三联供系统简介
- 格式:doc
- 大小:262.50 KB
- 文档页数:4
三联供系统原理
三联供系统原理介绍
三联供系统是指一种高效的供应链管理系统,它包括供应商、制造商和客户三类主体,由这三类主体实施物流联合管理。
该系统的核心是联合主体之间的协管制度,是一种互相协作并致力于共同实现的分工合作的模式。
三联供系统的三大基本原理:
1. 权责一致原则:三联供系统整体的架构是权责一致的,供应商及客户应对其相应的职责负责,并致力于共同实现利益最大化。
2. 互利共赢原则:三联供系统采用互利共赢的原则,即供应商和客户应共同努力最大化其利益,共同实现联合利益最大化。
3. 联合管理原则:三联供系统实施了联合管理的原则,即供应商和客户在供应和采购的过程中应当联合管理物流流程,以便最大限度地降低物流成本。
- 1 -。
三联供系统太阳能供暖、制冷、生活热水三位一体系统系统工作原理地面采暖:冬天利用太阳能集热并直接储存于地面,在热量达不到设定温度时,自动启动空气源热泵作热补充。
空调制冷:夏天利用该系统的空气源热泵通过风机盘管给室内输送清凉的凉风,一机多用,充分利用资源,大大节省投入资金。
生活热水:冬天利用太阳能和空气源热泵除完成供暖外还可以提供生活热水;春、夏、秋利用太阳能提供生活热水完全实现零耗能生活热水工程。
六个子系统(1)、太阳能集热循环系统本系统采用供暖专用集热管,最大能力捕捉太阳的热能,该管管内有金属管,外罩玻璃吸热真空管,可承压运行,炸管漏水;较比其它吸热管效率提高35%。
(2)、辅助能源热泵循环系统阴雪天时,本系统采用了一种比常规能源(电热、燃油、燃气)节能50%-70%的低温强热型热泵机组,其在室外-15?时,其能效比可达2.3,在室外-19?时仍可正常工作。
(3)、低温热水地板辐射系统冬季白天有阳光时,而室内温度较高时,系统实时将集热器收集到的热量传输到室内地面蓄热层当中储存起来,以备夜晚没有太阳,而室内最需要温度时使用。
1(4)、风机制冷盘管制冷循环系统夏季利用辅助能源装的一机两用特点,在夏天不用辅助热量的时段,采集空气当中的冷量(或地下水、地下岩石、土壤里)通过风机盘管加新风系统来为室内实施空气调节功能。
(5)、恒温恒压生活热水供应系统本系统常年为客户提供恒温恒压的生活热水,即开即热,压力充足。
(6)、微电脑自动控制系统本系统的控制系统采用西门子的可编程序控制器,大屏幕触摸屏,集中收集数据统一处理,全自动无人值守。
系统设有多种保护措施,自动检测跟踪温度,水位双能源自动切换。
系统全自动运行,并实现恒温恒压供应热水。
2。
燃气三联供系统简介燃气冷热电三联供系统(Combined Cooling Heating and Power,简称CCHP)是分布式能源的一种主要形式。
以天然气为主要燃料,带动燃气发电机组运行,产生的电力满足用户的电负荷,系统排出的废热通过余热利用设备向用户供热、供冷。
燃气冷热电三联供系统的特点:(1)能源综合利用率提高大型天然气发电厂的发电效率一般为35%~55%,如果扣除厂用电和线损率,终端的发电效率只能达到30~47%,而三联供系统的燃气利用效率最高可达到90%左右。
(2)能源供应安全性高三联供系统一般采取并网方式设计,大电网与三联供发电机组互为备用,因此相当于用户增加了一路常用供电系统,提高了用户供电的可靠性。
常规的冷热空调系统一般由电制冷机组加燃气锅炉组成,采用三联供系统后可以使用发电机的余热供热,对用户来说相当增加了一套空调冷热源系统;对于使用电空调的用户相当于将原来的单一用电空调制冷变为可以同时用电和燃气,因此提高了用户的冷热供应可靠性。
