第十章 回归分析
- 格式:ppt
- 大小:1.48 MB
- 文档页数:28
统计学第三次作业(第十章相关与回归分析)计算题1. 为研究年收入水平Y (单位:万元)与受教育程度X (单位:年)之间的关系,现抽取一个包括20个人的随机样本,得到:22239, 72.61, ()422.95()34.83, ()()106.74ttttttX Y X X Y Y X X Y Y ==-=-=--=∑∑∑∑∑试根据以上数据:(1) 计算年收入水平与受教育程度的样本相关系数;(2) 拟合简单线性回归方程,并对回归系数的经济意义作解释; (3) 预测受教育年限为16年时,平均年收入是多少?2. 为研究零食中脂肪含量X (单位:克)与热量Y (单位:卡路里)之间的关系,随机抽查了16种点心食品,得到的数据如下:22189, 3461, 2799907717, 49526, 16tt t tt t X Y X YX Y n ======∑∑∑∑∑试根据以上数据:(1)计算热量与脂肪含量的样本相关系数;(2)拟合热量与脂肪含量的简单线性回归方程,并计算回归方程的决定系数以反映拟合效果;(3)若某糖果条包装上标明含有3克脂肪,预测其含有的热量。
3. 有8个同类企业的生产性固定资产年均价值和工业增加值的资料如下:要求:(计算必须有公式和过程)(1)计算相关系数,说明两变量相关的方向和程度;(2)建立以工业增加值为因变量的直线回归方程,说明方程参数的经济意义;(3)在0.05的显著性水平下,用F检验检验线性回归效果是否显著?(0.05(1,6) 5.987F=)(4)确定生产性固定资产为1100万元时,工业增加值的估计值。
4. 根据甲企业2004年每月的产品销售额Y与广告费支出X数据(单位:元),计算出其估计的回归方程为ŷ=31.98+1.68X,估计结果中R2=0.923,F=230.78,自变量系数的t检验值为3.587;另有一企业乙也进行了同样情况的分析,已知∑X=50, ∑Y=110.8, ∑X2=294, ∑Y2=1465.0, ∑XY=654.9,要求:(1)确定乙企业产品销售额Y与广告费支出X的线性回归方程,并说明βˆ1的含义;(2)若已知乙企业的回归结果中R2=0.847,F=302.5,自变量系数的t检验值为1.7689,试根据所学知识对甲、乙两企业所建立的线性回归方程的优劣进行综合分析。
第十章 logitic 回归本章导读:Logitic 回归模型是离散选择模型之一,属于多重变数分析范畴,是社会学、生物统计学、临床、数量心理学、市场营销、会计与财务等实证分析的常用方法。
10.1 logit 模型和原理Logistic 回归分析是对因变量为定性变量的回归分析。
它是一种非线性模型。
其基本特点是:因变量必须是二分类变量,若令因变量为y ,则常用y=1表示“yes ”,y=0表示“no ”。
[在发放股利与不发放股利的研究中,分别表示发放和不发放股利的公司]。
自变量可以为虚拟变量也可以为连续变量。
从模型的角度出发,不妨把事件发生的情况定义为y=1,事件未发生的情况定义为0,这样取值为0、1的因变量可以写作:⎩⎨⎧===事情未发生事情发生01y 我们可以采用多种方法对取值为0、1的因变量进行分析。
通常以P 表示事件发生的概率(事件未发生的概率为1-P ),并把P 看作自变量x 的线性函数。
由于y 是0-1型Bernoulli 分布,因此有如下分布:P=P (y=1|x ):自变量为x 时y=1的概率,即发放现金股利公司的概率1-P=P (y=0|x ):自变量为x 时y=0的概率,即不发放现金股利公司的概率 事件发生和不发生的概率比成为发生比,即相对风险,表现为PP odds -=1.因为是以 对数形式出现的,故该发生比为对数发生比(log odds ),表现为)1ln(P P odds -=。
对数发生比也是事件发生概率P 的一个特定函数,通过logistic 转换,该函数可以写成logistic 回归的logit 模型:)1(log )(log PP P it e -= Logit 一方面表达出它是事件发生概率P 的转换单位;另一方面,它作为回归的因变量就可以自己与自变量之间的依存关系保持传统回归模式。
