常用显著性检验
- 格式:doc
- 大小:139.00 KB
- 文档页数:20
参数显著性检验公式t检验F检验的计算公式参数显著性检验公式——t检验、F检验的计算公式在统计学中,参数显著性检验是一种用于验证模型参数是否显著的方法。
在进行参数显著性检验时,我们可以使用t检验或F检验来计算参数的显著性。
一、t检验公式t检验用于检验一个样本的均值是否与总体均值存在显著差异,或者用于检验两个样本的均值是否存在显著差异。
其计算公式如下:t = (x - μ) / (s / √n)其中,t为t值,x为样本均值,μ为总体均值,s为样本标准差,n为样本容量。
根据t检验的结果,我们可以通过查表或计算获得对应的p值,进而判断参数的显著性。
二、F检验公式F检验主要用于检验两个或多个样本方差是否存在显著差异。
其计算公式如下:F = (s1² / s2²)其中,F为F值,s1²为第一个样本的方差,s2²为第二个样本的方差。
同样地,根据F检验的结果,我们可以通过查表或计算获得对应的p 值,从而判断参数的显著性。
需要注意的是,t检验和F检验都是基于假设检验的方法。
在进行参数显著性检验时,我们需要先设定原假设和备择假设,并通过计算得到的t值或F值与对应的临界值进行比较,最终得出对参数的显著性结论。
总结起来,参数显著性检验公式中的t检验和F检验是常用的统计方法,用于判断参数的显著性。
通过计算得到的t值或F值与对应的临界值进行比较,可以得出对参数显著性的结论。
在实际应用中,我们可以根据数据类型和问题特点选择合适的显著性检验方法,并利用相应的计算公式进行计算。
这些检验方法在科学研究、社会调查和数据分析等领域具有广泛的应用。
常用显著性检验1.t检验适用于计量资料、正态分布、方差具有齐性的两组间小样本比较。
包括配对资料间、样本与均数间、两样本均数间比较三种,三者的计算公式不能混淆。
2.t'检验应用条件与t检验大致相同,但t′检验用于两组间方差不齐时,t′检验的计算公式实际上是方差不齐时t检验的校正公式。
3.U检验应用条件与t检验基本一致,只是当大样本时用U检验,而小样本时则用t检验,t检验可以代替U检验。
4.方差分析用于正态分布、方差齐性的多组间计量比较。
常见的有单因素分组的多样本均数比较及双因素分组的多个样本均数的比较,方差分析首先是比较各组间总的差异,如总差异有显著性,再进行组间的两两比较,组间比较用q检验或LST检验等。
5.X2检验是计数资料主要的显著性检验方法。
用于两个或多个百分比(率)的比较。
常见以下几种情况:四格表资料、配对资料、多于2行*2列资料及组内分组X2检验。
6.零反应检验用于计数资料。
是当实验组或对照组中出现概率为0或100%时,X2检验的一种特殊形式。
属于直接概率计算法。
7.符号检验、秩和检验和Ridit检验三者均属非参数统计方法,共同特点是简便、快捷、实用。
可用于各种非正态分布的资料、未知分布资料及半定量资料的分析。
其主要缺点是容易丢失数据中包含的信息。
所以凡是正态分布或可通过数据转换成正态分布者尽量不用这些方法。
8.Hotelling检验用于计量资料、正态分布、两组间多项指标的综合差异显著性检验。
计量经济学检验方法讨论计量经济学中的检验方法多种多样,而且在不同的假设前提之下,使用的检验统计量不同,在这里我论述几种比较常见的方法。
在讨论不同的检验之前,我们必须知道为什么要检验,到底检验什么?如果这个问题都不知道,那么我觉得我们很荒谬或者说是很模式化。
检验的含义是要确实因果关系,计量经济学的核心是要说因果关系是怎么样的。
那么如果两个东西之间没有什么因果联系,那么我们寻找的原因就不对。
那么这样的结果是没有什么意义的,或者说是意义不大的。
显著性检验对所有自变量与因变量之间的直线回归关系的拟合程度,可以用统计量R2来度量,其公式如下:TSS(Total Sum of Squares)称为总平方和,其值为,体现了观测值y1,y2,…,y n总波动大小,认为是在执行回归分析之前响应变量中的固有变异性。
