常用锂离子电池导电剂
- 格式:pdf
- 大小:212.58 KB
- 文档页数:2
导电剂这是我从别⼈那⾥学习过来的,加了⼀些补充。
给⼤家分享⼀下⽬前⽐较常⽤的导电剂,按照导电性能和价格排序:[/b]SP系列(如SP)SP系列是最便宜的,是普通离⼦电池的⾸选,KS-6是SP的最佳拍档,其价格略⾼;(SP 就⼏⼗块,KS-6约100块。
)350G与EC-300J相当,属于中⾼档导电剂。
(价格约260左右。
)科琴⿊ECP和ECP600JD,是⽬前做⾼端电池的⾸选,虽然价格⽐较⾼,但是性价⽐较⾼;VGCF和碳纳⽶管是最⾼端的产品,价格约4000——5000,市场是叫好不叫卖的产品,能⽤的起的⼚家不多,⽽⽤的好的⼚家更不多,相对⽽⾔,ECP-600JD的性能与VGCF较接近,价格⽐较适中,约700左右,再加上⼚家最近退出专门针对科琴⿊ECP系列的分散剂,使其性能⼤幅提升,相信以后导电剂市场是SP,KS-6,科琴⿊ECP系列唱主⾓。
如何选⽤导电剂?这是我们在进⾏电池设计时要解决的⼀个重要问题,但是在解决这个问题之前,我们必须要明确⽤户对磷酸铁锂电池性能的具体要求,以电动汽车对磷酸铁锂电池的性能要求及经济要求为例,我们必须准确把握⽤户对产品各个⽅⾯的具体要求,并且⽤数据加以描述。
根据⽤户的具体要求,我们才能设计出满⾜⽤户要求的磷酸铁锂电池,在设计的过程中,如何选⽤导电剂来改善电池的性能就是每⼀个设计⼈员必须解决的问题之⼀。
1、根据正负极活性物质的粒径和形貌来选择导电剂。
为了在电极中形成有效地导电⽹络,必须如同上述导电⽹络⽰意图⼀样,要有导电节点,这些导电节点由导电⽯墨来充当,粒径最好和活性物质的粒径接近。
要有导电⽀点,他们要像⼋⽖鱼的触须⼀样和将活性物质颗粒吸在⼀起,因此,它们要有很细的粒径,要有链状的形貌,这些⽀点由SP-Li来充当最合适。
要有⽀点与节点之间的连接导线,它们要有良好的导电性,要有线状的形貌,ECP,ECP-600JD,VGCF和碳纳⽶管正好符合这些要求。
因此,为了在正负电极中形成有效地导电⽹络,必须加⼊具有不同粒径不同形貌特征的导电剂。
集越纳米目前正在扩充产能,现有产能750吨/月左
右
集越纳米目前正在扩充产能,现有产能750吨/月左右,年底产能将达到1000吨/月。
在锂电池的制作过程中,通过添加适量的导电剂,用导电剂填充满活性材料颗粒之间的空隙,使得活性材料与导电剂之间形成有效接触,从而在活性
材料中形成有效的导电网络,改善其导电性能。
近年来随着动力电池对能量密度、倍率性能、循环寿命等性能要求的逐渐提高,碳纳米管因拥有更好的导电性能和较高的机械强度,被业内认为在未
来或将逐渐替代常规炭黑类导电剂,其在锂离子电池领域的应用也将逐渐增多,因此成为众多电池企业及材料企业关注的热点。
“相比传统的导电炭黑,碳纳米管拥有优异的导电性能,可显着降低电池
内阻,提高电池的倍率充放电性能,提升能量密度和循环寿命。
”惠州集越纳
米材料技术有限责任公司(下称集越纳米)总经理张权对高工锂电表示,公司
去年碳纳米管导电浆料出货量在4000吨左右,当前月出货量达到500吨左右,今年目标出货6500吨。
正极浆料配方组成正极浆料是锂离子电池中的重要组成部分,它主要由活性物质、导电剂、粘结剂、导电助剂和成型剂等组成。
不同的正极材料配方组成会对电池性能有很大的影响。
下面是一种常见的正极浆料配方组成的详细解析。
1.活性物质活性物质是正极材料的核心组成部分,它主要指的是正极材料中的锂离子嵌入/脱嵌材料。
