键合成在一个平面的六边形。
根据石墨层数量,碳纳米管可以分成单壁碳纳米管(SWCNT)和多壁碳纳米管(MWCNT)。
单壁碳纳米管是由单层石墨烯构成,多壁碳纳米管则是由两层及以上石墨烯组成,层与层之间由范德华力连接。
单壁碳纳米管(SWCNT)和多壁碳纳米管(MWCNT)大多数SWCNT的直径范围在0.4~3 nm之间,约为人类头发的1/50000,而长度则可以扩展到其直径的几百万倍。
碳纳米管的形貌对其性能有着巨大的影响,其直径、管壁数、长度、缺陷程度等一直是行业内制备研究的重点。
NO.02碳纳米管的制备迄今为止,工厂合成的碳纳米管产品大多数仍以多壁碳纳米管为主,但不同厂家的生产技术却大不相同。
现阶段几种常见的碳纳米管制备技术包括:电弧放电法、激光蒸发法、化学气相沉积法和火焰法。
1. 电弧法碳纳米管最开始的出现是在用石墨电弧法制备富勒烯的过程意外所得,其后研究者便使用石墨电弧法制备碳纳米管,其后又改进开发出了催化电弧法。
电弧法是在惰性气氛的腔体中施加高压,通入电流使两极激发出电弧,电弧放电产生高温,不断消耗阳极石墨棒,含碳纳米管的样品沉积在阴极上。
搞懂锂电池导电剂,这⼀篇就够了!作为锂离⼦电池的重要组成部分的导电剂,虽然其在电池中所占的份量较少,但很⼤程度地影响着锂离⼦电池的性能,对改善电池循环性能、容量发挥、倍率性能等有着很重要的作⽤。
和锂离⼦电池电极材料⼀样,导电剂也在不断的进化。
从最早的炭⿊材料,其特点是点状导电剂,也可以称作零维导电剂,主要通过颗粒之间的点接触提⾼导电性;到后来,逐渐发展出了导电碳纤维和碳纳⽶管这⼀类具有⼀维结构的导电剂,由于其纤维状结构,增⼤了与电极材料颗粒的接触,⼤⼤提⾼了电极的导电性,降低了极⽚电阻。
最近⽕热的⽯墨烯材料,如今也逐渐成为锂离⼦电池的新型导电材料,由于⽯墨烯具有⼆维的⽚层状结构,极⼤的增加了电极颗粒之间的接触,提⾼了导电性,并降低了导电剂的⽤量,提⾼了锂离⼦电池的能量密度。
⼀、导电剂的作⽤导电剂的⾸要作⽤是提⾼电⼦电导率。
为了保证电极具有良好的充放电性能,在极⽚制作时通常加⼊⼀定量的导电剂,在活性物质之间、活性物质与集流体之间起到收集微电流的作⽤,以减⼩电极的接触电阻,加速电⼦的移动速率。
此外,导电剂也可以提⾼极⽚加⼯性,促进电解液对极⽚的浸润,同时也能有效地提⾼锂离⼦在电极材料中的迁移速率,降低极化,从⽽提⾼电极的充放电效率和锂电池的使⽤寿命。
⼆、导电剂对⽐分析导电剂主要有颗粒状导电剂如⼄炔⿊、炭⿊等,导电⽯墨多为⼈造⽯墨,纤维状导电剂如⾦属纤维、⽓相法⽣长碳纤维、碳纳⽶管等,还有新型⽯墨烯及其混合导电浆料等作为导电剂使⽤。
这些导电剂拥有各⾃的优劣势,以下是⼀些常见的导电剂理化参数对⽐:下⾯介绍锂离⼦电池主要应⽤的⼏类导电剂:导电炭⿊Super-P Li,其中有⽀链结构的科琴⿊ECP,导电⽯墨KS-6、SFG-6,⽓相⽣长碳纤维VGCF,碳纳⽶管CNTs和⽯墨烯及其复合导电剂。
1、炭⿊:炭⿊在扫描电镜下呈链状或葡萄状,单个炭⿊颗粒具有⾮常⼤的⽐表⾯积。
⽐⽯墨有更好的离⼦和电⼦导电能⼒,炭⿊颗粒的⾼⽐表⾯积,堆积紧密有利于颗粒之间紧密接触在⼀起,组成了电极中的导电⽹络,有利于电解质的吸附⽽提⾼离⼦电导率。
正极浆料配方组成正极浆料是锂离子电池中的重要组成部分,它主要由活性物质、导电剂、粘结剂、导电助剂和成型剂等组成。
不同的正极材料配方组成会对电池性能有很大的影响。
下面是一种常见的正极浆料配方组成的详细解析。
1.活性物质活性物质是正极材料的核心组成部分,它主要指的是正极材料中的锂离子嵌入/脱嵌材料。
常见的活性物质有锰酸锂(LiMn2O4)、三元材料(如锰酸锂钴酸锂镍酸锂LiMn2O4、LiCoO2、LiNiO2等)和磷酸铁锂(LiFePO4)等。
这些活性物质各有特点,如锰酸锂具有高容量和较低成本,但循环寿命较短,三元材料容量适中,循环寿命较长。
2.导电剂导电剂的作用是增加整个正极浆料的导电性能,以降低电阻和提高能量输出。
