显著性检验
- 格式:doc
- 大小:20.00 KB
- 文档页数:5
显著性检验对所有自变量与因变量之间的直线回归关系的拟合程度,可以用统计量R2来度量,其公式如下:TSS(Total Sum of Squares)称为总平方和,其值为,体现了观测值y1,y2,…,y n总波动大小,认为是在执行回归分析之前响应变量中的固有变异性。
ESS(Explained Sum of Squares)称为回归平方和,是由于y与自变量x1,x2,…,x n的变化而引起的,其值为,体现了n个估计值的波动大小。
RSS(Residual Sum of Squares)称为残差平方和,其值为。
R2称为样本决定系数,对于多元回归方程,其样本决定系数为复决定系数或多重决定系数。
回归模型的显著性检验包括:①对整个回归方程的显著性检验;②对回归系数的显著性检验。
对整个回归方程的显著性检验的假设为“总体的决定系统ρ2为零”,这个零假设等价于“所有的总体回归系数都为零”,即:检验统计量为R2,最终检验统计量为F比值,计算公式为:F比值的意义实际上是“由回归解释的方差”与“不能解释的方差”之比。
检验回归方程是否显著的步骤如下。
第1步,做出假设。
备择假设H1:b1,b2,…,b k不同时为0。
第2步,在H0成立的条件下,计算统计量F。
第3步,查表得临界值。
对于假设H0,根据样本观测值计算统计量F,给定显著性水平α,查第一个自由度为k,第二个自由度为n-k-1的F分布表得临界值F(k,n-k-1)。
当F≥Fα(k,n-k-1)时,拒绝假设H0,则认为回归方程α显著成立;当F<Fα(k,n-k-1)时,接受假设H0,则认为回归方程无显著意义。
对某个回归参数βi的显著性检验的零假设为:H0:βi=0,检验的最终统计量为:具体步骤如下。
(1)提出原假设H0:βi=0;备择假设H1:βi≠0。
(2)构造统计量,当βi=0成立时,统计量。
这里是的标准差,k为解释变量个数。
(3)给定显著性水平α,查自由度为n-k-1的t分布表,得临界值。
几种常见的显著性检验方法常见的显著性检验方法有单样本t检验、双样本配对t检验、双样本独立t检验、方差分析(ANOVA)、卡方检验和皮尔逊相关分析。
本文将对每种显著性检验方法进行详细介绍。
单样本t检验是一种用于检验一个样本均值是否显著不同于一些给定的总体均值的统计方法。
该方法的原理是将样本均值与总体均值进行比较,计算出一个t值。
根据t值的大小和自由度,可以查找相应的临界值,从而得出显著性检验的结果。
双样本配对t检验也称为相关样本t检验,用于比较两个相关样本或两个相关变量之间的均值差异是否显著。
该方法的原理是将两个相关样本的均值差异与零进行比较,计算出一个t值。
根据t值的大小和自由度,可以查找相应的临界值,从而得出显著性检验的结果。
双样本独立t检验用于比较两个独立样本或两个独立变量之间的均值差异是否显著。
该方法的原理是将两个独立样本的均值差异与零进行比较,计算出一个t值。
根据t值的大小和自由度,可以查找相应的临界值,从而得出显著性检验的结果。
方差分析(ANOVA)是一种用于比较两个或更多个样本或组之间均值差异是否显著的统计方法。
该方法的原理是将不同组之间的均值差异与总均值差异进行比较,计算出一个F值。
根据F值的大小和自由度,可以查找相应的临界值,从而得出显著性检验的结果。
卡方检验用于比较观察频数与期望频数之间的差异是否显著。
该方法的原理是通过计算观察频数和期望频数之间的卡方值,进而判断观察频数是否与期望频数存在显著差异。
皮尔逊相关分析用于评估两个变量之间的线性关系是否显著。
该方法的原理是通过计算两个变量之间的皮尔逊相关系数,从而判断变量之间的关系是否显著。
需要注意的是,在进行显著性检验时,首先需要确定假设,即原假设和备择假设。
原假设通常表示为没有显著差异或没有关系,备择假设则表示存在显著差异或存在关系。
根据样本数据计算出的检验统计量与临界值进行比较,如果检验统计量落在拒绝域(即临界值的范围内),则拒绝原假设,认为差异或关系是显著的。
显著性检验(Significance T esting)显著性检验就是事先对总体(随机变量)的参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设(原假设)是否合理,即判断总体的真实情况与原假设是否显著地有差异。