ESS(Explained Sum of Squares)称为回归平方和,是由于y与自变量x1,x2,…,x n的变化而引起的,其值为,体现了n个估计值的波动大小。
RSS(Residual Sum of Squares)称为残差平方和,其值为。
R2称为样本决定系数,对于多元回归方程,其样本决定系数为复决定系数或多重决定系数。
回归模型的显著性检验包括:①对整个回归方程的显著性检验;②对回归系数的显著性检验。
对整个回归方程的显著性检验的假设为“总体的决定系统ρ2为零”,这个零假设等价于“所有的总体回归系数都为零”,即:检验统计量为R2,最终检验统计量为F比值,计算公式为:F比值的意义实际上是“由回归解释的方差”与“不能解释的方差”之比。
检验回归方程是否显著的步骤如下。
第1步,做出假设。
备择假设H1:b1,b2,…,b k不同时为0。
第2步,在H0成立的条件下,计算统计量F。
第3步,查表得临界值。
对于假设H0,根据样本观测值计算统计量F,给定显著性水平α,查第一个自由度为k,第二个自由度为n-k-1的F分布表得临界值F(k,n-k-1)。
当F≥Fα(k,n-k-1)时,拒绝假设H0,则认为回归方程α显著成立;当F<Fα(k,n-k-1)时,接受假设H0,则认为回归方程无显著意义。
对某个回归参数βi的显著性检验的零假设为:H0:βi=0,检验的最终统计量为:具体步骤如下。
(1)提出原假设H0:βi=0;备择假设H1:βi≠0。
(2)构造统计量,当βi=0成立时,统计量。
这里是的标准差,k为解释变量个数。
(3)给定显著性水平α,查自由度为n-k-1的t分布表,得临界值。
几种常见的显著性检验方法常见的显著性检验方法有单样本t检验、双样本配对t检验、双样本独立t检验、方差分析(ANOVA)、卡方检验和皮尔逊相关分析。
本文将对每种显著性检验方法进行详细介绍。
单样本t检验是一种用于检验一个样本均值是否显著不同于一些给定的总体均值的统计方法。
该方法的原理是将样本均值与总体均值进行比较,计算出一个t值。
根据t值的大小和自由度,可以查找相应的临界值,从而得出显著性检验的结果。
双样本配对t检验也称为相关样本t检验,用于比较两个相关样本或两个相关变量之间的均值差异是否显著。
该方法的原理是将两个相关样本的均值差异与零进行比较,计算出一个t值。
根据t值的大小和自由度,可以查找相应的临界值,从而得出显著性检验的结果。
双样本独立t检验用于比较两个独立样本或两个独立变量之间的均值差异是否显著。
该方法的原理是将两个独立样本的均值差异与零进行比较,计算出一个t值。
根据t值的大小和自由度,可以查找相应的临界值,从而得出显著性检验的结果。
方差分析(ANOVA)是一种用于比较两个或更多个样本或组之间均值差异是否显著的统计方法。
该方法的原理是将不同组之间的均值差异与总均值差异进行比较,计算出一个F值。
根据F值的大小和自由度,可以查找相应的临界值,从而得出显著性检验的结果。
卡方检验用于比较观察频数与期望频数之间的差异是否显著。
该方法的原理是通过计算观察频数和期望频数之间的卡方值,进而判断观察频数是否与期望频数存在显著差异。
皮尔逊相关分析用于评估两个变量之间的线性关系是否显著。
该方法的原理是通过计算两个变量之间的皮尔逊相关系数,从而判断变量之间的关系是否显著。
需要注意的是,在进行显著性检验时,首先需要确定假设,即原假设和备择假设。
原假设通常表示为没有显著差异或没有关系,备择假设则表示存在显著差异或存在关系。
根据样本数据计算出的检验统计量与临界值进行比较,如果检验统计量落在拒绝域(即临界值的范围内),则拒绝原假设,认为差异或关系是显著的。
显著性检验T检验零假设,也称稻草人假设,如果零假设为真,就没有必要把X纳入模型,因此如果X确定属于模型,则拒绝零假设Ho,接受备择假设H1,(Ho:B2=0 H1:B2≠0)假设检验的显著性检验法:t=(b2-B2)/Se(b2)服从自由度为(n-2)的t分布,如果令Ho:B2=B2*,B2*就是B2的某个数值(若B2*=0)则t=(b2-B2*)/Se(b2)=(估计量—假设值)/假设量的标准误。
