比例线段的基本性质
- 格式:doc
- 大小:29.50 KB
- 文档页数:2
线段的比与比例线段的概念、比例的性质和黄金分割I 梳理知识比与比例、比例的基本性质、合比性质、等比性质、两线段的比、成比例线段、平行线分 线段成比例、截三角形两边或其延长线的直线平行于第三边的判定、黄金分割1. 线段的比的定义 在同一单位长度下,两条线段2. 比例线段的定义在四条线段中,如果其中两条线段的_______________________________________ 等于另外两条线段的 _____ ,那么这四条线段叫做 成比例线段,简称 ____________ .在 a : b = c : d 中,a 、d 叫做比例的 ___ , b 、c 叫做比例 的 _____ ,称d 为a 、b 、c 的 _____________ .3. 比例的性质(1)比例的基本性质:如果a : b = c : d ,那么 则b 叫a , c 的比例中项.⑵合份)比性质:若a⑶等比性质:若一b4.黄金分割(1) 黄金分割的意义:如图,点 那么称线段 AB 被点C 黄金分割.其中点C 叫做线段AB 的 做 .(2) 黄金分割的作法【例题讲解】 例1.(1)已知1,厉,5三个数,如果再添一个数,使之能与已知的三个数成比例,则这个数应该是 ___________ .⑵在比例尺为1: n 的某市地图上,规划出一块长 5cm X 2cm 的矩形工业区,则该工业区的实际面积是平方米.例 2.(1)已知 X : y : z = 3 : 4 : 5,①求-—y的值;②若 x +y + z = 6, za(2)已知a 、b 、c 、d 是非零实数,且 --------b c d的值•的比叫做这两条线段的比•特别地,若a : b = b : C,即 ,则C 把线段AB 分成两条线段 AC 和BC,如果 __________________ , ,AC 与AB 的比叫求 X 、y 、z.C bad一d一k ,求 ka b c求x 的值.黄金分割点吗为什么【同步测试】 一、选择题1. 已知一矩形的长 a = 1.35m , (A)9 : 400(B)9 : 402. 下列线段能成比例线段的是( b = 60cm ,贝U a : b 的值为((C)9 : 4(D)90 : 4)(A)1cm,2cm,3cm,4cm (B)1cm, 72 cm,V 2 cm,2cm (C b/2 cm,亦cm, J 3 cm,1cm(D)2cm,5cm,3cm,4cm3. 如果线段a = 4, (A)84. 已知- b 3 (A)- 25. 已知 (A)— 2(B)16 2 2,则3 4 (B)4 y : z = 1 (B)2b = 16,c = 8, (C)24 「 的值为b5 (C)5 :2 : 3,且 (C)3 那么a 、b 、c 的第四比例项d 为( (D)32 3 (D)- 5 2x + y — 3z =— 15,贝U x 的值为( (D)— 3 6. 在比例尺为1 : 38000的南京交通游览图上,玄武湖隧道长约为 7cm ,它的实际长度约为()(A)0.226km (B)2.66km (C)26.6km (D)266km 7. 某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某一同学的身高是 影长是1米,旗杆的影长是 8米,则旗杆的高度是( ) (A)12 米 8. 已知点 1.5 米, (B)11 米 (C)10 米 C 是AB 的黄金分割点(AC >BC , (B)(6 — 2也)cm (D)9 米 若AB = 4cm ,贝U AC 的长为( (C)詰—1)cm AD AE (A)(2A /5 — 2)cm )(D)(3 —75 )cm 9.若D 、E 分别是△ ABC 的边AB 、AC 上的点,且AB =疋,那么下列各式中正确的是 ((3)若a 、b 、c 是非零实数,并满足ab c ,且 xa(a b)(b c)(c a)abc例3.(1 )已知线段AB = a ,在线段 AB 上有一点C,若则点 C 是线段AB 的(A)AD DEDB = BCAB(B)A DAE=A CDB AB(C)Ec = ACAD AE(D)DB = AC10.若k丄空 b 2c a + b+ CM0,k的值为((A)—1 (B)2 (C)1 (D) —二、填空题11.在(5 +x):2中的x= (5—x) : x 中的x=12.若10 813.若a : 3 = b : 4 = c : 5 ,且a + b —c= 6,贝U a=,b= c=14.已知x : y :z= 4 : 5 ,且x+ y+ z= 12,那么x= ,y=z=15.若b16.已知ace,②(x + y) : (y + z)17.若x 2y18.图纸上画出的某个零件的长是是32 mm,如果比例尺是 1 : 20,这个零件的实际长19.如图,已知AB : DB = AC:EC, AD = 15 cm , AB = 40 cm , AC = 28 cm ,贝U AEA20.已知,线段 2 cm, c (2 73) cm, 则线段a、c的比例中项b是三、解答题21.已知x3 0,求下列各式的值:(1)2x 3y 4z⑵5x 3y za22.已知——x0,求x+y+ z 的值.23.若△ ABC 的三内角之比为 1 : 2 : 3,求^ ABC 的三边之比.24.已知 a 、b 、c 为^ ABC 的三边,且 a + b + c = 60cm , a : b : c = 3 : 4 : 5,求^ ABC 的面 积.25.已知线段AB = 10cm , C 、D 是AB 上的两个黄金分割点,求线段CD 的长.四、挑战中考DE = 12 , BC = 15, GH = 4,求 AH .ABCD,取 AB 的中点 P ,连结 PD ,在BA 的延 长线上取点F ,使PF =PD,以AF 为边作正方形 AMEF ,点M 在AD 上(1)求AM 、MD 的长;1、若一c-a bA . 12B . 1C .— 1则k 的值为()D .-或一12AGABC 中,2、如图,△ 匹,且。