或者说,显著性检验要判断样本与我们对总体所做的假设之间的差异是纯属机会变异,还是由我们所做的假设与总体真实情况之间不一致所引起的。
显著性检验是针对我们对总体所做的假设做检验,其原理就是“小概率事件实际不可能性原理”来接受或否定假设。
抽样实验会产生抽样误差,对实验资料进行比较分析时,不能仅凭两个结果(平均数或率)的不同就作出结论,而是要进行统计学分析,鉴别出两者差异是抽样误差引起的,还是由特定的实验处理引起的。
[编辑]显著性检验的含义显著性检验即用于实验处理组与对照组或两种不同处理的效应之间是否有差异,以及这种差异是否显著的方法。
常把一个要检验的假设记作H0,称为原假设(或零假设) (null hypothesis) ,与H0对立的假设记作H1,称为备择假设(alternative hypothesis) 。
⑴在原假设为真时,决定放弃原假设,称为第一类错误,其出现的概率通常记作α;⑵在原假设不真时,决定接受原假设,称为第二类错误,其出现的概率通常记作β。
通常只限定犯第一类错误的最大概率α,不考虑犯第二类错误的概率β。
这样的假设检验又称为显著性检验,概率α称为显著性水平。
最常用的α值为0.01、0.05、0.10等。
一般情况下,根据研究的问题,如果犯弃真错误损失大,为减少这类错误,α取值小些,反之,α取值大些。
[编辑]显著性检验的原理无效假设显著性检验的基本原理是提出“无效假设”和检验“无效假设”成立的机率(P)水平的选择。
所谓“无效假设”,就是当比较实验处理组与对照组的结果时,假设两组结果间差异不显著,即实验处理对结果没有影响或无效。
经统计学分析后,如发现两组间差异系抽样引起的,则“无效假设”成立,可认为这种差异为不显著(即实验处理无效)。
正确理解显著性检验(Significance Testing)什么是显著性检验显著性检验是用于检验实验处理组与对照组或两种不同处理组的效应之间的差异是否为显著性差异的方法,其原理就是“小概率事件实际不可能性原理”。
显著性检验可用于两组数据是否有显著性差异,从而可以检验这两组数据所代表的“内涵”,如不同实验方法的差异有无,实验人员受训练的效果有无,不同来源的产品的质量差异,某产品的某特征在一定时间内稳定性,产品保质期的判断等等。
原假设为了判断两组数据是否有显著性差异,统计学上规定原假设(null hypothesis) 为“两组数据(或数据所代表的内涵)无显著差”,而与之对立的备择假设(alternative hypothesis),则为“两组数据有显著差异”。
⑴在原假设为真时,决定放弃原假设,称为第一类错误,即,弃真错误,其出现的概率,记作α;⑵在原假设不真时,决定接受原假设,称为第二类错误,即,纳假错误,其出现的概率通常记作β。
通常只限定犯第一类错误的最大概率α,不考虑犯第二类错误的概率β。
这样的“假设检验”又称为显著性检验,概率α称为显著性水平。
显著性检验的P值及有无显著性差异的判断:通过显著性检验的计算方法计算而得的“犯第一类错误的概率p”,就是统计学上规定的P值。
若p<或=α,则说明“放弃原假设,在统计意义上不会犯错误,即原假设是假的,也即,”两组数据无显著差异”不是真的,也即两组数据有显著差异”!反之,若p大于α,则说明两组数据间无显著差异。
最常用的α值为0.01、0.05、0.10等。
一般情况下,根据研究的问题,如果犯弃真错误损失大,为减少这类错误,α取值小些,反之,α取值大些。
P值及统计意义见下表。
显著性检验1、什么是显著性检验显著性检验就是事先对总体(随机变量)的参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设(原假设)是否合理,即判断总体的真实情况与原假设是否显著地有差异。
或者说,显著性检验要判断样本与我们对总体所做的假设之间的差异是纯属机会变异,还是由我们所做的假设与总体真实情况之间不一致所引起的。
显著性检验是针对我们对总体所做的假设做检验,其原理就是“小概率事件实际不可能性原理”来接受或否定假设。
抽样实验会产生抽样误差,对实验资料进行比较分析时,不能仅凭两个结果(平均数或率)的不同就作出结论,而是要进行统计学分析,鉴别出两者差异是抽样误差引起的,还是由特定的实验处理引起的。