常见的活性物质有锰酸锂(LiMn2O4)、三元材料(如锰酸锂钴酸锂镍酸锂LiMn2O4、LiCoO2、LiNiO2等)和磷酸铁锂(LiFePO4)等。
这些活性物质各有特点,如锰酸锂具有高容量和较低成本,但循环寿命较短,三元材料容量适中,循环寿命较长。
2.导电剂导电剂的作用是增加整个正极浆料的导电性能,以降低电阻和提高能量输出。
常见的导电剂有碳黑、导电纤维等。
碳黑是最常用的导电剂之一,它具有良好的导电性能和分散性,能够提高电池的充放电效率。
3.粘结剂粘结剂的作用是将活性物质和导电剂粘结在一起,并保持正极料层在充放电过程中的稳定性。
常见的粘结剂有聚合物树脂,如聚乙烯醇(PVA)、聚酰胺(PVDF)等。
这些粘结剂具有较好的黏附性和机械强度,能够提高正极层的粘结性和稳定性。
4.导电助剂导电助剂的作用是提高正极浆料的导电性能,增加整个正极层的导电路径。
常见的导电助剂有石墨粉和导电纤维等。
石墨粉具有良好的导电性能和分散性,能够增加正极电极的电导率。
5.成型剂成型剂的作用是帮助正极料层在制备过程中形成所需的形状和结构,并提高电极的物理性能。
常见的成型剂有聚丙烯酸(PAA)等。
聚丙烯酸具有良好的胶凝性和成膜性,能够使得正极层在制备过程中形成均匀的薄膜结构。
除了以上所述的主要组分外,正极浆料中还可能含有其他助剂,如稳定剂、增塑剂、润滑剂、膨胀剂等。
这些助剂的添加可以改善正极浆料的分散性、黏度、化学稳定性和机械强度,从而提高电池的性能和循环寿命。
需要注意的是,不同类型的锂离子电池(如磷酸铁锂电池、锰酸锂电池、三元材料电池等)其正极浆料的配方组成可能有所不同,因为它们的活性物质和材料特性不同。
锂电池导电剂比例和孔隙率概述说明以及解释1. 引言1.1 概述:本篇文章旨在探讨锂电池导电剂比例和孔隙率对锂电池性能的影响。
在锂电池领域,导电剂起着重要的作用,它们不仅可以提供电子传导路径,还可以促进离子传输。
同时,孔隙率是描述材料内部孔隙分布程度的参数,在锂电池中也具有关键影响。
1.2 文章结构:本文将按照以下顺序进行论述:首先,我们将简要介绍锂电池导电剂及其特点;其次,我们将详细探讨导电剂比例对锂电池性能的影响,并解释其原因;然后,我们将分析孔隙率与锂电池性能之间的关系,并探讨如何提高孔隙率及其均匀分布;最后,我们将总结本文的主要观点和结论。
1.3 目的:本文旨在帮助读者深入了解锂电池中导电剂比例和孔隙率对于锂电池性能的重要性以及相互关系。
通过对这些因素进行详细阐述和解释,期望读者能够更好地理解锂电池的工作原理,并为锂电池的设计和优化提供一定的指导。
2. 锂电池导电剂比例和孔隙率概述2.1 锂电池导电剂锂电池是一种重要的可再充电能源,其中导电剂在其中起到关键的作用。
导电剂通常由碳材料组成,如石墨、碳纳米管、碳黑等。
导电剂在锂离子嵌入和脱嵌过程中提供导电通道,确保锂离子的高速扩散,并且影响锂电池的功率密度、循环寿命和稳定性。
2.2 导电剂比例对锂电池性能的影响在锂离子嵌入过程中,适当的导电剂数量可以提供更多的传输通道,从而增加了整体的导电性能。
较高比例的导电剂数量还可以改善锂离子扩散动力学特性,提高功率密度。
然而,过量的导电剂数量可能会增加内阻并限制扩散速度,从而降低整体性能。
因此,在设计锂离子电池时,需要合理选择合适数量的导电剂以平衡其对性能的影响。
2.3 孔隙率与锂电池性能的关系孔隙率是指电池正负极材料中的空隙比例,高孔隙率可以提供更多的空间用于锂离子嵌入和脱嵌反应,并且可以增加电极材料的有效表面积。