(3)有良好的经济性由于电力供应日趋紧张,各地纷纷把实行峰谷电价政策作为电力需求侧管理的有效手段。
以北京为例,北京目前实行的商业峰谷电价政策,平段电价为0.70元/kwh,高峰时间为1.32元/kwh,低谷电价为0.32元/kwh,因此采用传统电制冷除了增加大电网的负担以外,还使用户必须承担高额的运行费用。
而采用三联供系统利用发电后余热来供热供冷,整个系统能源效率提高,能源供应成本下降,在能源价格不断增长的形势下更具有良好的经济效益。
另外因为免除了电力远距离输配电损失,电力使用效率也增大。
(4)有良好的环保效益天然气是清洁能源,在其完全燃烧及采取一定的治理措施后,烟气中NOX等有害成分远低于相关环保指标要求,具有较好的环保效益。
(5)电力和燃气双重削峰填谷随着天然气在能源结构中利用的比例逐步上升。
城市天然气基本用于采暖,冬夏城市的峰谷日差已经高达4~12倍。
燃气冷热电三联供制冷系统节能分析1. 引言1.1 燃气冷热电三联供制冷系统概述燃气冷热电三联供制冷系统是一种将燃气动力、供热系统与制冷系统相结合的综合能源系统,通过燃气内燃机发电产生的热量和电能来实现供热和制冷的双重功能。
这种系统利用了能源的多重利用,有效提高了能源利用效率,减少了对传统能源的依赖,具有节能环保的特点。
燃气冷热电三联供制冷系统包括燃气内燃机、余热锅炉、吸收式制冷机组等核心设备,通过燃烧燃气产生电能和热能,再利用余热进行供热,最后利用吸收式制冷机组将余热转化为制冷能力,实现了热电冷三联供的综合利用。
通过智能控制系统实现系统运行的优化调度,进一步提高了能源利用效率。
燃气冷热电三联供制冷系统在节能减排方面具有显著优势,能够有效降低能耗、减少环境负荷,是未来绿色能源系统发展的重要方向。
通过对其工作原理、节能特点、节能效果、节能措施以及节能案例的分析,可以更深入地了解和掌握这种先进的节能技术,为未来的能源转型和可持续发展提供重要参考。
2. 正文2.1 燃气冷热电三联供制冷系统工作原理燃气冷热电三联供制冷系统工作原理是通过综合利用燃气、蒸汽等能源,利用吸收式制冷技术,实现供暖、制冷和热水供应的一体化系统。
该系统由锅炉、制冷机组、换热器、输电线路等组成,通过协同工作,实现能源的高效利用。
燃气锅炉燃烧燃气产生热量,通过换热器将热量传递给水,将冷却水加热成蒸汽。
蒸汽经过蒸汽轮机驱动发电机产生电力,同时也供暖热水。
然后,蒸汽通过蒸发器将冷却水蒸发,吸收制冷剂。
制冷剂经过蒸发、压缩、冷凝、膨胀等过程实现制冷效果,将冷却水降温。
冷却水供暖循环系统,实现建筑物的供暖需求。
通过这样的工作原理,燃气冷热电三联供制冷系统实现了能源的高效利用,减少了能源的浪费,降低了能源消耗,实现了节能环保的目的。
2.2 燃气冷热电三联供制冷系统节能特点燃气冷热电三联供制冷系统具有高效能耗比。
通过优化系统设计和运行控制,系统可实现能源的最大化利用,降低能耗,提高能源利用效率,在传统供冷系统中,供热与供电是分开的,而三联供制冷系统则能够有效利用废热或废气发电,充分发挥能源的综合效益。
冷热电三联供的原理及应用1. 冷热电三联供的定义冷热电三联供是指在一个系统中同时供给制冷、供热和电力的技术和系统。
通过整合制冷、供热和发电的设备,实现了能源的综合利用和能源效率的最大化。
2. 冷热电三联供的原理2.1 热电联供原理热电联供是指利用燃气或其他燃料驱动热机发电,同时利用废热产生热水或蒸汽供暖。
热机通过燃烧燃料产生高温高压气体,推动涡轮发电机发电,同时废热经过回收利用供热。
2.2 制冷供热联供原理制冷供热联供是指利用制冷机组在制冷过程中产生的废热,通过回收利用转化为热能供暖。