2、显著性检验的含义显著性检验即用于实验处理组与对照组或两种不同处理的效应之间是否有差异,以及这种差异是否显著的方法。
常把一个要检验的假设记作H0,称为原假设(或零假设)(null hypothesis) ,与H0对立的假设记作H1,称为备择假设(alternative hypothesis) 。
⑴在原假设为真时,决定放弃原假设,称为第一类错误,其出现的概率通常记作α;⑵在原假设不真时,决定接受原假设,称为第二类错误,其出现的概率通常记作β。
通常只限定犯第一类错误的最大概率α,不考虑犯第二类错误的概率β。
这样的假设检验又称为显著性检验,概率α称为显著性水平。
最常用的α值为0.01、0.05、0.10等。
一般情况下,根据研究的问题,如果放弃真错误损失大,为减少这类错误,α取值小些,反之,α取值大些。
3、显著性检验的原理一、无效假设显著性检验的基本原理是提出“无效假设”和检验“无效假设”成立的机率(P)水平的选择。
所谓“无效假设”,就是当比较实验处理组与对照组的结果时,假设两组结果间差异不显著,即实验处理对结果没有影响或无效。
经统计学分析后,如发现两组间差异系抽样引起的,则“无效假设”成立,可认为这种差异为不显著(即实验处理无效)。
报告撰写中的显著性检验和结果解读技巧标题一:显著性检验的基本概念及应用范围在报告撰写中,显著性检验是一种重要的统计方法,被广泛应用于各个领域的研究中。
它帮助研究者判断样本数据是否具有统计学上的显著差异,从而得出结论。
本小节将介绍显著性检验的基本概念和应用范围。
概述:显著性检验基于假设检验的理论,通过对样本数据进行统计分析,判断研究结果是否能够推广到总体中。
显著性检验主要包括参数检验和非参数检验两种类型。
参数检验假设总体满足某种概率分布,而非参数检验则对总体分布没有假设。
应用范围:显著性检验可以在很多领域中应用,例如医药研究、经济学研究、心理学研究等。
在医药领域,显著性检验可以用于判断新药效果是否显著优于对照组;在经济学研究中,可以用于检验某个因素对经济增长的影响程度;在心理学研究中,可以用于判断某种干预措施对心理疾病患者的治疗效果是否显著。
标题二:显著性水平的选择和结果解读技巧显著性水平是显著性检验中的重要参数,决定了研究结果的可靠性和可信度。
在此小节中,我们将讨论显著性水平的选择和结果解读技巧。
选择显著性水平:通常情况下,研究者会选择0.05或0.01作为显著性水平。
0.05表示有5%的概率犯错,即认为结果是显著的,但实际上并不显著;而0.01则表示有1%的概率犯错。
选择显著性水平要根据实际情况和研究者的需求来确定,一般来说,对重要性较高的研究,可以选择更为严格的显著性水平。
结果解读技巧:当显著性检验结果显示显著差异时,不能轻率地得出结论。
首先,需要判断样本容量是否足够大,以保证结果的稳定性。
其次,要注意结果的实际意义,不能只看p值的大小。
对于大样本研究,即使微小差异也可能被判定为显著,但在实际应用中可能并不具有重要性。
最后,需要与其他研究结果进行比较,进一步验证结果的可靠性。
标题三:类型I错误和类型II错误及其避免策略显著性检验中存在两种错误类型,即类型I错误和类型II错误。
了解这些错误类型及其避免策略对于正确解读结果至关重要。
几种常见的显著性检验方法显著性检验是统计学中常用的一种方法,用于检验两组或多组数据之间是否存在显著差异。
下面将介绍几种常见的显著性检验方法。
1.t检验:t检验用于比较两组均值是否存在显著差异。
根据独立样本或配对样本可以分为独立样本t检验和配对样本t检验。
适用于连续型变量,要求样本满足正态分布和方差齐性的假设。
2.方差分析(ANOVA):方差分析用于比较三组或多组均值是否存在显著差异。
适用于连续型变量,要求样本满足正态分布和方差齐性的假设。
方差分析包括单因素、多因素、重复测量、混合设计等多种类型。
3.卡方检验:卡方检验用于比较两个或多个分类变量之间是否存在显著差异。
适用于分类变量,比如性别、职业等。
卡方检验可用于检验两个分类变量之间的关联性,也可用于检验一个分类变量与一个连续型变量之间的关系。
4.相关分析:相关分析用于评估两个连续型变量之间的关系强度和方向。
