空间谱估计测向
- 格式:ppt
- 大小:2.62 MB
- 文档页数:32
计算机仿真结课作业MUSIC测向专业名称:通信工程班级学号:学生姓名:指导教师:内容一测向系统设计1、介绍实现空间谱估计测向系统要具备物理支持(天线阵列和数字接收机)和软件系统支持。
这两者是相辅相成的,其硬件的高性能、一致性使采样数据误差减小,从而充分表现谱估计软件的超分辨性能;谱估计算法的高速、高稳定性降低了硬件成本要求。
2、具体构成空间谱估计测向系统的基本构成框图如图2所示。
由图可见,该测向系统由多元天线阵,多信道接收机,转换器和信号处理终端构成。
要想使空间谱估计算法的优良性能在测向中得到很好体现,就需解决好相应组成部分的技术问题。
1.)天线阵列侦收处理系统中,天线阵元的设计、天线阵列布设技术与系统各项性能指标的优劣密切相关,占有举足轻重的地位。
天线阵元的设计主要解决工作频带宽、方向图一致性等问题,天线阵列的设计则应解决测向精度、测向模糊、多信号测向能力等问题。
由于系统工作于超短波频段30 ~300 MHz范围内,频段较宽,考虑使用对数周期天线为单元天线。
阵列设计中充分考虑阵列形式对称性,阵元的尺寸和间距影响互耦误差大小等,需通过理论设计、计算机模拟及实际测试来确定实用的天线阵列。
天线阵列相当于1个空间滤波器,在空域对空间信号作离散采样,增强理想方向的信号同时压制其它方向上的干扰信号。
假设各阵元在所覆盖的频率和方向上都有一致的幅相特性,在天线阵布阵方式的设计中必须考虑以下因素:a)阵元型式:天线阵元必须适合于工作在所要求的宽频带范围内,方向图、阻抗都不应发生太大的变化;b)阵列几何结构(如线阵,圆阵等):阵列几何结构的不同会对阵列测向性能、波束合成等信号处理方法的难易产生不同的影响;c)阵元间距:阵元间距过大,将引起测向模糊,产生天线方向图的栅瓣。
天线工作在宽带内,阵元间距的波长数变化范围很大,设计天线阵时应充分考虑对全频段的影响。
阵元间距越大,阵元位置误差(相对于阵元间距)对测向误差的影响越小。
第3篇无线电测向与空间谱估计测向体制第五十八研究所朱锦生赵衡内容简介:本文简述无线电测向原理,几种典型的无线电模拟电子技术的无线电测向设备,以及空间谱估计测向的含义和它目前达到的水平。
1 无线电测向的基本原理1.1 无线电测向的目的是测定辐射源(或发射机)的位置无线电测向是靠测定电波传播的方向来实现的。
电波传播方向的轨迹是沿地球的大圆弧前进的,即地面上两点(如辐射源和观测点的两点)间的最短直线距离。
因此测定电波的来向,也即测定了辐射源的方向。
1.2 无线电测向的定位三角交会定位由地面两个以上的观测点对同一辐射源测定电波的来向,这些来波行进轨迹的交会点,即为辐射源或发射机的位置,如图1。
(1)单站定位(一般对短波测向而言)由观测点测定来波的方位角、仰角,通过精确电离层模型计算出电离层反射点的等效高度。
由仰角和电离层等效高度计算出观测点距辐射源的距离,由此距离与方位角一起就可确定辐射源的位置,见图2。
图1 多站测向交会定位示意图图2 短波单站定位示意图1.3 实际电波传播不可能是完全理想的影响电波传播行进轨迹的因素,最大有两个:(1) 电波传播短波远距传播均通过电离层反射来实现,但电离层并不是一面实际的镜子,它有一定的厚度,实际是漫反射,是由逐渐的折射达到反射,见图3。
因此电离层的电子密度对电波传播影响很大。
电离层电子密度的不均匀,相当反射镜面的倾斜,使得电波传播行进的轨迹偏离地球大圆弧(即直线)的轨迹。
除此还有电离层各个不同层的分别反射,即使同一层,也有不同的反射次数,即跳数,结果形成多径传播,见图4。
由于各个途径的电波传播是随时间变化的,结果合成的来波不仅方向上有误差,同时来波的方向还明显呈游动。
(1) 地形地物的影响地形地物如各种建筑物、铁塔、山脉、树林等障碍物,它们也接收电波的照射,同时还产生再次辐射。
这样到达观测点的电波,不仅有直接来自辐射源的电波,而且还有障碍物的再次辐射电波,它们合成的来波方向,偏离辐射源,并根据影响程度,向障碍物偏转一定的角度,这就产生误差。
不同无线电测向的原理通过测试无线电波到达某处时的一些参数,能够获得无线电波的来向。
对于一个固定测向站来说,在V/UHF频段,通常只测试电波在水平面上的来向,在HF的频段,通常还要测量它的仰角。
由于无线电波具有特定的传播规律,根据两个以上站点测得的电波来向,或者一个站点测得的来向、仰角、跳次数据和电离层反射区高度等数据可以得知无线电发射台的位置。
通过测试无线电波到达某处时的一些参数,能够获得无线电波的来向。
对于一个固定测向站来说,在V/UHF 频段,通常只测试电波在水平面上的来向,在HF的频段,通常还要测量它的仰角。