常见的导电剂有碳黑、导电纤维等。
碳黑是最常用的导电剂之一,它具有良好的导电性能和分散性,能够提高电池的充放电效率。
3.粘结剂粘结剂的作用是将活性物质和导电剂粘结在一起,并保持正极料层在充放电过程中的稳定性。
常见的粘结剂有聚合物树脂,如聚乙烯醇(PVA)、聚酰胺(PVDF)等。
这些粘结剂具有较好的黏附性和机械强度,能够提高正极层的粘结性和稳定性。
4.导电助剂导电助剂的作用是提高正极浆料的导电性能,增加整个正极层的导电路径。
常见的导电助剂有石墨粉和导电纤维等。
石墨粉具有良好的导电性能和分散性,能够增加正极电极的电导率。
5.成型剂成型剂的作用是帮助正极料层在制备过程中形成所需的形状和结构,并提高电极的物理性能。
常见的成型剂有聚丙烯酸(PAA)等。
聚丙烯酸具有良好的胶凝性和成膜性,能够使得正极层在制备过程中形成均匀的薄膜结构。
除了以上所述的主要组分外,正极浆料中还可能含有其他助剂,如稳定剂、增塑剂、润滑剂、膨胀剂等。
这些助剂的添加可以改善正极浆料的分散性、黏度、化学稳定性和机械强度,从而提高电池的性能和循环寿命。
需要注意的是,不同类型的锂离子电池(如磷酸铁锂电池、锰酸锂电池、三元材料电池等)其正极浆料的配方组成可能有所不同,因为它们的活性物质和材料特性不同。
锂离子电池电解液添加剂物性数据锂离子电池电解液添加剂物性数据锂离子电池电解液添加剂物性数据锂离子电池电解液添加剂物性数据锂离子电池电解液添加剂物性数据锂离子电池电解液添加剂物性数据锂离子电池电解液之电解质物性数据密度(g/mL at 25℃)1.50 0.8522.428g/cm3电导率1mol/L LiDFOB/EC:DMC(1:1)=8.6ms/cmF19-NMR: 10.4ppm ;B11-NMR:-15.7ppm ;C13-NMR: 164.7ppmSpectroscopic Properties:δ11B=7.6ppm;δ13C=159.1ppm粘度(40℃)介电常数外观白色粉末/无色结晶白色至灰色结晶或结晶粉末白色粉末无色结晶EtrNBF4 white powder or crystallicpowder特性有毒,保质12月吸湿性强,遇水易分解,白色结晶,溶于水,易溶有机脂类,遇空气易分解。
具有吸湿性具有吸湿性易溶于水,乙醇,乙醚及丙酮.溶解度:60g/100gH2O(25℃), 150g/100gH2O(89℃)TetraethylammoniumTetrafluoraborate见附注。
用途锂离子电池的电解液white powder or crystalline powder见附注包装与贮存包装在氟化塑料瓶内,外加铝塑复合袋充氩气。
只密封、干燥、防潮。
能在干燥环境下使用操作(如环境水分小于20ppm的手套箱内),拆封后也应密封存放在干燥手套箱中。
密封、干燥、防潮。
the product should be handledin dry atmosphere (glove box,dry room with max.20ppm H2O)附注:LiBOB is a new and proprietary conductive salt for the use in high performance batteries like lithium batteries, lithium ion batteries and lithium polymer batteries. The new halide-free product may be used instead of traditional fluorinated compounds like LiPF6, LiBF4, Li-triflate, methanides, imides etc.Stability:decomposition>300℃;hygroscopic;decomposes slowly on contact with water under formation of oxalic acid, boric acid and lithium oxalates 。