制冷机组吸收外界热量并排出冷空气,同时产生废热。
这部分废热通过回收和转化,供给供热系统使用,实现了制冷和供热的综合利用。
2.3 热电制冷供热联供原理热电制冷供热联供是指利用热电联供和制冷供热联供的原理,实现了冷热电三联供。
热电机组通过燃烧燃料发电,同时产生废热供热;制冷机组通过制冷过程产生废热供热。
这种方式不仅能够提供制冷和供热,还可以同时发电,将能源综合利用的效率达到最大化。
3. 冷热电三联供的应用3.1 城市建筑冷热电三联供技术在城市建筑中有广泛的应用。
通过在建筑中安装热电联供或制冷供热联供系统,能够满足建筑的制冷、供热和电力需求。
这种方式不仅节约能源消耗,还降低了建筑的能源成本和碳排放。
3.2 工业园区工业园区中通常存在大量的能源浪费和废热排放。
冷热电三联供技术可以通过回收和利用废热,将其转化为热能供暖,实现能源的综合利用。
这种技术的应用可以为工业园区提供可靠的制冷、供热和电力,同时减少了能源消耗和环境污染。
3.3 高校和医院在高校和医院中,冷热电三联供技术可以满足建筑内的制冷、供热和电力需求。
这种技术的应用不仅能够提高能源利用效率,还可以降低建筑的能源成本。
对于高校和医院这种大规模的场所,能源的综合利用对于节约能源和保护环境非常重要。
3.4 居民社区冷热电三联供技术在居民社区中的应用可以满足居民的制冷、供热和电力需求。
天然气冷、热、电三联供系统简介1、背景天然气是洁净能源,在其完全燃烧后及采取一定的治理措施,烟气中NOx等有害成分远低于相关指标要求,具有良好的环保性能。
美国有关专家预测如果将现有建筑实施冷、热、电三联供(Combined cooling heating and power,简称CCHP)的比例从4%提高到8%,到2020年CO2的排放量将减少30%。
2、概念与优势燃气冷、热、电三联供简单地说即为:天然气发电、余热供热、余热制冷。
相比于常规供能燃煤发电、燃气供热、电制冷,具有能源梯级利用,综合能源利用率高;清洁环保,减少排放CO2,SO2;与大型电网互相支撑,供能安全性高的优势及对燃气和电力有双重削峰填谷作用。
以天然气为燃料的动力装置,例如燃气轮机、燃气内燃机、斯特林发动机、燃料电池等,在发电的同时,其排放的余热被回收,用于供热或驱动空调制冷装置,如吸收式制冷机或除湿装置等,这种以天然气为燃料,同时具备发电、供热和供冷功能的能源转换和供应系统,就是天然气冷、热、电联供系统。
相比传统的集中式供能,天然气冷、热、电三联供系统是建立在用户侧的小型的、模块化的能源供给系统,避免了长距离能源输送的损失,为能源供应增加了安全性、可靠性和灵活性。
3、天然气冷、热、电三联供分类天然气冷、热、电三联供系统应用于商业、工业等各个领域,一般分为楼宇型和区域型两种。
楼宇型冷、热、电三联供系统,规模较小,主要用于满足单独建筑物的能量需求(如医院、学校、宾馆、大型商场等公共设施)。
单独建筑物一天内的负荷变化较大,会出现高峰或低谷的情况,而系统的运行需要不断进行调整,与负荷需求相匹配。
因此,楼宇型冷、热、电三联供系统对设备的启停机及变工况运行性能有较高的要求,同时在系统集成方面,发电设备、热源设备、蓄能设备之间的优化设计以及与电网配合的优化运行模式也十分必要。
区域型分布式冷、热、电三联供系统主要应用于一定区域内的由多栋建筑物组成的建筑群。
三联供系统的基本原理
三联供系统是一种集污水处理、垃圾处理和能源回收于一体的环保设施。
它的基本原理是将污水、垃圾和有机废料分别进行处理,然后将处理后的产物进行回收利用,从而实现资源的最大化利用和环境的最大化保护。
污水处理是三联供系统的第一步。