由于无线电波具有特定的传播规律,根据两个以上站点测得的电波来向,或者一个站点测得的来向、仰角、跳次数据和电离层反射区高度等数据可以得知无线电发射台的位置。
根据不同无线电测向的原理,通常有幅度测向法、相位测向法、空间谱估计测向法和时差测向法。
1、幅度测向法幅度测向法是历史最悠久的测向方法。
常见的幅度测向法采用一付有方向性的天线,通过旋转天线,找到信号最强的方向(大音点测向法)或者信号最弱的方向(小音点测向法),就可以确定来波方向。
业余无线电测向(猎狐)均基于幅度测向法。
采用旋转天线的方法测向,设备十分简单。
对于无线电爱好者而言,可以用具有方向性的八木-宇田天线,接上具有测量信号强度功能的接收机(例如对讲机和可变衰减器的组合)构成测向系统。
这种测向系统适合于一个人携带使用,在接近发射源的时候最为有效。
由于这种测向系统需要人工或者电动旋转天线,它的响应时间很长,如果需要捕捉短促信号持续时间很短,或者信号强度本来就在不停变化,则难以取得有效结果。
为了克服旋转天线响应时间长的缺点,发展了沃特森-瓦特测向机。
它用两付相互正交的艾德考克天线接收无线电信号,两付天线的信号分别送入两台接收机,并将接收机的电压输出(与信号幅度线性相关)分别送入示波器的X、Y偏转器,即可在显示屏上显示一条代表来波方向的亮线。
空间谱估计测向技术简介作者:刘庭杰胡瑞卿李建东来源:《硅谷》2011年第05期摘要:空间谱估计测向是建立在严格的信号模型和复杂的谱估计理论上的一种测向体制,具有高精度、高分辨率和抗多径干扰等优异性能,在无线电监测、测向中有着广阔的应用前景。
从空间谱估计测向的系统组成、原理、常用算法及在实际应用中遇到的技术难题等方面,介绍空间谱估计测向技术,以期读者对这一技术有更全面的了解。
关键词:空间谱估计测向;算法;无源测向;子空间分解中图分类号:TN 文献标识码:A 文章编号:1671-7597(2011)0310017-020 引言电磁信号的方向数据是对战场密集信号进行分选并引导干扰或指挥武器进行攻击的主要参数,而无源测向技术因其安全快速的优势受到广泛关注,得到了飞速发展。
目前常用的比幅法测向、相位干涉仪测向技术和线性相位多模圆阵测向技术都存在共同的不足,即不能对同时多信号进行测向和分辨,因此在高密度信号环境下,应用受到一定的限制。
空间谱估计测向技术迅速走进视野,成为现代无线电测向技术和无源测向领域的研究热点。
空间谱估计测向技术是一种不同于传统的振幅测向法和相位测向法的全新测向方法,它是近三十年在经典谱估计理论基础上发展起来的,是一种以多元天线阵结合现代数字信号处理技术为基础的新型测向技术。
对空间信号方位的判定和对信号的频谱分析相似,频域谱估计是对信号在频域上的能量分布的估计,而测向则可以看成是对空间各方向上信号能量分布的估计,这样,空间角度与频域点的对应就产生了空间谱的概念。
得到信号的“空间谱”,就能得到信号的到达方向(DOAdirections of arrival)。
因为采用了先进的数字信号处理方法,空间谱估计测向技术具有传统测向体制无可比拟的技术优势,可实现同时对多目标测向(包括相干信号与非相干信号),对天线阵元及阵的排列没有特别的约束条件,并且在低信噪比条件下的测向精度很高,理论上完全可以用于复杂电磁环境下辐射源测向。
阵列信号处理中的DOA (窄带)/接收过程中的信号增强。
参数估计:从而对目标进行定位/给空域滤波提供空域参数。
(DOA)θ的函数,P(θ)./经典波束形成器 注,延迟相加法和CBF 法本质相同,仅仅是CBF 法的最优权向量是归一化了的。
CBF / Bartlett 波束形成器CBF :Conventional Beam Former )最小方差法/Capon 波束形成器/ MVDR 波束形成器MVDR :minimum variance distortionless response ) Root-MUSIC 算法 多重信号分类法 解相干的MUSIC 算法 (MUSIC ) 基于波束空间的MUSIC 算法 TAM 旋转不变子空间法 LS-ESPRIT TLS-ESPRIT 确定性最大似然法(DML :deterministic ML )随机性最大似然法(SML :stochastic ML )最大似然估计法是最优的方法,即便是在信噪比很低的环境下仍然具有良好的性能,但是通常计算量很大。
同子空间方法不同的是,最大似然法在原信号为相关信号的情况下也能保持良好的性能。
阵列流形矩阵(导向矢量矩阵)只要确定了阵列各阵元之间的延迟τ,就可以很容易地得出一个传统的波达方向估计方法是基于波束形成和零波导引概念的,并没有利用接收信号向量的模型(或信号和噪声的统计特性)。
知道阵列流形 A 以后,可以对阵列进行电子导引,利用电子导引可以把波束调整到任意方向上,从而寻找输出功率的峰值。