可计算出的t值作为检验统计量,它服从自由度为(n-2)的t分布,相应的检验过程称为t检验。
T检验时需知:①,对于双变量模型,自由度为(n-2);②,在检验分析中,常用的显著水平α有1%,5%或10%,为避免选择显著水平的随意性,通常求出p值,p值充分小,拒绝零假设;③可用半边或双边检验。
双边T检验:若计算的ItI超过临界t值,则拒绝零假设。
显著性水平临界值t0、01 3、3550、05 2、3060、10 1、860单边检验:用于B2系数为正,假设为Ho:B2<=0, H1:B2>0显著性水平临界值t0、01 2、8360、05 1、8600、10 1、397F检验(多变量)(联合检验)F=[R2/(k-1)]/(1-R2)(n-k)=[ESS(k-1)]/RSS(n-k)、n为观察值的个数,k 为包括截距在内的解释变量的个数,ESS(解释平方与)= ∑y^i2RSS(残差平方与)= ∑ei2TSS(总平方与)= ∑yi2=ESS+RSS、判定系数r2=ESS/TSSF与R2同方向变动,当R2=0(Y与解释变量X不想关),F为0,R2值越大,F值也越大,当R2取极限值1时,F值趋于无穷大。
F检验(用于度量总体回归直线的显著性)也可用于检验R2的显著性—R2就是否显著不为0,即检验零假设式(Ho:B2=B3=0)与检验零假设R2为0就是等价的。
虚拟变量虚拟变量即定性变量,通常表明具备或不具备某种性质,虚拟变量用D表示。
显著性差异分析在统计学中,显著性差异分析是一种常用的方法,用于比较两个或多个样本之间在某个指标上是否存在显著性差异。
通过显著性差异分析,我们能够了解样本之间的差异是否仅仅是由于随机因素所致,还是由于真实的差异所导致。
显著性差异分析的基本原理是通过计算样本之间的观察值与理论值之间的差异,然后利用统计学方法来判断这种差异是否显著。
常用的显著性差异分析方法包括t检验、方差分析(ANOVA)等。
一、t检验t检验是用于比较两个样本均值之间差异的统计方法。
它利用样本数据估计总体的均值差异,并通过计算t值来判断这种差异是否显著。
t检验分为独立样本t检验和配对样本t检验两种。
独立样本t检验适用于两个独立样本的比较,例如比较男性和女性之间在某个指标上的差异。
而配对样本t检验适用于同一组样本在不同时间或不同条件下的比较,例如比较某个人在吃饭前后体重的差异。
二、方差分析(ANOVA)方差分析是用于比较多个样本之间差异的统计方法。
它利用方差的比较来判断不同样本之间的均值差异是否显著。
方差分析分为单因素方差分析和多因素方差分析两种。
单因素方差分析适用于只有一个自变量(因素)的情况下比较多个样本之间的差异,例如比较不同教育水平对收入的影响。
而多因素方差分析适用于有多个自变量(因素)的情况下比较多个样本之间的差异,例如比较不同教育水平和职业对收入的影响。
三、显著性水平在显著性差异分析中,我们需要设定一个显著性水平来判断差异是否显著。
通常,我们使用0.05作为显著性水平,也就是说当p值小于0.05时,我们认为差异是显著的。
显著性水平的选择取决于实际需求和研究的目的。
如果犯错误的代价较高,我们可以选择较低的显著性水平,例如0.01或0.001,以降低错误的可能性。
四、实例为了更好地理解显著性差异分析的应用,我们以一个实例进行说明。
假设某个医疗研究中,研究人员想要比较两种不同药物对治疗高血压的有效性。
为此,他们随机选择了100名患有高血压的患者,并将其分为两组,一组接受药物A治疗,另一组接受药物B治疗。
一、计量资料的常用统计描述指标1.平均数平均数表示的是一组观察值(变量值)的平均水平或集中趋势。
平均数计算公式:式中:X为变量值、Σ为总和,N为观察值的个数。
2.标准差(S) 标准差表示的是一组个体变量间的变异(离散)程度的大小。
S愈小,表示观察值的变异程度愈小,反之亦然,常写成。
标准差计算公式:式中:∑X2 为各变量值的平方和,(∑X)2为各变量和的平方,N-1为自由度3.标准误(S⎺x)标准误表示的是样本均数的标准差,用以说明样本均数的分布情况,表示和估量群体之间的差异,即各次重复抽样结果之间的差异。