污水经过初步处理后,进入生物反应器进行生物降解,将有机物质转化为无机物质,然后再进行沉淀、过滤等处理,最终得到清洁的水质。
这些清洁的水质可以用于灌溉、冲洗等用途,也可以回收利用。
垃圾处理是三联供系统的第二步。
垃圾经过分类、压缩、焚烧等处理,可以得到可再利用的资源,如金属、玻璃、塑料等,同时也可以得到能源,如热能、电能等。
这些资源和能源可以用于生产、建筑、交通等领域,也可以用于供热、供电等用途。
有机废料处理是三联供系统的第三步。
有机废料经过厌氧发酵、压缩等处理,可以得到沼气和有机肥料。
沼气可以用于发电、供热等用途,有机肥料可以用于农业生产、园林绿化等领域。
三联供系统的基本原理是将污水、垃圾和有机废料分别进行处理,然后将处理后的产物进行回收利用。
这种系统不仅可以实现资源的最大化利用和环境的最大化保护,还可以减少污染物的排放和对自然资源的消耗。
因此,三联供系统在城市建设和环保领域中具有广
泛的应用前景。
三联供系统原理介绍在现代建筑领域中,为了实现能源的高效利用和环境的可持续发展,三联供系统逐渐成为一种重要的设计方案。
三联供系统是指将供暖、通风和空调三个系统进行整合,通过共享能量和优化能源利用来提高能效。
本文将深入探讨三联供系统的原理和优势。
原理三联供系统的原理在于将供暖、通风和空调三个系统通过统一的能源传输管道相互关联,并通过智能控制系统实现整体的协调控制。
具体而言,三联供系统由以下几个主要组成部分构成:1. 供暖系统供暖系统主要通过辐射、对流或空气循环等方式提供室内的热量。
常见的供暖设备包括锅炉、热泵和太阳能热水器等。
供暖系统将热能输送至建筑的不同空间,提供舒适的室内温度。
2. 通风系统通风系统通过控制室内空气的流动来提供新鲜空气,并将污浊空气排出室外。
通风系统通常由风机、风管和排风口等组成。
通过合理的通风设计,可以有效地改善空气质量,减少室内污染物的浓度。
3. 空调系统空调系统旨在调节室内的温度、湿度和空气质量,提供舒适的室内环境。
常见的空调设备包括制冷机组、冷却塔和风冷式冷凝器等。
空调系统通过循环供冷或供暖的方式,调节建筑内部的温度和湿度。
优势三联供系统相较于传统的分离式供暖、通风和空调系统具有以下优势:1. 能源高效利用通过将供暖、通风和空调三个系统进行整合,三联供系统能够通过共享能源和优化能源利用来提高能效。
例如,空调系统产生的废热可以被供暖系统回收,降低了能源的浪费。
2. 节约空间和成本传统的分离式系统需要独立的设备和管道来满足不同需求,而三联供系统通过共享设备和管道,使得建筑内部空间的利用更加高效,从而降低了建设和维护的成本。
3. 简化维护和管理三联供系统通过智能控制系统实现整体的协调控制,可以实现集中监控和管理。
这使得维护人员可以更加方便地进行设备的维护和故障的排除。
4. 环境友好三联供系统能够降低能源的消耗和二氧化碳的排放,减少对环境的影响,符合可持续发展的理念。
通过使用可再生能源和高效利用能源的技术,三联供系统有助于打造绿色建筑。
热电冷三联供系统节能环保效能分析1. 引言1.1 热电冷三联供系统概述热电冷三联供系统是一种集供热、供电、供冷于一体的综合能源系统,利用余热发电和吸收式制冷技术实现能源的高效利用。
该系统通过热电联产技术将废热转化为电能,并通过吸收式制冷机组将废热冷却,同时提供制冷效果。
该系统具有能源利用效率高、环境影响小、节能环保等特点,被认为是未来能源利用的重要方向之一。
热电冷三联供系统的核心技术是热电联产和吸收式制冷,通过热电联产实现供热和发电的一体化,再通过吸收式制冷实现供冷,形成一个闭环系统。
该系统既可以利用废热减少传统能源消耗,又可以降低二氧化碳排放,具有显著的节能环保效果。