①常规波束形成(CBF)法CBF法,也称延迟—相加法/经典波束形成器法/傅里叶法/Bartlett波束形成法,是最简单的DOA 估计方法之一。
这种算法是使波束形成器的输出功率相对于某个信号为最大。
(参考自:阵列信号处理中DOA估计及DBF技术研究_赵娜)注意:上式中,导向矩阵A表示第K个天线阵元对N个不同的信号s(i)示第i个信号s(i)在M将式(2.6)的阵元接收信号,写成矢量形式为:X(t)=AS(t)+N(t)其中,X(t)为阵列的M×1维快拍数据矢量,N(t)为阵列的M×1维噪声数据矢量,S(t)为信号空间的N ×1维矢量,A 为空间阵列的M ×N 维阵列流型矩阵(导向矢量矩阵),且ω ω ω ]其中,导向矢量 ω 为列矢量,表示第i 个信号在M 个天线上的附加权值ω, 式中, ,其中,c 为光速,λ为入射信号的波长。
空间谱估计测向技术简介随着无线通信技术的不断发展,无线通信系统的容量和覆盖范围不断扩大,给无线通信系统的设计和优化带来了新的挑战。
其中,测向技术是无线通信系统中非常重要的一环,可以用于定位、跟踪移动目标、反向链路信道估计等多种应用场景。
本文将介绍一种常用的测向技术——空间谱估计测向技术。
一、空间谱估计测向技术的基本概念空间谱估计测向技术是一种利用接收阵列来获取信号角度信息的方法。
在接收阵列中,各个天线之间的距离和相对位置可以确定,通过接收到的信号在各个天线上的相位差,可以计算出信号来自的方向,从而实现信号的测向。
二、空间谱估计测向技术的原理空间谱估计测向技术的原理是基于信号的空间谱分析。
空间谱是指信号在接收阵列中的传播路径和信号源的位置之间的关系,可以用来描述信号在接收阵列上的分布情况。
空间谱分析可以通过接收阵列上不同天线接收到的信号相位差来实现。
在接收阵列上,每个天线接收到的信号可以表示为:s(t) = A(t)exp(jφ(t))其中,A(t)和φ(t)分别表示信号的振幅和相位,t表示时间。
对于接收阵列上的第i个天线,其接收到的信号可以表示为:si(t) = A(t)exp(j(φ(t)+θi))其中,θi表示第i个天线的相位差,θi =2πdi/λsin(θ),其中,d表示天线之间的距离,λ表示信号波长,θ表示信号来自的方向。
在接收阵列上,可以通过对不同天线接收到的信号进行空间谱分析,得到信号在不同方向上的功率谱密度,即空间谱。
空间谱估计测向技术通过对空间谱进行分析,可以得到信号来自的方向。
三、空间谱估计测向技术的算法空间谱估计测向技术主要有两种算法:波达法和最小二乘法。
波达法是一种基于空间谱分析的方法,可以直接求出信号来自的方向。
最小二乘法是一种基于信号采样的方法,通过对采样信号进行线性回归,可以得到信号来自的方向。
四、空间谱估计测向技术的应用空间谱估计测向技术可以应用于很多领域,如雷达、通信、声纳等。
空间谱估计无线电测向系统陈旭彬;任培明;戴慧玲【摘要】The direction finding technology based on spatial spectrum estimation is widely used due to its' ultra-high resolution,high sensitivity,high accuracy and plays a leading role in radio management.Based on the theoretical study of spatial spectrum estimation,the algorithm was put forward and the algorithm was simulated.Finally,the practicability and superiority of the spatial spectrum estimation system were demonstrated.%空间谱估计测向方法以其超分辨力、高灵敏度和高准确度的测向性能被广泛应用,并在无线电管理领域扮演主要角色.在对空间谱估计测向理论研究的基础上,给出了具体算法,并对算法进行了仿真,最后通过对比测试论证了空间谱估计测向系统的实用性和优越性.【期刊名称】《电信科学》【年(卷),期】2017(033)007【总页数】6页(P183-188)【关键词】空间谱估计;MUSIC算法;无线电测向【作者】陈旭彬;任培明;戴慧玲【作者单位】国家无线电监测中心,北京100037;国家无线电监测中心,北京100037;国家无线电监测中心,北京100037【正文语种】中文【中图分类】TN911空间谱估计测向技术是一门在最近50年内发展起来的新兴测向处理技术,这种测向技术具有传统测向体制无可比拟的技术优势,正在展现出良好的应用前景,并已经成为国际无线电测向领域的研究热点。