整式的乘法+第2课时 单项式乘以多项式PPT教学课件
- 格式:ppt
- 大小:181.50 KB
- 文档页数:8
人教版 数学 八年级 上册导入新知为了把校园建设成为花园式的学校,经研究决定将原有的长为a米,宽为b米的足球场向宿舍楼方向加长m米,向厕所方向加宽n米,扩建成为美化校园绿草地.你是学校的小主人,你能帮助学校计算出扩展后绿地的面积吗?a mbn2. 能够运用多项式与多项式的乘法运算法则进行计算.1. 理解并掌握多项式与多项式的乘法运算法则.素养目标1.如何进行单项式与多项式乘法的运算?(2)再把所得的积相加.(1)将单项式分别乘以多项式的各项.2.进行单项式与多项式乘法运算时,要注意什么?(1)不能漏乘:即单项式要乘多项式的每一项.(2)去括号时注意符号的变化.知识点多项式乘多项式的法则回顾旧知某地区在退耕还林期间,有一块原长m米,宽为a米的长方形林区,若长增加了n米,宽增加了b米,请你计算这块林区现在的面积.ambnma na mb nb a m b n 你能用不同的形式表示所拼图的面积吗?这块林区现在长为(m+n )米,宽为(a+b )米.(m+n )(a+b )m (a+b )+n (a+b )ma+mb+na+nb 方法一:方法二:方法三:由于(m+n)(a+b)和(ma+mb+na+nb)表示同一块地的面积,故有:(m+n)(a+b)=ma+ mb+ na+ nb如何进行多项式与多项式相乘的运算?(m+n)X=mX+nX若X=a+b,如何计算?实际上,把(a+b)看成一个整体,有:(m+n)(a+b)= m(a+b)+n(a+b)= ma+mb+na+nb多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.1234(a +b )(m +n )=a m 1234+a n +b m +b n u “多乘多” 顺口溜:多乘多,来计算,多项式各项都见面,乘后结果要相加,化简、排列才算完.多项式乘以多项式例1 计算:(1)(3x+1)(x+2);(2)(x–8y)(x–y);解: (1) 原式=3x·x+2·3x+1·x+1×2 =3x2+6x+x+2(2) 原式=x·x–xy–8xy+8y2结果中有同类项的要合并同类项.=3x2+7x+2;计算时要注意符号问题.=x2–9xy+8y2;素养考点 1用多项式乘以多项式法则进行计算(3) 原式=x ·x 2–x·xy +xy 2+x 2y –xy 2+y ·y 2 =x 3–x 2y +xy 2+x 2y –xy2+y 3 = x 3+y 3.漏乘;(2)符号问题;(3)最后结果应化成最简形式.计算时不能漏乘.(3) (x +y )(x 2–xy +y 2).快速训练:(1) (2x +1)(x +3); (2) (m +2n )(m +3n ): (3) ( a – 1)2 ; (4) (a +3b )(a –3b ). (5) (x +2)(x +3); (6) (x –4)(x +1)(7) (y+4)(y –2); (8) (y –5)(y –3)a 2–9b 2巩固练习2x 2+7x +3m 2+5mn +6n 2a 2–2a +1x 2+5x +6x 2–3x –4y 2+2y –8y 2–8y +15探究新知素养考点 2用多项式乘以多项式法则进行化简求值例2 先化简,再求值:(a–2b)(a2+2ab+4b2)–a(a–5b)(a+3b),其中a=–1,b=1.解:原式=a3–8b3–(a2–5ab)(a+3b)=a3–8b3–a3–3a2b+5a2b+15ab2=–8b3+2a2b+15ab2.当a=–1,b=1时,原式=–8+2–15=–21.先化简,再求值.(x –y )(x –2y ) – (2x –3y )(x +2y ),其中 .x = –2,y =−12解:(x –y )(x –2y ) – (2x –3y )(x +2y )=x 2–2xy –xy +2y 2–(2x 2+4xy –3xy –6y 2)=x 2–2xy –xy +2y 2–2x 2–xy +6y 2= –x 2–4xy +8y 2当x = –2,y = 时, 原式= –6−12巩固练习例3 已知ax 2+bx +1(a ≠0)与3x –2的积不含x 2项,也不含x 项,求系数a 、b 的值.