热电冷三联供系统的应用范围广泛,包括工业厂区、商业建筑、医院、学校等各类建筑,特别适用于对供热、供电、供冷要求较高的场所。
随着技术的不断创新和完善,热电冷三联供系统在未来的发展前景不容小觑,将在能源领域发挥越来越重要的作用。
1.2 节能环保的重要性在当前环境污染日益严重的形势下,热电冷三联供系统的节能环保效果尤为重要。
通过采用该系统,不仅可以减少能源消耗和减少二氧化碳等排放物的排放,还可以提高能源利用率,有效保护环境。
研究和推广热电冷三联供系统对于实现可持续发展和建设资源节约型社会具有重要意义。
2. 正文2.1 热电冷三联供系统的工作原理热电冷三联供系统是一种集供暖、供热、供冷于一体的综合利用系统,其工作原理主要包括以下几个方面:热电冷三联供系统通过热泵技术实现能源的高效利用。
热泵利用环境中的低温热能通过压缩升高温度,然后利用高温热能供暖或供热,同时通过回收余热和凝结热实现能源的再利用,提高能源利用效率。
热电冷三联供系统还包括光伏发电和储能技术,并将太阳能转化为电能供电使用。
通过太阳能的光伏电池板将太阳辐射能转换为直流电,然后通过逆变器将直流电转换为交流电,同时还可利用电池储能技术储存电能,实现电能的平稳供应。
热电冷三联供系统还包括余热利用和废热利用技术。
燃气冷热电三联供制冷系统节能分析1. 引言1.1 燃气冷热电三联供制冷系统概述燃气冷热电三联供制冷系统是一种集供热、供冷、供电为一体的新型节能系统,能够有效整合多种能源资源,减少能源消耗,提高能源利用效率。
该系统采用燃气作为主要能源,通过热电联产技术同时生产热水、制冷和电力,实现多能联供。
燃气冷热电三联供制冷系统具有节能、环保、高效等优势,适用于各类建筑物,如酒店、办公楼、医院等。
通过综合利用余热和余电,减少能源浪费,降低对外部能源的依赖,有助于节约能源、减少温室气体排放。
该系统还能提高建筑物的能源利用效率,降低运行成本,并且在应对气候变化、缓解能源紧张等方面具有重要意义。
随着低碳经济的发展,燃气冷热电三联供制冷系统将成为未来建筑能源系统的主流选择,为可持续发展作出贡献。
2. 正文2.1 燃气冷热电三联供制冷系统原理燃气冷热电三联供制冷系统是一种综合利用能源的高效制冷系统,主要由燃气锅炉、吸收式制冷机组、燃气发电机组和余热回收系统组成。
燃气锅炉会燃烧天然气或其他燃气,产生热水或蒸汽。
这些热水或蒸汽会通过管道输送到吸收式制冷机组中。
吸收式制冷机组是制冷系统的核心部分,其工作原理是利用燃气锅炉产生的热水或蒸汽,通过吸收剂和溶剂之间的化学反应来实现制冷。
当燃气锅炉供应热水或蒸汽时,吸收剂吸收溶剂并蒸发,吸收式制冷机组产生低温冷却剂,用于制冷。
燃气发电机组也会利用燃气锅炉产生的热水或蒸汽来产生电力。
这样一来,系统不仅实现了供冷的功能,还实现了供暖和发电的功能,达到了能源的最大利用。
在制冷过程中,余热回收系统会将吸收式制冷机组产生的热量再次回收利用,提高能源利用率,进一步提升系统的节能效果。
通过这种原理,燃气冷热电三联供制冷系统实现了能源的多重利用,大大提高了能源利用效率,实现了节能减排的目标。
2.2 燃气冷热电三联供制冷系统节能优势1. 综合利用能源:燃气冷热电三联供制冷系统通过整合燃气、热能和电能,最大限度地利用各种能源,实现能源的高效利用。
地源热泵三联供系统知识介绍
概念:
地源热泵空调是一种利用浅层地热资源,既可供热又可制冷的高效节能的空调技术。
由于全年地温波动小,相对室外温度冬暖夏凉,因此地热可分别在冬季作为热泵供暖的热源和夏季空调的冷源,即冬季从土壤或者水中采集热量,供室内采暖;夏季从土壤或水中采集冷量,把室内多余热量取出释放出去。