比例性质及比例线段(初二4.16)一、知识点与方法概述:1、比例的性质:基本性质:如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d.合比性质:等比性质:如果,那么.2、(成)比例线段:比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比. 那么,这四条线段叫做成比例线段,简称比例线段.设a、b、c、d为线段,如果a:b=c:d,b、c叫比例内项,a、d叫比例外项,d叫做a、b、c的第四比例项;如果a:b=b:c,或b2=ac,那么b叫a、c的比例中项.3、黄金分割:如图,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割, 点C叫做线段AB的黄金分割点.注意:1、AC 0.618AB;2、0.618叫做黄金比;3、一条线段有两个黄金分割点.4、平行线分线段成比例定理:三条平行线截两条直线,所得的线段对应成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例. 推论的扩展:平行于三角形一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.(三角形一边平行线的性质)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.(三角形一边平行线的判定定理)5、平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.根据被截的两条直线的位置关系,可以分五种图形情况(如图1-图5):推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.已知:在梯形ACFD 中,CF AD //,AB=BC求证:DE=EF推论2:经过三角形一边的中点与另一边平行的直线必平分第三边.已知:在△ACF 中,CF BE //,AB=BC 求证:AE=EF6、三角形的中位线定理:三角形的中位线:连结三角形两边中点的线段叫做三角形的中位线。
比例线段一.知识要点:(一)比例线段1.线段的比:如果选用同一长度单位量得两条线段a,b的长度分别是m,n,那么就说这两条线段的比是a:b=m:n,或写成,其中a叫做比的前项;b叫做比的后项。
2.成比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.3.比例的项:已知四条线段a,b,c,d,如果,那么a,b,c,d,叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项,线段d还叫做a,b,c的第四比例项.4.比例中项:如果作为比例线段的内项是两条相同的线段,即a:b=b:c或,那么线段b叫做线段a和c的比例中项.(二)比例的性质:(1)比例的基本性质:(2)反比性质:(3)更比性质: 或(4)合比性质:(5)等比性质: 且(三) 平行线分线段成比例定理1.定理: 三条平行线截两条直线所得的对应线段成比例。
2.推论: 平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3.平行于三角形一边并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边的对应成比例。
4.如果一条直线截三角形的两边(或两边的延长线),所得的对应线段成比例,那么这条直线平行于三角形的第三边。
这四个定理主要提出由平行线可得到比例式;反之,有比例可得到平行线。
首先要弄清三个基本图形。
这三个基本图形的用途是:1.由平行线产生比例式基本图形(1): 若l1//l2//l3,则或或或基本图形(2): 若DE//BC,则或或或基本图形(3): 若AC//BD,则或或或在这里必须注意正确找出对应线段,不要弄错位置。
2.由比例式产生平行线段基本图形(2):若, , , ,, 之一成立,则DE//BC。
基本图形(3):若, , , , , 之一成立,则AC//DB。
二. 本讲内容所需要的计算与证明方法计算方法1.利用引入参数求解相关命题的方法。
2. 会利用比例式建立方程求线段的长。
4.1比例线段(2) 教学设计及课后反思
一、学情和教材分析:
学习比例线段是为了进一步学习相似三角形而作的准备,相似三角形和相似多边形中的对应边成比例就是用到本节中比例线段的知识,所以本节知识就显得比较重要了。
二、教学目标:
1.了解两条线段的比和比例线段的概念;
2.能根据条件写出比例线段;
3.会运用比例线段解决简单的实际问题。
三、教学重点和难点:
教学重点:比例线段的概念。
教学难点:例3要求根据具体问题发现等量关系,找出比例式,有一定的隐蔽性,是本节教学的难点。
四、教学方法:启发式、讨论式
教学辅助:多媒体
五、教学过程:
(一)、复习引入:
1.列举四个数成比例,并写出比例式,指出比例内项、外项、第四比例项。
2.说出比例的基本性质。
由ad=bc可推出哪些比例式?
