2018年度初中数学联赛试题参考内容答案和评分标准word版
- 格式:doc
- 大小:764.00 KB
- 文档页数:10
2018年全国初中数学联合竞赛试题(含解答)2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。
第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次。
如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。
第一试一、选择题(本题满分42分,每小题7分)1.已知$x,y,z$满足$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,则$\frac{y+2z}{3x-y-z}$的值为()A) 1.(B) $\frac{5}{3}$。
(C) $-\frac{1}{3}$。
(D) $-\frac{3}{5}$.答】B.解:由$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,得$5x-3y=3xz-3xz^2$,即$y=\frac{5}{3}x-\frac{3}{3}z+\frac{3}{3}xz^2$,所以$\frac{y+2z}{3x-y-z}=\frac{\frac{5}{3}x+\frac{1}{3}z}{\frac{4}{3}x-\frac{2}{3}z}=\frac{5}{3}$,故选(B)。
注:本题也可用特殊值法来判断。
2.当$x$分别取值$1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{2006}, \frac{1}{2007}$时,计算$\frac{1}{2007}+\frac{x}{21+x^2}$代数式的值,将所得的结果相加,其和等于()A) $-1$。
(B) $1$。
(C) $0$。
(D) $2007$.答】C.解:$\frac{1}{2007}+\frac{x}{21+x^2}=\frac{1}{21}\left(\frac{21}{ 2007}+\frac{21x}{21+x^2}\right)=\frac{1}{21}\left(\frac{1}{1+x ^{-2}}\right)$,所以当$x=1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{200 6},\frac{1}{2007}$时,计算所得的代数式的值之和为$0$,故选(C)。
2018年初中数学联赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a ax x y ++=的图象的顶点为A ,与x 轴的交点为C B ,.当△ABC 为等边三角形时,其边长为 ( )A.6.B.22.C.32.D.23. 【答】C.由题设知)2,(2a a A --.设)0,(1x B ,)0,(2x C ,二次函数的图象的对称轴与x 轴的交点为D ,则222212212122444)(||a a a x x x x x x BC =⨯-=-+=-=.又BC AD 23=,则22223|2|a a ⋅=-,解得62=a 或02=a (舍去).所以,△ABC 的边长3222==a BC .2.如图,在矩形ABCD 中,BAD ∠的平分线交BD 于点E ,1AB =,15CAE ∠=︒,则BE =( ). B.22. C.12-.1.【答】D.延长AE 交BC 于点F ,过点E 作BC 的垂线,垂足为H .由已知得︒=∠=∠=∠=∠45HEF AFB FAD BAF ,1==AB BF , ︒=∠=∠30ACB EBH .设x BE =,则2xHE HF ==,23x BH =. 因为HF BH BF +=,所以2231xx +=,解得13-=x .所以 13-=BE .3.设q p ,均为大于3的素数,则使2245q pq p ++为完全平方数的素数对),(q p 的个数为( ) A.1. B.2. C.3. D.4.【答】B.设22245m q pq p =++(m 为自然数),则22)2(m pq q p =++,即pq q p m q p m =++--)2)(2(.由于q p ,为素数,且q q p m p q p m >++>++2,2,所以21m p q --=,2m p q pq ++=,从而0142=---q p pq ,即9)2)(4(=--q p ,所以(,)(5,11)p q =或(7,5).所以,满足条件的素数对),(q p 的个数为2.4.若实数b a ,满足2=-b a ,4)1()1(22=+--ab b a ,则=-55b a ( )A.46.B.64.C.82.D.128. 【答】C.由条件4)1()1(22=+--ab b a 得04223322=-+----b a ab b a b a ,即 0]3))[((]4)[(2)(22=+--++---ab b a b a ab b a b a ,又2=-b a ,所以0]34[2]44[22=+++-ab ab ,解得1=ab .所以222()26a b a b ab +=-+=,332()[()3]14a b a b a b ab -=--+=,82)())((22332255=---+=-b a b a b a b a b a .5.对任意的整数y x ,,定义xy y x y x -+=@,则使得(@)@(@)@x y z y z x +(@)@z x y +0=的整数组),,(z y x 的个数为 ( )A.1.B.2.C.3.D.4.【答】D.z xy y x z xy y x z xy y x z y x )()(@)(@)@(-+-+-+=-+=xyz zx yz xy z y x +---++=,由对称性,同样可得xyz zx yz xy z y x x z y +---++=@)@(,xyz zx yz xy z y x y x z +---++=@)@(.