优势:
地源热泵:一张使用地源热泵的房子图片:地源热泵三联供系统
1.一机三用:为您解决中央空调、生活热水、地面辐射采暖的问题;
1.高效节能:利用地热能源,比传统中央空调节能40%。
2.低碳环保:供热时没有燃烧过程,避免了排烟污染,供冷时省了冷却塔,避免了噪音及霉菌污染。
3.感受舒适:水系统空调在运行时不会消耗空气中的湿度,不易干燥,人体感觉舒适
4.能源再生:土壤有较好的蓄热性能,冬季供暖的同时蓄存冷量,以备夏用;夏季将热量转移到地下对建筑进行降温,同时蓄存热量,以备冬用,保证大地热量的平衡。
热泵三联供系统原理
热泵三联供系统是一种利用热泵技术实现供暖、制冷、热水三种功能的集成系统。
其工作原理如下:
1. 热泵制暖原理:热泵通过压缩机将低温的热空气或地下水等低温热源中的热能提升至较高温度,然后将热能传递给供暖系统,使室内温度升高。
2. 热泵制冷原理:热泵通过反向运行,将室内空气中的热能吸收,然后通过压缩机将热能传递给室外环境,使室内温度降低。
3. 热泵热水供应原理:热泵通过吸收空气中的热能,将热能传递给热水系统,提供热水。
三种功能的实现主要依靠热泵系统中的压缩机、蒸发器、冷凝器、膨胀阀等关键部件。
其中,压缩机将工质压缩,使其温度和压力升高;蒸发器通过吸收热源中的热能,使工质蒸发;冷凝器通过传递热能给供热或供热水系统,并使工质冷凝;膨胀阀用于调节工质的流量和压力。
通过合理设计和控制这些关键部件的运行和能量转移过程,热泵三联供系统可以实现高效、节能的供暖、制冷和热水供应。
三联供系统原理三联供系统是指将供热、供冷和供热水三种功能集成在一起的系统,它能够实现能源的高效利用和节约。
三联供系统原理是基于热力学和流体力学的基本原理,通过合理的设计和运行,实现能源的综合利用,提高能源利用效率,减少能源消耗,对环境友好,具有较高的经济性和社会效益。
首先,三联供系统原理的核心是能源的综合利用。
三联供系统通过采用热泵、余热回收、太阳能等多种能源,实现对供热、供冷和供热水的综合利用。
在供热季节,系统通过热泵和余热回收技术,将低温热能提升为高温热能,用于供暖和热水供应;在供冷季节,系统则可以利用太阳能和空调余热等资源,实现供冷和热水供应;在夏季,系统可以利用太阳能和空调余热等资源,实现供冷和热水供应。
这种综合利用的方式,不仅可以提高能源的利用效率,还可以减少对传统能源的消耗,降低能源的浪费。
其次,三联供系统原理的实现离不开先进的设备和技术支持。
在三联供系统中,热泵、余热回收装置、太阳能集热器、冷热储能装置等设备都扮演着重要的角色。
热泵作为三联供系统的核心设备,能够将低温热能提升为高温热能,实现供热和供冷;余热回收装置可以将废热转化为可利用的热能,提高能源的利用效率;太阳能集热器则可以利用太阳能资源,实现热水供应;冷热储能装置可以对能源进行储存和调控,保障系统的稳定运行。
同时,先进的控制技术和智能化管理系统也是三联供系统能够高效运行的关键,它们能够实现对系统运行状态的实时监测和调控,确保系统的安全稳定运行。
最后,三联供系统原理的实施需要综合考虑建筑结构、能源分配和环境保护等多方面因素。
在建筑结构方面,需要合理设计建筑的供暖、供冷和供热水系统,保证系统的高效运行;在能源分配方面,需要科学规划能源的利用和分配,实现能源的综合利用;在环境保护方面,需要采用清洁能源和低碳技术,减少对环境的影响,实现可持续发展。
综上所述,三联供系统原理是基于能源综合利用、先进设备和技术支持以及综合考虑多方面因素的基础上实现的。
三联供系统的基本原理