S⎺x愈小,表示抽样误差愈小,样本均数与总体均数愈接近,样本均数的可靠性也愈大,反之亦然,常写作。
标准误计算公式:三、显著性检验抽样实验会产生抽样误差,对实验资料进行比较分析时,不能仅凭两个结果(平均数或率)的不同就作出结论,而是要进行统计学分析,鉴别出两者差异是抽样误差引起的,还是由特定的实验处理引起的。
1.显著性检验的含义和原理显著性检验即用于实验处理组与对照组或两种不同处理的效应之间是否有差异,以及这种差异是否显著的方法。
2.无效假设显著性检验的基本原理是提出“无效假设”和检验“无效假设”成立的机率(P)水平的选择。
所谓“无效假设”,就是当比较实验处理组与对照组的结果时,假设两组结果间差异不显著,即实验处理对结果没有影响或无效。
经统计学分析后,如发现两组间差异系抽样引起的,则“无效假设”成立,可认为这种差异为不显著(即实验处理无效)。
若两组间差异不是由抽样引起的,则“无效假设”不成立,可认为这种差异是显著的(即实验处理有效)。
3.“无效假设”成立的机率水平检验“无效假设”成立的机率水平一般定为5%(常写为p≤0.05),其含义是将同一实验重复100次,两者结果间的差异有5次以上是由抽样误差造成的,则“无效假设”成立,可认为两组间的差异为不显著,常记为p>0.05。
若两者结果间的差异5次以下是由抽样误差造成的,则“无效假设”不成立,可认为两组间的差异为显著,常记为p≤0.05。
报告中的效果检验和显著性检验引言:在现代科学研究中,报告的效果检验和显著性检验是至关重要的环节。
通过对实验结果的统计分析,我们可以判断实验的效果是否显著,并对实验结果的可靠性进行评估。
本文将从六个方面展开详细论述报告中的效果检验和显著性检验。
一、实验设计的合理性与效果检验在论述效果检验之前,首先需要确保实验设计的合理性。
合理的实验设计将有助于准确地检测效果。
这包括确定实验组和对照组数量的合理性、随机分配的可行性、实验变量的操作和测量方法的科学性等。
二、效果检验的常用方法常见的效果检验方法包括T检验、方差分析和卡方检验等。
不同的方法适用于不同的实验设计和数据类型,并可用于验证对照组和实验组之间的差异是否具有统计学意义。
三、显著性检验的重要性及相关指标显著性检验是判断实验结果是否具有统计学意义的关键步骤。
常用的显著性检验指标包括P值、置信区间和效应大小等。
这些指标将有助于我们判断实验结果的可靠性和实用性。
四、P值的解读与误用P值是显著性检验中常用的指标,用来评估实验结果是否具有统计学意义。
然而,在解读P值时,我们必须注意避免误用和错误解读。
本文将详细讲解如何正确解读P值,并给出常见的误用案例及解决方法。
五、置信区间的意义与解读与P值相比,置信区间提供了更直观的信息。
它展示了一个参数的估计范围,有助于我们评估实验结果的稳定性和可靠性。
本文将深入探讨置信区间的意义、计算方法和解读技巧。
六、效应大小在效果检验中的作用除了显著性,效应大小也是评估实验效果的重要指标。
效应大小反映了实验处理对结果变量的影响程度,有助于我们判断实验的实际意义和应用价值。
本文将解释如何计算并解读效应大小,以及与显著性检验结果的关联。
结论:报告中的效果检验和显著性检验是评估实验结果可靠性和实用性的重要环节。
通过适当的实验设计、有效的效果检验方法和正确解读显著性指标,我们能够准确评估实验效果,并为实验结果的应用提供科学依据。
在未来的研究中,我们应该继续关注这一领域的发展,以提高实验研究的质量和可靠性。
显著性差异分析在统计学中,显著性差异分析是一种用于确定两组或多组数据之间是否存在显著差异的方法。
通过对数据进行比较和分析,我们可以确定差异是否是由于随机变化引起的,或者是否存在一些真实的、有意义的差异。
本文将介绍显著性差异分析的基本概念和常用方法。
一、显著性差异分析的概念显著性差异分析是指通过对数据进行统计学分析,确定两组或多组数据之间的差异是否具有统计学上的显著性。
显著性差异通常是通过假设检验来确定的。
在假设检验中,我们设立一个原假设和一个备择假设,然后通过计算得到的统计量来判断数据是否支持原假设还是备择假设。