根据离散型随即变量期望值的定义,可得:E(y)=1(P)+0(1-P)=P进而得到x P y E 10)(ββ+==因此,从以上分析可以看出,当因变量的取值为0、1时,均值x y E 10)(ββ+=总是代表给定自变量时y=1的概率。
数学建模——线性回归分析实用教案一、教学内容本节课选自《数学建模与数学实验》教材第十章“回归分析”中的第一节“线性回归分析”。
具体内容包括线性回归模型的建立、参数估计、模型的检验及运用,重点探讨变量间线性关系的量化表达和预测分析。
二、教学目标1. 理解线性回归模型的基本概念,掌握线性回归方程的建立和求解方法。
2. 学会运用最小二乘法进行线性回归参数的估计,并能解释其实际意义。
3. 能够对线性回归模型进行显著性检验,评估模型的可靠性。
三、教学难点与重点难点:线性回归方程的求解方法,最小二乘法的原理及运用,模型的显著性检验。
重点:线性回归模型的建立,参数估计,模型的运用。
四、教具与学具准备1. 教具:多媒体教学设备,投影仪,黑板。
2. 学具:计算器,教材,《数学建模与数学实验》。
五、教学过程1. 实践情景引入(5分钟)展示一组数据,如某商品的需求量与价格之间的关系,引导学生思考如何量化这种关系。
2. 理论讲解(15分钟)介绍线性回归模型的基本概念,引导学生了解线性关系的量化表达。
讲解线性回归方程的建立,参数估计方法,强调最小二乘法的作用。
3. 例题讲解(15分钟)选取一个实际例子,演示如何建立线性回归模型,求解参数,并进行模型检验。
4. 随堂练习(10分钟)学生分组讨论,根据给出的数据,建立线性回归模型,求解参数,进行模型检验。
六、板书设计1. 黑板左侧:线性回归模型的基本概念,参数估计方法。
2. 黑板右侧:例题解答过程,模型检验步骤。
七、作业设计1. 作业题目:给出一组数据,要求学生建立线性回归模型,求解参数,进行模型检验。
讨论线性回归分析在实际问题中的应用。
2. 答案:线性回归模型参数的求解过程及结果。
模型检验的统计量及结论。
八、课后反思及拓展延伸1. 反思:本节课学生掌握线性回归分析的基本方法,但部分学生对最小二乘法的理解仍需加强。
2. 拓展延伸:探讨非线性回归模型的建立和应用。
引导学生了解其他数学建模方法,如时间序列分析、主成分分析等。
第10章 含定性变量的回归模型10.1 一个学生使用含有季节定性自变量的回归模型,对春夏秋冬四个季节引入4个0-1型自变量,用SPSS 软件计算的结果中总是自动删除了其中的一个自变量,他为此感到困惑不解。
出现这种情况的原因是什么? 答:假如这个含有季节定性自变量的回归模型为:其中含有k 个定量变量,记为x i 。
对春夏秋冬四个季节引入4个0-1型自变量,记为D i ,只取了6个观测值,其中春季与夏季取了两次,秋、冬各取到一次观测值,则样本设计矩阵为:显然,(X,D)中的第1列可表示成后4列的线性组合,从而(X,D)不满秩,参数无法唯一求出。
这就是所谓的“虚拟变量陷井”,应避免。
当某自变量x j 对其余p-1个自变量的复判定系数2j R 超过一定界限时,SPSS 软件将拒绝这个自变量x j 进入回归模型。
称Tol j =1-2j R 为自变量x j 的容忍度(Tolerance ),SPSS 软件的默认容忍度为0.0001。
也就是说,当2j R >0.9999时,自变量x j 将被自动拒绝在回归方程之外,除非我们修改容忍度的默认值。
而在这个模型中出现了完全共线性,所以SPSS 软件计算的结果中总是自动删除了其中的一个定性自变量。
10.2对自变量中含有定性变量的问题,为什么不对同一属性分别建立回归模型,而采取设虚拟变量的方法建立回归模型?答:原因有两个,以例10.1说明。
一是因为模型假设对每类家庭具有相同的斜率和误差方差,把两类家庭放在一起可以对公共斜率做出最佳估计;二是对于其tt t t kt k t t D D D X X Y μαααβββ++++++=332211110 ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=000110010110001010010010100011)(616515414313212111k k k k k k X X X X X X X X X X X XD X,⎪⎪⎪⎪⎪⎭⎫⎝⎛=k βββ 10β⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4321ααααα他统计推断,用一个带有虚拟变量的回归模型来进行也会更加准确,这是均方误差的自由度更多。