锂电池导电剂比例和孔隙率概述说明以及解释1. 引言1.1 概述:本篇文章旨在探讨锂电池导电剂比例和孔隙率对锂电池性能的影响。
在锂电池领域,导电剂起着重要的作用,它们不仅可以提供电子传导路径,还可以促进离子传输。
同时,孔隙率是描述材料内部孔隙分布程度的参数,在锂电池中也具有关键影响。
1.2 文章结构:本文将按照以下顺序进行论述:首先,我们将简要介绍锂电池导电剂及其特点;其次,我们将详细探讨导电剂比例对锂电池性能的影响,并解释其原因;然后,我们将分析孔隙率与锂电池性能之间的关系,并探讨如何提高孔隙率及其均匀分布;最后,我们将总结本文的主要观点和结论。
1.3 目的:本文旨在帮助读者深入了解锂电池中导电剂比例和孔隙率对于锂电池性能的重要性以及相互关系。
通过对这些因素进行详细阐述和解释,期望读者能够更好地理解锂电池的工作原理,并为锂电池的设计和优化提供一定的指导。
2. 锂电池导电剂比例和孔隙率概述2.1 锂电池导电剂锂电池是一种重要的可再充电能源,其中导电剂在其中起到关键的作用。
导电剂通常由碳材料组成,如石墨、碳纳米管、碳黑等。
导电剂在锂离子嵌入和脱嵌过程中提供导电通道,确保锂离子的高速扩散,并且影响锂电池的功率密度、循环寿命和稳定性。
2.2 导电剂比例对锂电池性能的影响在锂离子嵌入过程中,适当的导电剂数量可以提供更多的传输通道,从而增加了整体的导电性能。
较高比例的导电剂数量还可以改善锂离子扩散动力学特性,提高功率密度。
然而,过量的导电剂数量可能会增加内阻并限制扩散速度,从而降低整体性能。
因此,在设计锂离子电池时,需要合理选择合适数量的导电剂以平衡其对性能的影响。
2.3 孔隙率与锂电池性能的关系孔隙率是指电池正负极材料中的空隙比例,高孔隙率可以提供更多的空间用于锂离子嵌入和脱嵌反应,并且可以增加电极材料的有效表面积。
这将有助于提高锂离子的扩散速率、容量和循环寿命。
然而,过高的孔隙率可能导致电极结构不稳定,容易产生变形和剥离等问题,从而降低电池的循环寿命和稳定性。
【科锐分享】锂离子电池导电浆料介绍导电浆料概述导电浆料是将导电剂均匀分散在分散剂中形成的浆料,广泛应用于电子元器件封装、电极和电子元器件的制备等领域。
导电浆料大致可以分为以下几类:1、金属系导电浆料(如银、铜、镍);2、金属氧化物系导电浆料(如氧化锡、氧化铁、氧化锌、二氧化钛);3、碳系导电浆料(如炭黑、石墨、碳纳米管、石墨烯);4、复合导电剂(如复合粉、复合纤维)。
锂离子电池导电浆料介绍锂离子电池导电浆料主要是碳系导电浆料,包括导电炭黑、导电石墨、碳纳米管、石墨烯及其混合浆料。
通常,大家把炭黑、石墨称为传统导电浆料,把碳纳米管、石墨烯及其混合浆料称为新型导电浆料。
0 1导电炭黑导电炭黑是目前锂离子电池使用最广泛的导电浆料。
炭黑是一种无定形炭,在扫描电镜下呈链状或葡萄状,质轻而疏松,粒径小(D50=40Na),比表面积比较大,在浆料中分散性较差,容易团聚,且具有较强的吸油性。
由于导电炭黑不能形成良好的导电网络,导电性相对较差,而且电阻高且易于极化。
因此,在用导电炭黑进行极片制作时,往往与石墨、碳纳米管、石墨烯等材料配合使用。
目前,市面上销售的导电炭黑主要有Super P、Super S、350G、乙炔黑、科琴黑(Carbon ECP、Carbon ECP600JD)等。
0 2导电石墨石墨是一种晶体,晶格为六边形层状结构,相对较粗(D50=3-6um),导电性略差于导电炭黑,但具有更好的可压缩性和可分散性。
因此,导电石墨一般配合导电炭黑使用,这样不仅可以提高导电剂的分散性,减少极片极化,还能提高电极的氧化还原能力和电池的充放性能。
目前,市面上销售的导电石墨主要有KS-6、KS-15、SFG-6、SFG-15等。