3.练习:(1)若3x=4y,求、、的值。
(2)若=,求的值。
(3)已知线段AB=15cm,CD=20cm。
求AB:CD的值。
(4)完成P98网格问题。
(问题建立在相似变换基础上,可复习相似变换)
(二)、设置问题,探究新课:
如何定义两线段的比呢?什么是比例线段?
在同一长度单位下,a,b,两线段长度的比叫做这两线段的比。
记为a:b或
注意:(1)两线段是几何图形,可用它的长度比来确定;
(2)度量线段的长,单位多种,但求比值必须在同一长度单位下比值一定是正数,比值与采用的长度单位无关。
(3)表示方式与数字的比表示类同,但它也可以表示为AB:CD.
比例线段:一般地,四条线段a、b、c、d中,如果a与b的比等于c与d比,即=,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段。
(老教材定义:如果四条线段的长度成比例,那么这四条线段叫做成比例线段,简称比例线段)
完成P99做一做
(三)、模仿与应用:
例题:已知线段a=10mm,b=6cm,c=2cm,d=3cm.问:这四条线段是否成比例?为什么?
答:这四条线段成比例
∵a=10mm=1cm
∴=,==
∴=,即线段a、c、d、b是成比例线段。
想一想:是否还可以写出其他几组成比例的线段.
反思:判断四条线段是否成比例的方法有两种:
(1)把四条线段按大小排列好,判断前两条线段的比和后两条线段的比是否相等。
(2)查看是否有两条线段的积等于其余两条线段的积。
例3如图,在Rt△ABC中,CD是斜边AB上的高。
请找出一组比例线段,并说明理由。
分析:(1)根据比例基本性质,要判断四条线段是否
成比例,只要采取什么方法(看其中两条线段的乘积
是否等于另两条线段的乘积)
(2)已知条件中有三角形的高,我们通常可以把高与什么知识联系起来?
(3)根据三角形的面积公式,你能得到一个怎样的等式?根据所得
的等式可以写出怎样的比例式。
例4如图,是我国台湾省的几个城市的位置图,问基隆市在高雄市的哪一个方向?到高雄市的实际距离是多少km?
注意:要设实际距离为s;求角度时要注意方位。
解:从图上量出高雄市到基隆市的距离约35mm,设实际距离
为s,则:
=315000000(mm) 即s=315(km)
如果量得图中,我们还能确定基隆市在高雄市的北偏东28的315km处。
课堂练习:P99课内练习、P100作业题(学生板演)
补充练习:
1.已知线段a=30mm,b=2cm,c=cm,d=12mm,试判断a、b、c、d是否成比例线段。
2.已知a、b、c、d是比例线段,其中a=6cm,b=8cm,c=24cm,则线段d的长度是多上?
3.已知三角形三条边之比为a:b:c=2:3:4,三角形的周长为18cm,求各边的长。
4.现在有一棵很高的古树,欲测出它的高度,但又不能爬到树尖上去直接测量,你有什么好的方法吗?
类题:相同时刻的物高与影长成比例。
如果一电视塔在地面上影长为180m,同一时刻高为2m 的竹竿的影长为3m,那么电视塔的高是多少?
6.如图,已知AD,CE是△ABC中BC、AB上的高线,求证:AD:CE=AB:BC
7.如图,在Rt△ABC中,CD⊥AB,DE⊥AC,请找出一组比例线段,并说明理由。
8.如图,已知,求
(四)、课堂小结:
1.两条线段的比及比例线段的概念;
2.方程思想的体现;
3.比例线段在实际问题中的应用。
(五)、布置作业:见作业本。
六、教后反思:
判断四条线段是否成比例的方法有两种:
(1)把四条线段按大小排列好,判断前两条线段的比和后两条线段的比是否相等。
(2)查看是否有两条线段的积等于其余两条线段的积。
学生在初学时容易在书写顺序上出错误,所以强调书写顺序就显得很有必要,并说明检验内项积等于外项积的重要性,这样就可以避免书写顺序上出错。