这将有助于提高锂离子的扩散速率、容量和循环寿命。
然而,过高的孔隙率可能导致电极结构不稳定,容易产生变形和剥离等问题,从而降低电池的循环寿命和稳定性。
锂离子电池负极导电剂
锂离子电池负极导电剂是电池中不可或缺的一部分,对于电池的性能和安全性具有重要影响。
在锂离子电池中,负极导电剂的主要作用是提高负极的导电性能,促进锂离子的迁移和扩散,从而提高电池的充放电效率和容量。
同时,负极导电剂还可以改善电池的循环寿命和倍率性能。
负极导电剂的种类和性能对于电池的性能和安全性具有重要影响。
目前常用的负极导电剂包括碳黑、石墨、碳纤维等。
其中,碳黑具有较高的电导率和良好的分散性,是常用的负极导电剂之一。
石墨具有较高的电导率和良好的锂离子扩散性能,可以提高电池的充放电效率和容量。
碳纤维具有优异的力学性能和高温稳定性,可以提高电池的循环寿命和倍率性能。
在选择负极导电剂时,需要考虑其电导率、分散性、粒径、比表面积等因素。
同时,还需要考虑其与正极材料、电解液等的相容性,以确保电池的稳定性和安全性。
此外,负极导电剂的添加量也会对电池的性能产生影响。
过多的添加量会增加电池的成本和重量,而过少的添加量则可能无法充分发挥其作用。
因此,需要根据电池的具体要求和条件来确定合适的添加量。
总之,锂离子电池负极导电剂是电池中不可或缺的一部分,对于电池的性能和安全性具有重要影响。
在选择和使用负极导电剂时,需要考虑其种类、性能、添加量等因素,以确保电池的稳定性和安全性。
1、常用锂离子电池导电剂的特性:
A、导电碳黑的特点是粒径小,比表面积特别大,导电性特别好,在电池中它可以起到吸液保液的作用,缺点是价
格高,难以分散。
代表型号是:ECP,ECP-600JD,CNT,VGCF。
B、导电石墨的特点是粒径接近正负极活性物质的粒径,比表面积适中,导电性良好,它在电池中充当导电网络的
节点,在负极中,它不仅可以提高电极的导电性,而且可以提高负极的容量。
C、SP-Li的特点是粒径小,和导电碳黑差不多,但是比表面积适中,是锂离子电池的大众化导电剂。
市场占有份额
较大。
D、科琴黑是目前比较前沿的超级导电炭黑,目前锂电的前10强基本都在用或者试验。
其中EC-300J主要用于镍氢、镍镉电池;ECP和ECP-600JD主要用于高倍率大容量和电流密度的锂电,其中以ECP-600JD变现尤为突出。
业界普遍认为:其优越的导电性和高纯度及独特的支链结构,在铁锂为正极材料的时代会崭露头角。
F、碳纳米管是近年新兴的导电剂,它一般直径在5纳米左右,长度达到10-20微米,它不仅能够在导电网络中充
当“导线”的作用,同时它还具有双电层效应,发挥超级电容器的高倍率特性,其良好的导热性能还
有利于电池充放电时的散热,减少电池的极化,提高电池的高低温性能,延长电池的寿命。
快充型锂离子电池的选材、设计要点锂离子电池正在朝三个方向发展:当前智能手机的充电倍率普遍在1C16min即可将手机充至满电;(2)更高的能量密度,目前4.45V体系平台已经成熟商业化,4.48V甚至更高的电压平台成为了热门的研究方向;(3)更长的循环寿命,过去几年3C锂离子电池的使用寿命要求为500次循环,而目前各大厂商已经将其提高至800次循环。
所谓快充就是在很短的时间内给电池以最快的充电速度,将电池电量充至满电或者接近满电的充电方法,但是需要保证锂离子电池能够达到规定的循环寿命、相关安全性能以及电性能。