常用的相关系数有皮尔逊积矩相关系数、斯皮尔曼秩相关系数和判定系数等。
相关系数的显著性检验可以帮助确定两个变量之间是否存在显著相关关系。
5.回归分析:回归分析用于建立一个或多个自变量和一个连续型因变量之间的函数关系,并用于预测因变量。
回归分析中常用的显著性检验方法有t检验、F检验和R平方检验等。
6. 生存分析:生存分析主要用于评估时间至事件发生(比如死亡、疾病复发等)之间的关系。
生存分析的主要方法有Kaplan-Meier生存曲线和Cox比例风险模型等。
生存分析通常使用对数秩检验来评估不同组别之间的显著差异。
除了以上常见的显著性检验方法,还有一些其他的检验方法,比如非参数检验(如Mann-Whitney U检验、Wilcoxon符号秩检验)、Fisher精确检验、Bootstrap检验等,这些方法适用于不满足正态分布假设或方差齐性假设的数据情况。
显著性检验方法的选择要根据数据的类型和应用背景来决定。
在进行显著性检验时,还需注意样本的大小、假设检验的前提条件以及是否需要对多重比较进行校正等问题。
统计4:显著性检验在统计学中,显著性检验是“假设检验”中最常⽤的⼀种,显著性检验是⽤于检测科学实验中实验组与对照组之间是否有差异以及差异是否显著的办法。
⼀,假设检验显著性检验是假设检验的⼀种,那什么是假设检验?假设检验就是事先对总体(随机变量)的参数或总体分布形式做出⼀个假设,然后利⽤样本信息来判断这个假设是否合理。
在验证假设的过程中,总是提出两个相互对⽴的假设,把要检验的假设称作原假设,记作H0,把与H0对⽴的假设称作备择假设,记作H1。
假设检验需要解决的问题是:指定⼀个合理的检验法则,利⽤已知样本的数据作出决策,是接受假设H0,还是拒绝假设H0。
1,假设检验的基本思想假设检验的基本思想是⼩概率反证法思想。
⼩概率思想是指⼩概率事件(P<0.01或P<0.05)在⼀次试验中基本上不会发⽣。
反证法思想是先提出原假设(记作假设H0),再⽤适当的统计⽅法确定原假设成⽴的可能性⼤⼩:若可能性⼩,则认为原假设不成⽴;若可能性⼤,则认为原假设是成⽴的。
2,假设检验的思路假设检验思路是:先假设,后检验,通俗地来说就是要先对数据做⼀个假设,然后⽤检验来检查假设对不对。
⼀般⽽⾔,把要检验的假设称之为原假设,记为H0;把与H0相对对⽴(相反)的假设称之为备择假设,记为H1。
如果原假设为真,⽽检验的结论却劝你拒绝原假设,把这种错误称之为第⼀类错误(弃真),通常把第⼀类错误出现的概率记为α;就是说,拒绝真假设的概率是α。
如果原假设不真,⽽检验的结论却劝你接受原假设,把这种错误称之为第⼆类错误(取伪),通常把第⼆类错误出现的概率记为β;就是说,接受假假设的概率是β。
因此,在确定检验法则时,应尽可能使犯这两类错误的概率都较⼩。
⼀般来说,当样本容量固定时,如果减少犯⼀类错误的概率,则犯另⼀类错误的概率往往增⼤。
如果要使犯两类错误的概率都减少,除⾮增加样本容量。
⼆,显著性检验什么是显著性检验?在给定样本容量的情况下,我们总是控制犯第⼀类错误的概率α,这种只对犯第⼀类错误的概率加以控制,⽽不考虑犯第⼆类错误的概率β的检验,称作显著性检验。
实验结果与显著性检验在科学研究中,实验结果的正确与否是确认研究结论的重要依据。
为了客观、准确地评估实验结果的可靠性,显著性检验是必不可少的统计分析方法。
本文将从六个方面详细论述实验结果与显著性检验的关系,以期帮助读者更好地理解和运用这一方法。
一、显著性检验的基本概念首先,我们需要了解显著性检验的基本概念。
显著性检验是一种判断两个或多个样本之间差异是否显著的统计方法。
它的核心思想是将实际观测到的样本差异与在零假设下所预期的差异进行比较,从而得出结论。
通常使用的统计指标是p值,p值越小,说明差异越显著。
二、假设检验与显著性检验其次,我们将探讨假设检验与显著性检验之间的关系。
假设检验是显著性检验的一种特殊形式,用于对某个特定猜想进行验证。
在显著性检验中,我们通常关注的是对两个或多个样本之间差异的判断,而不限于某个特定的假设。
三、实验结果与显著性检验的可靠性接下来,我们需要讨论实验结果与显著性检验的可靠性。
实验结果的可靠性依赖于多个因素,包括样本容量、实验设计、数据质量等。