0 3碳纳米管碳纳米管(CNT)可以分为单壁碳纳米管和多壁碳纳米管,是近年新发展起来的导电材料。
碳纳米管与活物质呈点线接触形式,在导电网络中不仅起到“引线”作用,同时还具有双电层效应,对于增强电解液吸收、提高电池容量、倍率性能、电池循环寿命和降低电池极化都具有积极作用,是较为理想的导电材料,但碳纳米管材料的缺点是不易分散。
日本锂电池导电剂的发展状况
日本锂电是走在锂电行业的先锋,最近几年锂离子电池的蓬勃发展推动了锂离子电池各种原材料(导电液、隔膜、铜箔、铝箔、正负极材料、粘结剂、导电剂)的研究,日本也做出了突出贡献,尤其在隔膜、电解液、粘结剂和导电剂方面,我这里着重的说一下导电
剂。
前期,日本用乙炔黑做导电剂,其中以SP为代表,该产品的导电性和分散性都很好地满足了锂电前期的生产要求;另外也有美国产的灯黑,但是用量不是很大,在美国用的比较多些。
中期,日本出现了科琴黑,以EC-300J为代表,其导电效果有很大提高。
中后期,铁锂出现,由于其安全性相对卓越,但是导电性欠佳,所以就要求导电剂导电效果更好,故日本企业都开始用ECP,其卓越的导电性弥补了铁锂的导电性不足的缺陷,更让电容量有了很大提高,以前用SP的时候,添加量一般为5%左右,现在添加ECP超级导电炭黑,只要添加1~2%就能满足要求,可以大幅提高活性物质的添加量,并且,ECP受温度影响很小,更增大了ECP的应用领域。
ECP 还有一个优点是:分子结构为独特的支链网状结构,稳定性很好,故能满足高倍率、大容量、高电流的锂离子电池的需求。
随着航天技术的提高,对电子零部件的要求业越来越高,电池也不例外,所以很多以军工和航天的客户为基准的电池厂家又在选择更好的超级导电剂,ECP-600JD就满足了这个超高要求。
现在,目前日本企业:三菱、索尼、三洋、松下等公司锂电基
本都用的是ECP或者ECP-600JD。
未来,随着电池正极材料的不断跟新,可能还有更好的超级导电剂出现。
我们期待着。
锂离子电池用导电剂的类型及原理介绍正负极电极的材料主要由正负极主料、导电剂、粘结剂组成,三者缺一不可。
正负极主料是活性物质,为锂离子电池提供锂离子的来源和去处,粘结剂作为将主料固定到集流体上和将原材料紧密结合在一起,也是不可或缺的。
导电剂的存在相当于为电子开辟了多条高速公路,让电子能够快速地在正负电极内和集流体间穿梭。
高效的导电性,能够提高电池的倍率性能,降低电池内阻,对于电池的循环性能也有较大提升。
锂离子电池的设计是要兼顾容量、功率、性能的,所以要挑选性状最适合的导电剂,来提高正负极活性物质的比例,并且不影响电池的导电性。
那么,实际生产中常用的导电剂种类有哪些,其应用如何,其导电机理是怎样的,下面将详细介绍。
导电剂一般可分为金属系导电剂(银粉、铜粉、镍粉等)、金属氧化物系导电剂(氧化锡、氧化铁、氧化锌等)、碳系导电剂(炭黑、石墨等)、复合导电剂(复合粉、复合纤维等)以及其他导电剂。
金属导电剂加入锂电池中会发生氧化还原反应,金属析出后会刺破隔膜,影响电池的安全性,而碳系导电剂不仅能满足锂电池导电需求,还具有低成本,质量轻等特点,对于降低锂电池成本、提高能量密度具有积极意义。
目前锂电池生产中常用的碳系导电剂主要为颗粒状导电剂(如导电石墨、导电炭黑)、纤维状导电剂(如碳纳米管、VGCF等)、片状导电剂(如石墨烯)。
1、颗粒状导电剂颗粒状导电剂主要有导电石墨、导电炭黑两种。
颗粒状的导电剂与正负极活性物质的接触形式为点点接触,导电颗粒和活性物质均匀混合后,电子在活性物质之间通过导电剂的桥梁作用穿梭。
图1. 导电石墨用于LCO导电石墨中常用的型号有KS系列,包括KS-6/KS-15等,SFG-6等。
石墨晶体是稳定的六边形网状结构,其用于锂离子电池可以作为导电网络的节点,导电石墨粒径较大d90约10微米。
石墨类导电剂用于负极时,不仅能导电,还能够作为负极活性物质。
由于导电石墨的润滑作用和层状结构,导电石墨用于纳米硅基材料时可以抑制其体积膨胀效应。