目前,普通的商用锂离子电池也可以偶尔大倍率充放电,但是其长期大倍率充放电会导致其循环寿命的大幅度衰减。
快充型锂离子电池需要经过专门的快充选材、设计,才可以达到客户的要求。
本文根据长期的快充电池设计经验,论述了快充型锂离子电池的设计要点以及相关的影响因素。
1 材料方面在锂离子电池中,Li+的扩散过程如图1所示,主要包括Li+从正极材料中脱出、Li+在电解液中迁移、Li+通过隔膜、Li+嵌入负极以及Li+在负极材料内部的扩散。
提高锂离子电池的快充性能需要在这几方面进行研究。
一般地,负极材料内部的固相扩散系数相对较小,限制了负极材料电池的大电流充放电能力,成为电极反应的控制步骤。
Li+在电场和浓度梯度的作用下由正极迁移、扩散至负极,这其中经历了液相扩散,电解液的浓度对于快充性能的提升也有明显的影响。
隔膜的孔隙率决定了Li+迁移量,隔膜孔隙率小,则大电流充电容易造成堵孔,隔膜的厚度决定Li+扩散的距离,隔膜越薄,其扩散的距离越小。
1.1 负极材料石墨材料具有二维层状结构以及低电压平台等优势,层间C-C间距可达0.340nm,且Li+可嵌入石墨的层间,形成层间化合物LixC6,成为最常用的负极材料之一。
石墨的层状结构使得Li+必须从石墨的端头嵌入,继而扩散至颗粒内部,增长了扩散路径。
小的层间距使得Li+的扩散速率较低,在进行大倍率充电时,Li+容易在石墨表面沉积形成大量锂枝晶,造成安全隐患。
锂离子电池正极组成全文共四篇示例,供读者参考第一篇示例:锂离子电池正极是锂离子电池中的一个重要部分,它决定了电池的性能和性能。
正极材料的选择和制备对电池的性能有重要影响。
正极由锂离子导体、锂离子源和电导体等组成。
主要材料有锂金属氧化物、锂镍锰氧化物、锂铁磷酸盐、锂钴氧化物等。
锂离子电池正极的主要组成是锂离子导体。
锂离子导体的选择对电池的性能和循环寿命有重要影响。
目前常用的锂离子导体有氧化锂、磷酸盐、辉石、钛酸锂等。
氧化锂是一种高性能、低成本的锂离子导体材料,其具有良好的稳定性和导电性能,是目前锂离子电池正极材料中使用最广泛的一种。
磷酸盐是另一种常用的锂离子导体材料,其具有较高的结构稳定性,循环寿命长,但导电性能相对较差。
辉石和钛酸锂等锂离子导体材料在电池中也有广泛应用,具有优异的电化学性能和稳定性。
锂离子电池正极的组成包括锂离子导体、锂离子源和电导体三部分。
正极材料的选择对电池的性能和循环寿命有重要的影响。
未来,随着材料科学和电化学技术的不断发展,锂离子电池正极材料的研究和开发将更加广泛和深入,为电池的性能提升和应用拓展提供更多可能。
【本文2000字】.第二篇示例:锂离子电池是一种在现代电子设备中广泛使用的高性能电池,它具有高能量密度、长循环寿命和低自放电率等优点,因此在手机、平板电脑、电动汽车等领域得到了广泛应用。
而锂离子电池的正极作为其重要组成部分,起着储存和释放锂离子的关键作用。
本文将从锂离子电池正极的组成以及相关材料的特性和优缺点等方面展开讨论。
我们来看一下锂离子电池正极的基本组成。
锂离子电池正极主要由正极活性物质、导电剂、粘合剂和集流体等几个关键部分组成。
正极活性物质是最重要的部分,它是实现锂离子储存和释放的关键。
正极活性物质一般采用金属氧化物或磷酸盐等化合物,如钴酸锂、锰酸锂、磷酸铁锂等。
导电剂则起着传递电子的作用,通常采用碳黑或导电聚合物等材料。
粘合剂主要用于固定正极活性物质和导电剂,以及将它们粘合在集流体上。
锂离子电池用导电剂的类型及原理介绍正负极电极的材料主要由正负极主料、导电剂、粘结剂组成,三者缺一不可。