显著性检验的可靠性则取决于p值的大小以及显著性水平的选择。
较小的p值和较低的显著性水平能够提高显著性检验的可靠性。
四、误差与实验结果的影响误差对实验结果的影响是无法避免的。
在实验设计和数据处理过程中,我们需要注意减少或控制误差的发生。
显著性检验可以帮助我们判断实验结果与误差之间的关系,从而准确地评估实验结果的可靠性。
五、显著性检验的局限性与拓展显著性检验虽然是一种常用的统计方法,但它也存在一些局限性。
例如,显著性检验无法提供关于差异的大小和方向的信息,只是判断差异是否显著。
此外,显著性检验的结果受到样本容量的影响,对小样本数据的适用性有限。
在实际应用中,我们还可以借助其他统计方法,如置信区间估计等,来进一步评估实验结果的可靠性。
六、显著性检验的实际应用最后,我们将探讨显著性检验在实际应用中的价值。
显著性检验广泛应用于各个学科领域中,包括医学、心理学、经济学等。
第八章显著性检验一、填充内容1. 假设检验、某种假设、验证。
2. 互逆事件、不。
3. 不大、否定域。
4. 参数假设检验、非参数假设检验。
5. 左、α、左单尾检验。
6. 随机样本、“弃真”错误、“取伪”错误。
7. “弃真”、“取伪”。
8. U、t 。
9. U。
10. 方差。
11. U。
12. χ2、 F 。
二、简答问题1.【回答要点】①显著性检验利用统计量的分布律进行,根据经验提出假设,并抽取一个样本进行验证。
②如果小概率事件发生了,有理由怀疑原假设的正确性,从而拒绝原假设的成立。
③在进行假设检验设计时,应以公认的小概率水平来确定否定域。
2.【回答要点】①根据历史的、经验的或其它事实,对未知特征提出假设,一般要同时提出原假设和备择假设②根据犯两类错误可能引起的后果加以比较,然后以α来控制。
3.【回答要点】①在大样本情况下,对总体成数P的检验,可以用P(1-P)作为总体方差,与总体均值的检验一样,采用U检验。
②与总体均值的检验所不同的,无非是用P(1-P)代替了总体均值检验时的方差σ2。
总体成数的检验没有像总体均值检验那样采用t检验。
4.【回答要点】①一般的反证法属于逻辑上的反证法,是由结果的矛盾而推出假设的错误。
②显著性检验法的反证法,是由小概率事件在一次试验中不应该发生而发生了的矛盾出发,从而拒绝原假设。
三、论述问题1.【回答要点】①显著性检验中的两类错误即“弃真”错误与“取伪”错误。
②避免“弃真”错误与避免“取伪”错误是一对矛盾。
③权衡两类错误的轻重来综合考虑α水平、样本容量和调查费用等因素。
(论述从略)2.【回答要点】①显著性检验与区间估计的联系:利用显著性检验可以建立区间估计,而利用区间估计也可以得出显著性检验。
②显著性检验与区间估计的区别:在具体问题的分析中,区间估计的结论有时可能与显著性检验的结论不同。
(论述从略)3.【回答要点】①提出假设;②确定假设检验的样本统计量及其分布;③ 规定显著性水平α值;④ 根据显著性水平确定统计量的否定域及临界值; ⑤ 判断假设是否成立。
几种常见的显著性检验方法显著性检验是统计学中常用的一种方法,用于判断样本数据是否由一个总体生成,或者判断两个或多个样本数据是否来自同一个总体。
它的主要目的是通过计算样本数据之间的差异,并基于概率理论判断这些差异是否由随机因素引起,从而得出结论。
下面将介绍几种常见的显著性检验方法:1.t检验:t检验是一种常用的参数检验方法,用于判断两个样本均值是否有显著差异。
当总体的方差未知时,可以使用独立样本t检验;当总体的方差已知时,可以使用配对样本t检验。
2.方差分析:方差分析是一种用于比较两个或多个样本均值是否有显著差异的方法。
它通过比较组间变异与组内变异来判断均值的差异是否有统计学意义。
常用的方差分析方法包括单因素方差分析和多因素方差分析。
3.卡方检验:卡方检验是一种用于比较观察值与期望值之间的差异是否有显著性的非参数检验方法。
它适用于分类数据的分析,常用于分析两个或多个分类变量之间的关联性。
4.相关分析:相关分析是一种用于衡量两个变量之间相关关系的方法,常用于测量变量之间的线性相关性。
通过计算相关系数来判断两个变量是否存在显著的相关关系。
5.回归分析:回归分析是一种用于研究自变量与因变量之间关系的方法。
通过拟合回归模型并进行参数估计,可以判断自变量对因变量的影响是否显著。