三联供系统是一种集成了供水、供电和供气功能的系统,其基本原理是通过一系列的管道、电缆和设备将三种资源输送到用户的家庭或工业用途中。
该系统的主要目的是提高资源利用效率,减少资源浪费和环境污染。
三联供系统的基本原理可以分为以下几个方面:
1. 资源集成
三联供系统将供水、供电和供气三种资源集成在一起,通过一套管道和设备进行输送和分配。
这种集成可以减少资源的浪费和重复建设,提高资源的利用效率。
2. 资源共享
三联供系统中的三种资源可以相互共享,即在某些情况下,可以通过一种资源来满足其他资源的需求。
例如,在太阳能电池板的帮助下,可以将太阳能转化为电能,从而满足家庭的用电需求。
3. 资源优化
三联供系统可以通过对资源的优化使用,减少资源的浪费和损失。
例如,在供水方面,可以通过回收和再利用废水来减少水资源的浪费;
在供电方面,可以通过使用高效节能的电器设备来减少电能的消耗。
4. 资源保护
三联供系统可以通过对资源的保护,减少对环境的污染和破坏。
例如,在供气方面,可以通过使用清洁能源来减少对大气的污染;在供水方面,可以通过减少废水的排放来保护水资源和水环境。
总之,三联供系统的基本原理是通过集成、共享、优化和保护三种资源,提高资源的利用效率,减少资源的浪费和环境污染。
这种系统的
应用可以为人们的生活和工业生产带来很多的便利和经济效益,同时
也可以为环境保护做出贡献。
燃气三联供系统简介
燃气冷热电三联供系统(Combined Cooling Heating and Power,简称CCHP)是分布式能源的一种主要形式。
以天然气为主要燃料,带动燃气发电机组运行,产生的电力满足用户的电负荷,系统排出的废热通过余热利用设备向用户供热、供冷。
燃气冷热电三联供系统的特点:
(1)能源综合利用率提高
大型天然气发电厂的发电效率一般为35%~55%,如果扣除厂用电和线损率,终端的发电效率只能达到30~47%,而三联供系统的燃气利用效率最高可达到90%左右。
(2)能源供应安全性高
三联供系统一般采取并网方式设计,大电网与三联供发电机组互为备用,因此相当于用户增加了一路常用供电系统,提高了用户供电的可靠性。
常规的冷热空调系统一般由电制冷机组加燃气锅炉组成,采用三联供系统后可以使用发电机的余热供热,对用户来说相当增加了一套空调冷热源系统;对于使用电空调的用户相当于将原来的单一用电空调制冷变为可以同时用电和燃气,因此提高了用户的冷热供应可靠性。
(3)有良好的经济性
由于电力供应日趋紧张,各地纷纷把实行峰谷电价政策作为电力需求侧管理的有效手段。
以北京为例,北京目前实行的商业峰谷电价政策,平段电价为0.70元
/kwh,高峰时间为1.32元/kwh,低谷电价为0.32元/kwh,因此采用传统电制冷除了增加大电网的负担以外,还使用户必须承担高额的运行费用。
而采用三联供系统利用发电后余热来供热供冷,整个系统能源效率提高,能源供应成本下降,在能源价格不断增长的形势下更具有良好的经济效益。
另外因为免除了电力远距离输配电损失,电力使用效率也增大。
(4)有良好的环保效益
天然气是清洁能源,在其完全燃烧及采取一定的治理措施后,烟气中NOX等有害成分远低于相关环保指标要求,具有较好的环保效益。
(5)电力和燃气双重削峰填谷
随着天然气在能源结构中利用的比例逐步上升。
城市天然气基本用于采暖,冬夏城市的峰谷日差已经高达4~12倍。
用气结构的不合理导致了天然气资源浪费以及输配管道、门站等天然气设施利用率的下降,引起供气成本增加和燃气价格上升。
三联供系统冬季可以供暖,夏季则可以替代电空调制冷而节约大量电力,同时减少大电网负担。
因此,以天然气为燃料的三联供系统在夏季可以扩大天然气使用量,同时减少空调耗电,具有燃气系统、电力系统双调峰的作用。