第10章时间序列数据的基本回归分析10.1复习笔记一、时间序列数据的性质时间序列数据与横截面数据的区别:(1)时间序列数据集是按照时间顺序排列。
(2)时间序列数据与横截面数据被视为随机结果的原因不同。
①横截面数据应该被视为随机结果,因为从总体中抽取不同的样本,通常会得到自变量和因变量的不同取值。
因此,通过不同的随机样本计算出来的OLS估计值通常也有所不同,这就是OLS统计量是随机变量的原因。
②经济时间序列满足作为随机变量是因为其结果无法事先预知,因此可以被视为随机变量。
一个标有时间脚标的随机变量序列被称为一个随机过程或时间序列过程。
搜集到一个时间序列数据集时,便得到该随机过程的一个可能结果或实现。
因为不能让时间倒转重新开始这个过程,所以只能看到一个实现。
如果特定历史条件有所不同,通常会得到这个随机过程的另一种不同的实现,这正是时间序列数据被看成随机变量之结果的原因。
(3)一个时间序列过程的所有可能的实现集,便相当于横截面分析中的总体。
时间序列数据集的样本容量就是所观察变量的时期数。
二、时间序列回归模型的例子1.静态模型假使有两个变量的时间序列数据,并对y t和z t标注相同的时期。
把y和z联系起来的一个静态模型(staticmodel)为:10 1 2 t t t y z u t nββ=++=⋯,,,,“静态模型”的名称来源于正在模型化y 和z 同期关系的事实。
若认为z 在时间t 的一个变化对y 有影响,即1t t y z β∆=∆,那么可以将y 和z 设定为一个静态模型。
一个静态模型的例子是静态菲利普斯曲线。
在一个静态回归模型中也可以有几个解释变量。
2.有限分布滞后模型(1)有限分布滞后模型有限分布滞后模型(finitedistributedlagmodel,FDL)是指一个或多个变量对y 的影响有一定时滞的模型。
考察如下模型:001122t t t t ty z z z u αδδδ--=++++它是一个二阶FDL。
第10章时间序列数据的基本回归分析时间序列数据是指按时间顺序排列的一系列观测值,具有时间依赖性的特点。
在时间序列数据中,我们通常会面临许多问题,如预测未来的走势、分析变量间的关系等。
回归分析是一种用来建立变量间关系的统计方法,因此在时间序列数据中,同样可以使用回归分析方法来建立变量间的关系模型。
在进行时间序列数据的基本回归分析时,我们首先需要确定一个主要的解释变量(自变量)和一个被解释变量(因变量)。
主要的解释变量用来解释被解释变量的变化,从而确定它们之间的关系。
然后,我们需要对数据进行可视化和统计分析,以了解数据的特征和趋势。
首先,我们可以使用时间序列图来可视化数据的变化趋势。
时间序列图是一种按照时间顺序展示数据的图表,通过观察时间序列图,我们可以判断数据是否存在趋势、季节性或周期性等特征。
如果数据存在明显的趋势,我们可以使用线性回归模型来建立变量间的关系。
如果数据存在明显的季节性或周期性,我们可以使用季节性模型或周期模型来建立变量间的关系。
此外,我们还可以通过自相关函数(ACF)和偏自相关函数(PACF)来判断数据是否存在自相关性。
然后,我们可以使用普通最小二乘法(OLS)来估计回归模型的参数。
OLS是一种通过最小化观测值与模型估计值之间的差异来估计参数的方法。
对于时间序列数据,我们需要进行数据的平稳化处理,以确保模型的有效性。
常见的平稳化方法包括差分法和对数变换法。
通过平稳化处理后,我们可以得到平稳时间序列数据,然后应用OLS方法来估计模型的参数。
最后,我们可以使用统计检验来评估回归模型的拟合程度和显著性。
常见的统计检验包括F检验和t检验。
F检验用来评估模型的整体显著性,而t检验用来评估模型的各个参数的显著性。
如果模型的F检验和t检验显著,则说明回归模型能够很好地解释因变量的变化,并且模型参数是统计显著的。
总结起来,时间序列数据的基本回归分析包括确定主要的解释变量和被解释变量、可视化和统计分析数据、估计回归模型的参数、以及评估模型的拟合程度和显著性。