正负极主料是活性物质,为锂离子电池提供锂离子的来源和去处,粘结剂作为将主料固定到集流体上和将原材料紧密结合在一起,也是不可或缺的。
导电剂的存在相当于为电子开辟了多条高速公路,让电子能够快速地在正负电极内和集流体间穿梭。
高效的导电性,能够提高电池的倍率性能,降低电池内阻,对于电池的循环性能也有较大提升。
锂离子电池的设计是要兼顾容量、功率、性能的,所以要挑选性状最适合的导电剂,来提高正负极活性物质的比例,并且不影响电池的导电性。
那么,实际生产中常用的导电剂种类有哪些,其应用如何,其导电机理是怎样的,下面将详细介绍。
导电剂一般可分为金属系导电剂(银粉、铜粉、镍粉等)、金属氧化物系导电剂(氧化锡、氧化铁、氧化锌等)、碳系导电剂(炭黑、石墨等)、复合导电剂(复合粉、复合纤维等)以及其他导电剂。
金属导电剂加入锂电池中会发生氧化还原反应,金属析出后会刺破隔膜,影响电池的安全性,而碳系导电剂不仅能满足锂电池导电需求,还具有低成本,质量轻等特点,对于降低锂电池成本、提高能量密度具有积极意义。
目前锂电池生产中常用的碳系导电剂主要为颗粒状导电剂(如导电石墨、导电炭黑)、纤维状导电剂(如碳纳米管、VGCF等)、片状导电剂(如石墨烯)。
1、颗粒状导电剂颗粒状导电剂主要有导电石墨、导电炭黑两种。
颗粒状的导电剂与正负极活性物质的接触形式为点点接触,导电颗粒和活性物质均匀混合后,电子在活性物质之间通过导电剂的桥梁作用穿梭。
图1. 导电石墨用于LCO导电石墨中常用的型号有KS系列,包括KS-6/KS-15等,SFG-6等。
石墨晶体是稳定的六边形网状结构,其用于锂离子电池可以作为导电网络的节点,导电石墨粒径较大d90约10微米。
石墨类导电剂用于负极时,不仅能导电,还能够作为负极活性物质。
由于导电石墨的润滑作用和层状结构,导电石墨用于纳米硅基材料时可以抑制其体积膨胀效应。
220管理及其他M anagement and other石墨烯在锂离子电池中的应用唐 佳(宁德新能源科技有限公司,福建 宁德 352100)摘 要:本文介绍了石墨烯在锂离子电池中的应用,石墨烯作为新型碳材料既可取代石墨负极以提升负极材料的克容量,又可作为导电剂提升正极材料的导电性,也可作为添加剂改善Li-S 等新型电池的膨胀等问题,本文还对石墨烯未来的应用进行了展望。
关键词:石墨烯;锂离子电池;导电剂;添加剂中图分类号:TM912 文献标识码:A 文章编号:11-5004(2020)13-0220-2收稿日期:2020-07作者简介:唐佳,女,生于1988年,汉族,湖南衡阳人,博士研究生,工程师,研究方向:负极材料。
1 介绍石墨烯是目前已知最薄和最坚硬的纳米材料。
其强度是钢铁的20倍,且拉伸20%不断裂。
石墨烯的热导性高于碳纳米管和金刚石,其数值高达5300W/m·K。
在常温下,它的电子迁移率高于碳纳米管和硅,其迁移率大于15000cm2/V·s,并且其阻抗只有10-8Ω·m,是世界上阻抗最低的材料。
石墨烯优异的电子迁移率和极低的阻抗为其在锂离子电池中应用提供了可能。
因此,石墨烯在锂离子电池中的应用备受关注[1-3]。
2 石墨烯在负极中的应用石墨烯拥有巨大的比表面积和优异的电性能是其可作为锂离子电池负极材料的关键之一。
锂电池负极材料的主要种类有天然石墨,人造石墨,中间相炭微球及其他类型,其成本约占电芯成本的15%。
是石墨类结构由于其高导电性、稳定的层状结构、锂离子脱嵌性能好等优势成为了首先被应用于锂离子电池的碳负极材料。