二、常用的显著性差异分析方法1. t检验:t检验是一种常用的显著性差异分析方法,适用于比较两组数据的平均值是否有显著差异。
在t检验中,我们需要计算一个t值,然后与临界值进行比较,从而决定差异是否显著。
2. 方差分析:方差分析是一种适用于比较多组数据之间差异的方法。
方差分析会将总体方差分解为组内方差和组间方差,然后通过计算F值进行显著性检验。
如果F值大于临界值,则可以认为数据之间存在显著差异。
3. 卡方检验:卡方检验是一种适用于比较分类数据的差异的方法。
在卡方检验中,我们将观察值与期望值进行比较,通过计算卡方统计量来判断数据之间是否存在显著差异。
三、显著性差异分析的步骤1. 确定显著性水平:在进行显著性差异分析之前,我们需要确定一个显著性水平。
通常,显著性水平被设置为0.05或0.01,这表示如果得到的p值小于显著性水平,我们将拒绝原假设,认为差异是显著的。
2. 收集数据:在进行分析之前,我们需要收集需要比较的数据。
这些数据可以是数值型数据,也可以是分类数据,具体取决于所使用的统计分析方法。
3. 计算统计量:根据所选择的统计分析方法,我们需要计算相应的统计量。
例如,在t检验中,我们需要计算t值;在方差分析中,我们需要计算F值。
4. 进行假设检验:根据计算得到的统计量,我们可以进行假设检验。
常用显著性检验1.t检验适用于计量资料、正态分布、方差具有齐性的两组间小样本比较。
包括配对资料间、样本与均数间、两样本均数间比较三种,三者的计算公式不能混淆。
2.t'检验应用条件与t检验大致相同,但t′检验用于两组间方差不齐时,t′检验的计算公式实际上是方差不齐时t检验的校正公式。
3.U检验应用条件与t检验基本一致,只是当大样本时用U检验,而小样本时则用t检验,t检验可以代替U检验。
4.方差分析用于正态分布、方差齐性的多组间计量比较。
常见的有单因素分组的多样本均数比较及双因素分组的多个样本均数的比较,方差分析首先是比较各组间总的差异,如总差异有显著性,再进行组间的两两比较,组间比较用q检验或LST检验等。
5.X2检验是计数资料主要的显著性检验方法。
用于两个或多个百分比(率)的比较。
常见以下几种情况:四格表资料、配对资料、多于2行*2列资料及组内分组X2检验。
6.零反应检验用于计数资料。
是当实验组或对照组中出现概率为0或100%时,X2检验的一种特殊形式。
属于直接概率计算法。
7.符号检验、秩和检验和Ridit检验三者均属非参数统计方法,共同特点是简便、快捷、实用。
可用于各种非正态分布的资料、未知分布资料及半定量资料的分析。
其主要缺点是容易丢失数据中包含的信息。
所以凡是正态分布或可通过数据转换成正态分布者尽量不用这些方法。
8.Hotelling检验用于计量资料、正态分布、两组间多项指标的综合差异显著性检验。
计量经济学检验方法讨论计量经济学中的检验方法多种多样,而且在不同的假设前提之下,使用的检验统计量不同,在这里我论述几种比较常见的方法。
在讨论不同的检验之前,我们必须知道为什么要检验,到底检验什么?如果这个问题都不知道,那么我觉得我们很荒谬或者说是很模式化。
检验的含义是要确实因果关系,计量经济学的核心是要说因果关系是怎么样的。
那么如果两个东西之间没有什么因果联系,那么我们寻找的原因就不对。
那么这样的结果是没有什么意义的,或者说是意义不大的。
那么检验对于我们确认结果非常的重要,也是评价我们的结果是否拥有价值的关键因素。
所以要做统计检验。
t检验,t检验主要是检验单个ols估计值或者说是参数估计值的显著性,什么是显著性?也就是给定一个容忍程度,一个我们可以犯错误的限度,错误分为两类:1、本来是错的但是我们认为是对的。
2、本来是对的我们认为是错的。
统计的检验主要是针对第一种错误而言的。
一般的计量经济学中的这个容忍程度是5%,也就是说可以容忍我们范第一类错误的概率是5%。
这样说不准确,但是比较好理解。
t-stastic是类似标准正态化的正态分布两一样,也就是估计值减去假设值除以估计值得标准差,一般假设值是0,这一点不难理解,如果是0 ,那么也就意味着没有因果关系。