除了上述几种常见的显著性检验方法外,还有其他一些方法,如非参数检验方法(如Wilcoxon秩和检验和Mann-Whitney U检验)、生存分析中的log-rank检验等。
在实际应用中,应根据具体问题选择适当的检验方法,并进行合理的假设设置和数据分析,以得出准确的结论。
报告中的显著性检验和统计学方法引言统计学作为一门重要的科学方法,广泛应用于各个领域,包括经济学、医学、社会学等。
在报告中,显著性检验和统计学方法的运用对于数据的解读和决策具有重要意义。
本文将从六个方面进行详细论述。
一、显著性检验的概念和原理1. 显著性检验的定义对于一个给定的数据集,显著性检验可以判断观察结果是否具有统计意义。
2. 零假设和备择假设在显著性检验中,零假设代表无效或者无关,而备择假设则认为观察结果是有效的。
3. 抽样分布和临界值在进行显著性检验时,需要根据已知分布情况计算临界值,以判断观察结果是否达到显著水平。
二、常见的显著性检验方法1. Z检验Z检验适用于大样本的情况,用于比较样本均值与总体均值之间是否存在显著差异。
2. T检验T检验适用于小样本的情况,用于比较两个样本均值之间是否存在显著差异。
3. 卡方检验卡方检验主要用于分析分类数据,例如比较两组样本的分布是否存在显著差异。
三、P值的计算和解读1. P值的定义P值代表给定数据出现与零假设相同或更极端结果的概率。
P值越小则表示结果越显著。
2. P值与显著性水平在进行显著性检验时,需要设定一个显著性水平,常见的有0.05和0.01两种。
如果P值小于显著性水平,则拒绝零假设。
3. P值的解读要注意P值并不能直接得出“零假设一定为真”或者“备择假设一定为真”的结论,需要综合其他因素进行判断。
四、置信区间的计算和解读1. 置信区间的定义置信区间是对参数估计的一种范围估计方法,可以用来评估样本估计值的准确性。
2. 置信水平的选择置信水平是指在重复抽样情况下,多次计算置信区间时包含总体参数的比例。
常见的有95%和99%两种置信水平。
3. 置信区间的解读置信区间包含了总体参数的可能取值范围,较宽的置信区间表示估计结果的不确定性较大。
五、常见统计学方法的应用案例1. A/B测试A/B测试常用于网站优化和营销领域,通过对比两种不同策略的效果,判断是否存在显著差异。
显著性检验名词解释显著性检验(criterion of specificity test)又称区别性测试或鉴别力测试,是一种常用的判断两个变量间差异是否显著的统计方法。
[1]显著性检验是一种用来比较两个观察值,其中至少有一个与另一个不同的统计方法。
[参见中图分类号]G721[2][3]例如,在“考试成绩和实际能力的显著差异”中,是否“很明显地”把A高中生的考试成绩和一个具有较高职业能力的人的实际能力加以区别?答案是否定的,因为从考试成绩上是无法将二者区别开来的。
这样,我们就可以用显著性检验来确定到底谁更有能力,谁在说谎,如果把这一点搞清楚,即使未发现说谎行为也会收到令人满意的结果,因为他已经向我们证实了有能力并非就等于优秀。
当然还可以通过其它许多方法来研究某些问题,但都可以归纳到这一问题上来,因为人的能力是很复杂的,并且每个人各自的能力也是有区别的。
由此看来,显著性检验是很有意义的。
然而,在实际工作中有时却得不到理想的结果。
这是为什么呢?原因大概有两个:其一,总体内部包含着极不相同的群体。
比如说,调查了三所学校,甲、乙、丙三所学校都是小学,都是某一所大学的附属小学。
根据大数法则,不相关的几个变量是没有区别的,甚至连方差也可能一样。
我们不能想当然地去“显著性检验”,因为显著性检验的应用前提条件是:“两组之间有显著的区别。
”所谓“显著的区别”,简单说就是两个变量之间差异很大,要在总体中找出与各组差异相当的总体几乎是不可能的。
我认为有必要先了解一下什么是显著性。
显著性是指对象的某个特征值与取值的标准偏离程度大小,即标准偏差越大,表示两个对象之间的差异越大;标准偏差越小,表示两个对象之间的差异越小。
由于对象本身存在差异,标准偏差并不一定完全反映对象之间的差异。
所以,通常是采用平均数代替标准偏差。
即将各对象的平均数除以样本数目,平均数的平均水平与各对象之间的差异程度成正比,平均数愈接近总体平均数,表明各对象之间的差异愈大;反之,则差异愈小。