但其理论比容量仅为372mAh/g [4]。
而石墨烯除了与石墨相同的层间嵌锂外,由于其巨大的表面积还可以实现锂离子在石墨烯片层两端嵌锂,因此被认为石墨烯的理论容量为740mAh/g,为传统石墨材料的两倍[5]。
Yoo E [6]等以氧化还原法制备石墨烯用于锂离子电池负极材料,实验结果显示首次循环的比容量为540mAh/g,相较石墨容量有明显的提升。
高温环境下锂钴酸锂离子电池的性能要求与材料优化高温环境下锂钴酸锂离子电池的性能要求与材料优化随着电动汽车市场的快速发展和移动智能设备的广泛应用,锂离子电池作为一种最为成熟和可靠的能量存储装置,备受关注。
然而,在高温环境下,锂离子电池往往面临着一些性能问题,如容量衰减、导电性下降、安全性降低等。
因此,在高温环境下,锂钴酸锂离子电池的性能要求和材料优化显得尤为重要。
首先,高温环境下容量衰减是锂钴酸锂离子电池的一个主要问题。
高温下的电解液蒸发速度加快,导致电解质中锂盐的浓度增加,从而引起锂盐结晶,形成锂盐晶体堵塞电解液通道,降低电子和离子的传输能力,导致容量衰减。
因此,锂钴酸锂离子电池在高温环境下需要具备良好的容量保持能力。
其次,高温环境下导电性下降也是锂钴酸锂离子电池面临的一个重要问题。
高温环境会导致锂钴酸材料的晶胞层间距增加,导致离子扩散速率减慢,电阻增加,从而降低电池的导电性能。
此外,高温还会导致电极材料的结构破坏,导致电极材料与电解液之间的接触面积减小,进一步降低导电性。
因此,在高温环境下,锂钴酸锂离子电池需要具备良好的导电性能,保证电流的高效传输。
另外,高温环境下锂钴酸锂离子电池的安全性降低,也是一个需要关注的问题。
高温环境会导致电解液的汽化和压力增加,进而引发电池的过热和燃烧等安全事故。
因此,在高温环境下,锂钴酸锂离子电池需要具备良好的热稳定性和安全性能,以避免发生意外事故。
针对以上问题,可以从材料层面进行优化。
首先,可以选择更稳定的电解质,如固态电解质,其具有更高的热稳定性和较低的蒸发率,可以有效抑制电解质的蒸发。
其次,可以优化正极材料,例如,通过掺杂或改变材料的晶体结构,提高正极材料的导电性能和热稳定性,从而提高电池的性能和安全性。
此外,可以选择具有良好导电性能和高热稳定性的电极材料,如导电聚合物和高温稳定的导电剂,以提高电极材料与电解液之间的接触性和导电性。
此外,还可以通过温控系统来控制电池的工作温度,以保证电池在合适的温度下工作。
锂电池导电剂的作用、原理、种类及应用展望详解作为锂离子电池的重要组成部分的导电剂,虽然其在电池中所占的份量较少,但很大程度地影响着锂离子电池的性能,对改善电池循环性能、容量发挥、倍率性能等有着很重要的作用。
和锂离子电池电极材料一样,导电剂也在不断的进化。
从最早的炭黑材料,其特点是点状导电剂,也可以称作零维导电剂,主要通过颗粒之间的点接触提高导电性;到后来,逐渐发展出了导电碳纤维和碳纳米管这一类具有一维结构的导电剂,由于其纤维状结构,增大了与电极材料颗粒的接触,大大提高了电极的导电性,降低了极片电阻。
石墨烯材料如今逐渐成为锂离子电池的新型导电材料,由于石墨烯具有二维的片层状结构,极大的增加了电极颗粒之间的接触,提高了导电性,并降低了导电剂的用量,提高了锂离子电池的能量密度。
一、导电剂的作用导电剂的首要作用是提高电子电导率。
为了保证电极具有良好的充放电性能,在极片制作时通常加入一定量的导电剂,在活性物质之间、活性物质与集流体之间起到收集微电流的作用,以减小电极的接触电阻,加速电子的移动速率。