解:(ax 2+bx +1)(3x –2)=3ax 3–2ax 2+3bx 2–2bx +3x –2,∵积不含x 2的项,也不含x 的项,230,230,a b b -+=⎧⎨-+=⎩∴9,43.2∴a b ⎧=⎪⎪⎨⎪=⎪⎩探究新知方法总结:解决此类问题首先要利用多项式乘法法则计算出展开式,合并同类项后,再根据不含某一项,可得这一项系数等于零,再列出方程(组)解答.选择题.(1)计算m 2–(m +1)(m –5)的结果正确的是( )A.–4m –5B.4m +5C.m 2–4m +5D.m 2+4m –5(2)(1+x )(2x 2+ax +1)的结果中x 2项的系数为–2,则a 的值为( )A.–2B.1C.–4D.以上都不对B C巩固练习1. 计算(a–2)(a+3)的结果是( )BA.a2–6 B.a2+a–6 C.a2+6 D.a2–a+62. 在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD–AB=2时,S2–S1的值为( )A.2a B.2b C.2a–2b D.–2bB2. 如果(x +a )(x +b )的结果中不含x 的一次项,那么a 、b 满足( )A .a =b B .a =0 C .a =–b D .b =0C1. 计算(x –1)(x –2)的结果为( ) A .x 2+3x –2 B .x 2–3x –2C .x 2+3x +2D .x 2–3x +2 D基础巩固题3. 已知ab =a +b +1,则(a –1)(b –1)=_____.221(23)(2)(1);x x x ----()4. 判别下列解法是否正确,若不正确,请说出理由.解:原式2246(1)(1)x x x x =-+---22246(21)x x x x =-+--+2224621x x x x =-+-+-225;x x =-+3x -漏乘22(23)(2)(1);x x x ----()解:原式)1(6342222--+--=x x x x 167222+-+-=x x x 277.x x =-+(1)(1)x x --2(21)x x --+运算法则混淆5. 计算:(1)(x −3y )(x +7y ); (2)(2x + 5y )(3x −2y ).解: (1) (x−3y )(x+7y )+7xy −3yx −=x 2 +4xy–21y 2; 21y 2(2) (2x +5 y )(3x −2y )==x 22x •3x −2x • 2y +5 y • 3x −5y •2y =6x 2−4xy + 15xy −10y 2=6x 2 +11xy−10y 2.6.化简求值:(4x +3y )(4x –3y )+(2x +y )(3x –5y ),其中x =1,y = –2.解:原式=2222161212961035x xy xy y x xy xy y -+-+-+-2222714x xy y=--当x =1,y = –2时,原式=22×1–7×1×(–2)–14×(–2)2=22+14 –56=–20.能力提升题解方程与不等式:①(x–3)(x–2)+18=(x+9)(x+1);②(3x+6)(3x–6)<9(x–2)(x+3).解:①原式去括号,得:x2–5x+6+18=x2+10x+9,移项合并,得:15x=15,解得:x=1;②原式去括号,得:9x2–36<9x2+9x–54,移项合并,得:9x>18,解得:x>2.小东找来一张挂历画包数学课本.已知课本长a厘米,宽b厘米,厚c厘米,小东想将课本封面与封底的每一边都包进去m厘米,那么小东应在挂历画上裁下一块多大面积的长方形?八年级(上)姓名:____________数学cba拓广探索题abc m b m面积:(2m +2b +c )(2m +a )解:(2m+2b+c)(2m+a)= 4m2+2ma+4bm+2ab+2cm+ca.答:小东应在挂历画上裁下一块(4m2+2ma+4bm+2ab+2cm+ca)平方厘米的长方形.多项式乘多项式运算法则多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.(a+b)(m+n)=am+an+bm+bn注意不要漏乘;正确确定各项符号;结果要最简.实质上是转化为单项式乘多项式的运算.(x–1)2在一般情况下不等于x2–12.课堂小结课后作业作业内容教材作业从课后习题中选取自主安排配套练习册练习谢谢观看 Thank You。