所以,由已知可得 0=+---++xyz zx yz xy z y x ,即1)1)(1)(1(-=---z y x . 所以,z y x ,,为整数时,只能有以下几种情况:⎪⎩⎪⎨⎧-=-=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=--=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=-=--=-,11,11,11z y x 或⎪⎩⎪⎨⎧-=--=--=-,11,11,11z y x 所以,)0,2,2(),,(=z y x 或)2,0,2(或)2,2,0(或)0,0,0(,故共有4个符合要求的整数组.6.设20501202012019120181++++=M ,则M1的整数部分是 ( ) A.60. B.61. C.62. D.63.【答】B.因为3320181⨯<M ,所以335613320181=>M . 又)205012032120311()203012019120181(+++++++= M83230134520205011320301=⨯+⨯>, 所以13451185611345832301=<M ,故M1的整数部分为61.二、填空题:(本题满分28分,每小题7分)1.如图,在平行四边形ABCD 中,AB BC 2=,AB CE ⊥于E ,F 为AD 的中点,若︒=∠48AEF ,则=∠B _______.【答】84︒. 设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知FGCD 为菱形. 由DC FG AB ////及F 为AD 的中点,知H 为CE 的中点. 又AB CE ⊥,所以FG CE ⊥,所以FH 垂直平分CE ,故 ︒=∠=∠=∠=∠48AEF EFG GFC DFC . 所以︒=︒⨯-︒=∠=∠84482180FGC B .2.若实数y x ,满足2154133=+++)(y x y x ,则y x +的最大值为 . 【答】3.由2154133=+++)(y x y x 可得22115()()()42x y x xy y x y +-+++=,即 22115()()42x y x xy y +-++=. ①令k y x =+,注意到2222131()04244y x xy y x y -++=-++>,故0>=+k y x .又因为22211()344x xy y x y xy -++=+-+,故由①式可得3115342k xyk k -+=,所以kk k xy 3215413-+=. 于是,y x ,可看作关于t 的一元二次方程032154132=-++-kk k kt t 的两根,所以 3211542()403k k k k+-∆=--⋅≥, 化简得 0303≤-+k k ,即0)103)(3(2≤++-k k k ,所以30≤<k . 故y x +的最大值为3.B3.没有重复数字且不为5的倍数的五位数的个数为 . 【答】21504.显然首位数字不能为0,末位不能为0和5.当首位数字不为5时,则首位只能选0,5之外的8个数.相应地个位数只能选除0,5及万位数之外的7个数,千位上只能选万位和个位之外的8个数,百位上只能选剩下的7个数,十位上只能选剩下的6个数.所以,此时满足条件的五位数的个数为1881667878=⨯⨯⨯⨯个.当首位数字为5时,则个位有8个数可选,依次千位有8个数可选,百位有7个数可选, 十位有6个数可选.所以,此时满足条件的五位数的个数为26886788=⨯⨯⨯个.所以,满足条件的五位数的个数为21504268818816=+(个).4.已知实数c b a ,,满足0a b c ++=,2221a b c ++=,则=++abcc b a 555 .【答】52. 由已知条件可得21)]()[(212222-=++-++=++c b a c b a ca bc ab ,abc c b a 3333=++,所以 555c b a ++)]()()([))((332332332333222b a c c a b c b a c b a c b a +++++-++++= 2222223[()()()]abc a b a b a c a c b c b c =-+++++)(3222222a c b b c a c b a abc +++=abc abc abc ca bc ab abc abc 25213)(3=-=+++=.所以 25555=++abc c b a .第一试(B)一、选择题:(本题满分42分,每小题7分) 1.满足1)1(22=-++x x x 的整数x 的个数为 ( )A.1.B.2.C.3.D.4. 【答】C.当02=+x 且012≠-+x x 时,2-=x . 当112=-+x x 时,2-=x 或1=x . 当112-=-+x x 且2+x 为偶数时,0=x . 所以,满足条件的整数x 有3个.2.已知123123,,()x x x x x x <<为关于x 的方程323(2)0x x a x a -++-=的三个实数根,则22211234x x x x -++= ( )A.5.B.6.C.7.D.8.【答】A.方程即0)2)(1(2=+--a x x x ,它的一个实数根为1,另外两个实数根之和为2,其中必有一根小于1,另一根大于1,于是2,1312=+=x x x ,故2221123313113114()()412()41x x x x x x x x x x x x -++=+-++=-++312()15x x =++=.3.已知点E ,F 分别在正方形ABCD 的边CD ,AD 上,CE CD 4=,FBC EFB ∠=∠,则 =∠ABF tan ( )A.21. B.53. C.22. D.23. 【答】B.不妨设4=CD ,则3,1==DE CE .