这个t-static在经典假设之下服从t分布。
t分布一般是和正态分布差不多,尤其是当样本的量足够大的时候,一般的经验认为在样本数量大于120的时候,就可以看成是正态分布的。
F-statistc:F检验是属于联合检验比较重要的一种,主要的目的是用于对于一系列的原因的是否会产生结果这样一个命题做出的检验。
F统计量主要的产生来源是SSR\SST\SSE三个量。
但是这个检验有一个缺点是必须在经典假设之下才能有效。
LM检验:这个检验的性质和F检验的性质是一样的,都是检验联合显著性的,不同的是F统计量符合F分布,但是LM统计量服从卡方分布。
卡方分布是正态分布的变量的平方和,而F分布是卡方分布的商,并且分子和分布必须独立,这就是为什么F检验适用范围受限的原因。
LM=n*SSR、或者是LM=n-SSR。
至于其他的White检验、Brusch-pagan检验(异方差的检验方法)、还有序列相关的t检验、DW检验基本原来是相同的。
关于异方差检验、序列相关的检验其中存在不同的地方,但是思想基本是相同的。
关于异方差检验的讨论:1、Brusch-pagan检验:这个检验的思路比较简单,主要是要研究残查和X之间的关系,给定这样的一个方程:u=b0+b1*x1+……+bn*xn+u'的回归,其中进行F检验和LM检验。
如果检验通过那么不存在异方差,如果不通过那么存在异方差。
2、White检验:这个检验也是对异方差的检验,但是这个检验不同的是不仅对于X的一次方进行回归,而且考虑到残查和x的平方还有Xi*Xj 之间的关系。
给定如下方程:u=b0+b1*y+b2*y^2+u'。
也是用F和LM 联合检验来检验显著性。
如果通过那么不存在异方差,否则存在。
序列相关的检验方法的讨论:对于时间序列的问需要知道一个东西,也就是一介自回归过程,也就是一般在教科书中说到的:AR(1)过程,其中的道理主要是说在当期的变量主要是取决于过去一个时期的变量和一个随机误差项。
表示如下:Ut=p*U(t-1)+et。
在这里我要说到几个概念问题,I(1)(一阶积整)、I(0)(零阶积整)。
其中的一介自回归过程AR(1)就属于零阶积整过程,而一阶积整过程实际上是随机游动和飘移的随机游动过程。
随机游动过程:Ut=U(t-1)+et。
也就是在AR(1)的过程之下,其中的P是等于1的。
飘移的随机游动过程:Ut=a+U(t-1)+et。
其中随机游动过程和AR(1)过程中的不同点在于一个弱相依性的强弱问题,实际上我们在时间序列问题中,我们可以认为任何一个过程是弱相依的,但是问题的关键是我们不知道到底有多弱?或者更加直观地说,我们想知道P到底是多大,如果P是0.9或者是一个比较接近于1得数,那么可能我们可以认为这个时间序列有高度持久性,这个概念表示当期的变量却绝于一个很早的时期的变量,比如一阶积整过程,实际上et是一个独立统分布的变量,而且条件数学期望等于0,没有异方差性。
那么实际上这个序列的数学期望是和期数没有什么关系的。
那么也就意味着从第0期开始,U的数学期望值就是和很久以后的U的数学期望值一样的。
但是方差就不同了,方差随着时间的增加不断扩大。
我们知道了,这种不同的概念就可以讨论在一阶自回归的条件之下的检验问题,但是我们说一介自回归的过程是参差序列的特征而已,其他的变量的特征问题我们不谈。
在讨论检验的问题以前,我有必要交待一下时间序列在ols估计的时候我们应该注意什么。
实际上解决序列自相关问题最主要的问题就是一个差分的方法。
因为如果是长期持久的序列或者是不是长期持久的序列,那么一定的差分就可以解除这种问题。
1、t检验。
如果我们知道这个变量是一个一介自回归的过程,如果我们知道自回归过程是AR(1)的。
那么我们就可以这样作,首先我们做OLS 估计,得到的参差序列我们认为是一阶自相关的。
那么为了验证这种情况,那么我们可以做Ut和U(t-1)的回归,当然这里可以包含一个截距项。
那么我们验证其中的参数的估计是不是显著的,就用t检验。