此外,导电剂也可以提高极片加工性,促进电解液对极片的浸润,同时也能有效地提高锂离子在电极材料中的迁移速率,降低极化,从而提高电极的充放电效率和锂电池的使用寿命。
二、导电剂对比分析导电剂主要有颗粒状导电剂如乙炔黑、炭黑等,导电石墨多为人造石墨,纤维状导电剂如金属纤维、气相法生长碳纤维、碳纳米管等,还有新型石墨烯及其混合导电浆料等作为导电剂使用。
锂离子电池主要应用的几类导电剂:导电炭黑Super-P Li,其中有支链结构的科琴黑ECP,导电石墨KS-6、SFG-6,气相生长碳纤维VGCF,碳纳米管CNTs和石墨烯及其复合导电剂。
1、炭黑炭黑在扫描电镜下呈链状或葡萄状,单个炭黑颗粒具有非常大的比表面积。
比石墨有更好的离子和电子导电能力,炭黑颗粒的高比表面积,堆积紧密有利于颗粒之间紧密接触在一起,组成了电极中的导电网络,有利于电解质的吸附而提高离子电导率。
导电剂对锂离子电池正极性能的影响通过测定导电剂的吸水能力,研究了导电剂的振实密度与吸液能力的关系,结果表明:导电剂的振实密度越大,其吸液能力越小;反之亦然.利用充放电性能曲线、循环伏安法和电化学阻抗法研究了GD、SP、KS、SO四种导电剂单一和两两混合使用作为锂离子电池正极LiCoO2导电剂时的电极性能.结果表明:SO和GD的混合物为导电剂时LiCoO2电极的性能最好,首次放电容量为141.4mAh·g-1.锂离子蓄电池负极导电剂的研究用扫描电子显微镜(SEM)考察了3种导电剂粉体材料的形貌,通过测定3种导电剂材料的吸水能力,研究了导电剂的振实密度与吸液能力的关系.结果表明,导电剂的振实密度越大,其吸液能力越小;反之则其吸液能力越大.利用恒流充放电、循环伏安技术考察了3种导电剂的贮锂性能,实验表明石墨类导电剂(KS、SO)具有一定的贮锂性能,但其首次库仑转换效率低;而炭黑类导电剂(SP)仅起导电作用.利用六西格玛(简称6σ)混合设计考察了导电剂之间的交互作用,及3种导电剂配比对石墨电极放电比容量的影响,当质量比m(包覆石墨):m[导电剂(KS+SP)]:m(PVDF)=92:3:5且m(KS):m(SP)=1.66:1时,电极放电比容量可以稳定地达到315 mAh·g-1以上.Uniqema 锂离子电池分散剂Hypermer KD-1参考配方:原正极浆料添加后的正极浆料LiCoO2 1877.3g LiCoO2 1877.3gSuper P 42.65g Super P 42.65gKS-6 85.3g KS-6 85.3gPVDF 128g PVDF 128gNMP 1500g KD-1 8.53gNMP 1500gS/L(固体/液体)=1:0.7 S/L(固体/液体)=1:0.7Slurry viscosity(浆料粘度)=773.3cps Slurry viscosity(浆料粘度)=466.7cpsSlurry particle size(浆料粒度)=13μm Slurry particle size(浆料粒度)=12μm电极辊压前平均厚度(μm) 辊压后平均厚度(μm) 辊筒速比(%) 内阻(mΩ) 粘接力(KgW)原正极100 80 25 0.152 0.782添加KD-1后的正极93 74 25 0.232 0.341内阻和粘接力的结果是由于此配方中Hypermer KD-1的添加量(为导电碳黑S UPER P 的20%)过高所致,相关资料表明Hypermer KD-1最佳添加量为5-15%,此时对电极的内阻和粘接力的影响很小。