显著性检验
T检验
零假设,也称稻草人假设,如果零假设为真,就没有必要把X纳入模型,因此如果X确定属于模型,则拒绝零假设Ho,接受备择假设H1,
(Ho:B2=0 H1:B2≠0)
假设检验的显著性检验法:
t=(b2-B2)/Se(b2)服从自由度为(n-2)的t分布,如果令Ho:B2=B2*,B2*是B2的某个数值(若B2*=0)则t=(b2-B2*)/Se(b2)=(估计量—假设值)/假设量的标准误。
可计算出的t值作为检验统计量,它服从自由度为(n-2)的t分布,相应的检验过程称为t检验。
T检验时需知:①,对于双变量模型,自由度为(n-2);②,在检验分析中,常用的显著水平α有1%,5%或10%,为避免选择显著水平的随意性,通常求出p值,p值充分小,拒绝零假设;③可用半边或双边检验。
双边T检验:若计算的ItI超过临界t值,则拒绝零假设。
显著性水平临界值t
0.01 3.355
0.05 2.306
0.10 1.860
单边检验:用于B2系数为正,假设为Ho:B2<=0, H1:B2>0
显著性水平临界值t
0.01 2.836
0.05 1.860
0.10 1.397
F检验(多变量)(联合检验)
F=[R2/(k-1)]/(1-R2)(n-k)=[ESS(k-1)]/RSS(n-k).n为观察值的个数,k 为包括截距在内的解释变量的个数,ESS(解释平方
和)= ∑y^i2RSS(残差平方和)= ∑ei2TSS(总平方
和)= ∑yi2=ESS+RSS.判定系数r2=ESS/TSS
F与R2同方向变动,当R2=0(Y与解释变量X不想关),F为0,R2值越大,F值也越大,当R2取极限值1时,F值趋于无穷大。
F检验(用于度量总体回归直线的显著性)也可用于检验R2的显著性—R2是否显著不为0,即检验零假设式(Ho:B2=B3=0)与检验零假设R2为0是等价的。
虚拟变量
虚拟变量即定性变量,通常表明具备或不具备某种性质,虚拟变量用D表示。
方差分析模型:仅包含虚拟变量的回归模型。
若:Yi=B1+B2Di+Ui,Di—1,女性;—0,男性
B2为差别截距系数,表示两类截距值的差异,B2=E(Yi/Di=1)-E(Yi/Di=0) 通常把取值为0的一类称为基准类、基础类、参照类、比较类,研究结论与基准类的选择没有关系。
定型变量有m种分类时,则需引入(m-1)个虚拟变量,否则会陷入虚拟变量陷阱即完全共线性或多重共线性。
多重共线性
例:收入变量(X2)完全线性相关,而R2(=r2)=1
解释变量之间完全线性相关或者完全多重共线性时,不可能获得所有参数的唯一估计值,因而不能根据样本进行任何统计推断。
多重共线性产生的原因:1经济变量变化趋势的同向性2解释变量中含有之后变量
多重共线性的理论后果:①,在近似共线性的情况下,OLS估计量仍是无偏的②近似共线性并未破坏,OLS估计量的最小方差性③即使在总体回归方程中变量x之间不是线性相关,但在某个样本中,x变量之间可能线性相关。
多重共线性的实际后果:①OLS估计量的方差和标准误较大②置信区间变宽
③t值不显著④
R2值较高⑤OLS的估计量及其标准误对数据的微小变化敏感,他们不稳定⑥回归系数符号有误⑦难以评估多个解释变量对回归平方和(ESS)或R2的贡献
异方差:
(同)等方差:例如,对于不同的个人可支配收入,储蓄的方差保持不变异方差:例如,对于不同的个人可支配收入,储蓄的方差并不相等,它随着个人可支配收入增加而变大。
异方差问题多存在于截面数据而非时间序列数据。
异方差的后果:①OLS估计量仍是线性的②OLS估计量是无偏的③OLS估计量不再具有最小方差性,即不再是有效的,OLS估计量不再是最优线性无偏估计量④OLS估计量的方差通常是有偏的⑤偏差的产生是由于б^2,即
∑ei2(d•f不再是真实б2的无偏估计量)⑥建立在t分布和F分布上的置信区间和假设检验是不可靠的
自相关
自相关:按时间(如时间序列数据)或者空间(如截面数据)排列的观察值之间的相关关系。
自相关通常与时间序列数据有关
自相关的产生原因:①惯性②模型设定误差③蛛网现象④数据处理