冷热电联产发展状况
(1)美国:美国从1978年开始提倡分布式能源。
目前,除了继续坚持发展小型热电联产外,正在走向高效利用能源的小型冷热电联产。
2001年“9.11”事件后,美国为确保能源供应的安全,大力发展冷热电分布式供能系统。
据国际分布式能源联盟统计。
美国分布式供能系统装机容量达到80GW,占总装机容量的7.8%。
美国分布式电力联盟(DPCA)的研究估计,未来20年中增长的分布式供能系统将占未来新增发电容量的20%,总量为几十吉瓦。
美国政府计划在2010年有20%的新建商用或办公建筑使用冷热电联产,有5%现有的商用写字楼改用冷热电联产。
到2020年,计划有一半以上的新建办公或商用建筑采用冷热电联产,同时有15%的现有建筑改用冷热电联产。
(2)欧盟:据1997年资料统计,欧盟拥有9000多台分布式热电联产机组,占欧盟总装机容量的13%,其中工业系统中分布式热电联产装机总容量超过了
33GW,约占热电联产总装机容量的45%,欧盟决定到2010 年将热电联产的比例增加1倍,提高到总发电比例18%。
丹麦:热电上网;1MW以上燃煤燃油锅炉的天然气热电联产改造项目享受政府30%的补贴;对热电工程给予低利率优惠贷款;将环保所得税作为投资款返还工商业;对工商业的天然气热电联产项目发电价格补贴。
法国:对热电联产项目的初始投资给予15%的政府补贴。
英国:免除气候变化税、免除商务税、高质量的热电联产项目可申请政府关于采用节约能源技术项目的补贴金。
荷兰:建立热电联产促进机构,热电联产的发电量优先上网。
(3)日本:重视节能工作,节能系统的研究程度很高,以天然气为基础的分布式冷热电联产项目发展最快,而且应用领域广泛。
日本政府从立法、政府补助、建立示范工程、低利率融资以及给予建筑补助金等角度来促进能源开发及节能事业的发展。
对冷热电联产项目给予诸多减免税。
截止2000 年底,已建冷热电联产共1413个。
国内冷热电联产应用起步较晚,近十几年开始发展。
但是由于国内越来越重视能源结构的调整和能源的高效利用,分布式冷热电联产已经在多个城市建立起来。
目前,已投入运行的工程共369.38万kW,今后将投产的工程共408.28万kW。
国家相关鼓励政策
(1)加强区域热电联产、余热余压利用、能量系统优化、建筑节能、绿色照明、政府机构节能以及节能监测和技术服务体系建设等十大重点节能工程。
——摘自《国务院关于加强节能工作的决定》(2)用热电联产集中供热为主的方式替代城市燃煤供热小锅炉,提高热电联产在供热中的比例,扩大集中供热范围。
鼓励建设热电冷联供机组。
制定鼓励利用余热余压发电、供热和制冷的优惠政策。
——摘自《“十一五”十大重点节能工程实施意见》(3)国家鼓励、支持开发先进节能技术,建立和完善节能技术服务体系,培育和规范节能技术市场。
发展热能梯级利用技术,热、电、冷联产技术和热、电、煤气三联供技术,提高热能综合利用率。
——摘自《中华人民共和国节约能源法》(4)鼓励使用清洁能源,鼓励发展热、电、冷联产技术和热、电煤气联供,以提高热能综合利用效率。
积极支持发展燃气蒸气联合循环冷热电联产。
——摘自《关于发展热电联产的规定》(5)国家发展和改革委员会有关负责人表示,“十一五”期间,国家每年安排一定的资金,用于支持节能重大项目、示范项目及高效节能产品的推广。
——摘自2006年8月31日新华网(6)非电空调就是循环经济。
我们搞循环经济,讲节约型社会,就是要运用科学技术的手段。
远大的发展方向与国家建设节约型社会的方针是一致的。
——摘自2005年8月13日温总理视察远大时讲话。