t检验与F检验有什么区别1.检验有单样本t检验,配对t检验和两样本t检验。
单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。
配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。
F检验又叫方差齐性检验。
在两样本t检验中要用到F检验。
从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。
若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。
其中要判断两总体方差是否相等,就可以用F检验。
2.t检验和方差分析的前提条件及应用误区用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。
后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子。
无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的。
若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t 检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。
之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。
值得注意的是,方差分析与成组设计t检验的前提条件是相同的,即正态性和方差齐性。
t检验是目前医学研究中使用频率最高,医学论文中最常见到的处理定量资料的假设检验方法。
t检验得到如此广泛的应用,究其原因,不外乎以下几点:现有的医学期刊多在统计学方面作出了要求,研究结论需要统计学支持;传统的医学统计教学都把t检验作为假设检验的入门方法进行介绍,使之成为广大医学研究人员最熟悉的方法;t检验方法简单,其结果便于解释。
简单、熟悉加上外界的要求,促成了t检验的流行。
但是,由于某些人对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性。
将这些问题归类,可大致概括为以下两种情况:不考虑t检验的应用前提,对两组的比较一律用t检验;将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较。
以上两种情况,均不同程度地增加了得出错误结论的风险。
而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小。
u检验和t检验区别与联系u检验和t检验可用于样本均数与总体均数的比较以及两样本均数的比较。
理论上要求样本来自正态分布总体。
但在实用时,只要样本例数n较大,或n小但总体标准差σ已知时,就可应用u检验;n小且总体标准差σ未知时,可应用t 检验,但要求样本来自正态分布总体。
两样本均数比较时还要求两总体方差相等。
一、样本均数与总体均数比较比较的目的是推断样本所代表的未知总体均数μ与已知总体均数μ0有无差别。
通常把理论值、标准值或经大量调查所得的稳定值作为μ0.根据样本例数n大小和总体标准差σ是否已知选用u检验或t 检验。
(一)u检验用于σ已知或σ未知但n足够大[用样本标准差s作为σ的估计值,代入式(19.6)]时以算得的统计量u,按表19-3所示关系作判断。
例19.3根据大量调查,已知健康成年男子脉搏均数为72次/分,标准差为6.0次/分。
某医生在山区随机抽查25名健康成年男子,求得其脉搏均数为74.2次/分,能否据此认为山区成年男子的脉搏高于一般?据题意,可把大量调查所得的均数72次/分与标准差6.0次/分看作为总体均数μ0和总体标准差σ,样本均数x为74.2次/分,样本例数n为25.H0:μ=μ0H1:μ>μ0α=0.05(单侧检验)算得的统计量u=1.833>1.645,P<0.05,按α=0.05检验水准拒绝H0,可认为该山区健康成年男子的脉搏高于一般。