自相关的后果:①最小二乘估计量仍是线性的和无偏的②最小二乘估计量不是有效的,OLS估计量并不是最优线性无偏估计量(BLUE)③OLS估计量的方差是有偏的④通常所用的t检验,F检验是不可靠的⑤计算得到的误差方б^2=RSS/d•f是真实的б^2的有偏估计量,并且很可能低估了真实的б^2⑥通常计算的R2不能测度真实的R^2⑦通常计算的预测方差和标准误也是无效的。
模型选择:
(1)好的模型具有的性质:简约性;可识别性;拟合优度;理论一致性;(2)设定误差的类型:遗漏相关变量;包括不必要变量;采用错误的函数形式;
度量误差(3)各种设定误差的后果:遗漏相关变量,过低拟合模型;包括不相关变量,过度拟合模型;度量误差:1、因变量中的度量误差,OLS 估计量是无偏的,OLS估计量的方差也是无偏的。
但是估计量的估计方差比没有度量误差时的大。
因为应变量中的误差加入到了误差项ui中。
2、解释变量中的度量误差,OLS估计量是有偏的,OLS估计量也是不一致的。
即使样本容量足够大,OLS估计量仍然有偏
二元线性回归模型过原点与不过原点的原因:(1)无截距模型是用原始的平方和以及交叉乘积,而有截距模型则使用了均值调整后的平方和以及交叉乘积。
(2)无截距中^σ^2的自由度是(n-1)不是(n-2),(3)有截距中r^2计算公式通常假定了模型中存在截距项(4)有截距模型的残差平方和,∑^ui=∑ei总为零,无截距不一定为零
填空题:(1)若B2=0,则b2/se(b2)=t;(2)若B2=0,则t=b2/se(b2) (3)r^2位于0与1之间,r位于-1到1之间;(4)TSS=RSS+ESS (5)TSS的自由度=ESS的自由度+RSS的自由度(5)^σ称为估计量的标准差(6)在双对数模型中,斜率度量了弹性;(7)在线性-对数模型中,斜率度量了解释变量每百分比变动引起的被解释变量的变化量;(8)在对数-线性模型中,斜率度量了增长量;(9)Y对X的弹性定义为dY(X)/dX(Y) (10)价格弹性的定义为价格每变动1%所引起的需求量变动的百分比(11)需求成为富有弹性的,如果价格弹性的绝对值大于1;需求称为缺乏弹性的,如果价格弹性的绝对值小于1 (12)在接近多重共线性的情况下,回归系数的标准误趋于大,t值趋于小(13)在完全多重共线性的情况下,普通最小二乘估计量是没有定义的,其方差是没有定义的(14)在其他情况不变的情况下,VIF越高,则普通最小二乘估计量的方差越高。
多选
ESS(解释平方和):估计的Y 值围绕其均值的变异,也称回归平方和(由解释变量解释的部分)
RSS(残差平方和),即Y变异未被解释的部分
模型设置的误差:遗漏相关变量,包括不必要变量,采用了错误的函数形式,度量误差
评价模型的好坏:简约性,可识别性,拟合优度,理论一致性,预测能力
一元线性回归的假设条件;1平均干扰为0,2随机干扰项等方差,3随机干扰项不存在序列相关4干扰项与解释变量无关
判断
2随机误差项ui与残差项ei是一回事
2总体回归函数给出了与自变量每个相对应的应变量的值
2线性回归模型意味着模型变量是线性的
2在线性回归模型中,解释变量是因,应变量是果
2随机变量的条件均值与非条件均值是一回事
2式(2-2)中的回归系数B是随机变量,但式(2-4)中的b是参数
2式(2-1)中的斜率B2度量了X的单位变动引起的Y的斜率
3实践中双变量 2 OLS就是使误差1计算ols估量 1 高斯-马尔柯夫定理
2在双变回模中,扰动项 1 只有当ui服从正态分布1r^2=ESS/TSS
2给定显著水平a与自由的2相关系数r与b同号 3 p值和显著水平
1仅当非校正判定系数 2 判定所以解释变量2当r^2=1 1当自由度>120
1在模型Yi=B1+B2…2估计的回归系数是统计显著2要计算t 2多元回归的总体显著性
3就估计和假设检验而言 1 无论模型中包括多少个1双对数模型1LIV模型的斜率系数
1 双对数模型的r^2可以1线性-对数模型的R^
2 2模型A:LnY= 2在模型Yi=
2引入虚拟变量后2 尽管存在完全1在高度多重共线性的情况下3如果辅助回归
1较高的相关系数3如果分析的目的2在存在异方差的情况下1如果存在异方差
2在存在异方差的情况下,常用的OLS 3如果从OLS回归中 1 没有那种异方差
2当存在自相关1在形式如的自回归 1 德宾-沃森D统计量2消除自方差的一阶差分
2两个模型,一个
如有侵权请联系告知删除,感谢你们的配合!。