设x DF =,则x AF -=4,92+=x EF .作EF BH ⊥于点H .因为AFB FBC EFB ∠=∠=∠,BHF BAF ∠=︒=∠90,BF 公共,所以△BAF ≌△BHF ,所以4==BA BH .由BCE DEF BEF ABF ABCD S S S S S ∆∆∆∆+++=四边形得14213219421)4(421422⋅⋅+⋅⋅++⋅⋅+-⋅⋅=x x x , 解得58=x .所以5124=-=x AF ,53tan ==∠AB AF ABF .4.=( )A.0.B.1.C.2.D.3.【答】B.令y =0y ≥,且29x y =-=1y =或6y =,从而可得8x =-或27x =.检验可知:8x =-是增根,舍去;27x =是原方程的实数根. 所以,原方程只有1个实数根.5.设c b a ,,为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组),,(c b a 的个数为 ( )A.4.B.5.C.6.D.7. 【答】B.由已知得, 20182017=+bc a ,20182017=+ac b ,20182017=+ab c ,两两作差,可得0)20171)((=--c b a ,0)20171)((=--a c b ,0)20171)((=--b a c .E由0)20171)((=--c b a ,可得 b a =或20171=c . (1)当c b a ==时,有020*******=-+a a ,解得1=a 或20172018-=a . (2)当c b a ≠=时,解得20171==b a , 201712018-=c . (3)当b a ≠时,20171=c ,此时有:201712018,20171-==b a ,或20171,201712018=-=b a . 故这样的三元数组),,(c b a 共有5个.6.已知实数b a ,满足15323=+-a a a ,55323=+-b b b ,则=+b a ( ) A.2. B.3. C.4. D.5.【答】A.有已知条件可得 2)1(2)1(3-=-+-a a ,2)1(2)1(3=-+-b b ,两式相加得33(1)2(1)(1)2(1)0a a b b -+-+-+-=,因式分解得22(2)[(1)(1)(1)(1)2]0a b a a b b +-----+-+=. 因为02)1(43)]1(21)1[(2)1()1)(1()1(2222>+-+---=+-+----b b a b b a a , 所以 02=-+b a ,因此 2=+b a .二、填空题:(本题满分28分,每小题7分)1.已知r q p ,,为素数,且pqr 整除1-++rp qr pq ,则=++r q p _______. 【答】10. 设11111pq qr rp k pqr p q r pqr++-==++-,由题意知k 是正整数,又2,,≥r q p ,所以23<k ,从而1=k ,即有pqr rp qr pq =-++1,于是可知r q p ,,互不相等.当r q p <<≤2时, qr rp qr pq pqr 31<-++=,所以3<q ,故2=q .于是222qr qr q r =++1-,故3)2)(2(=--r q ,所以32,12=-=-r q ,即5,3==r q ,所以,)5,3,2(),,(=r q p .再由r q p ,,的对称性知,所有可能的数组(,,)p q r 共有6组,即(2,3,5),)3,5,2(,)5,2,3(,)2,5,3(,)3,2,5(,)2,3,5(.于是10=++r q p .2.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为 . 【答】8.设这两个数为)(,22n m n m >,则 100022-=+n m n m ,即2(1)(1)1001m n --=.又100110011143791117713=⨯=⨯=⨯=⨯,所以 2(1,1)m n --=(1001,1)或(143,7)或(91,11)或(77,13),验证可知只有)7,143()1,1(2=--n m 满足条件,此时8,1442==n m .3.已知D 是△ABC 内一点,E 是AC 的中点,6AB =,10BC =,BCD BAD ∠=∠,ABD EDC ∠=∠,则=DE .【答】4.延长CD 至F ,使DC DF =,则AF DE //且AF DE 21=,所以ABD EDC AFD ∠=∠=∠,故D B F A ,,,四点共圆,于是BCD BAD BFD ∠=∠=∠,所以10==BC BF ,且FC BD ⊥,故90FAB FDB ∠=∠=︒.又6=AB ,故861022=-=AF ,所以421==AF DE .4.已知二次函数)504()12(2222++++++=n m x n m x y 的图象在x 轴的上方,则满足条件的正整数对),(n m 的个数为 .【答】15.因为二次函数的图象在x 轴的上方,所以0)504(4)]12(2[222<++-++=∆n m n m ,整理得49424<++n m mn ,即251)12)(1(<++n m .因为n m ,为正整数,所以25)12)(1(≤++n m . 又21≥+m ,所以22512<+n ,故5≤n . 当1=n 时,3251≤+m ,故322≤m ,符合条件的正整数对),(n m 有7个;当2=n 时,51≤+m ,故4≤m ,符合条件的正整数对),(n m 有4个;当3=n 时,7251≤+m ,故718≤m ,符合条件的正整数对),(n m 有2个; 当4=n 时,9251≤+m ,故917≤m ,符合条件的正整数对),(n m 有1个;当5=n 时,11251≤+m ,故1114≤m ,符合条件的正整数对),(n m 有1个.综合可知:符合条件的正整数对),(n m 有7+4+2+1+1=15个.第二试 (A )一、(本题满分20分)设d c b a ,,,为四个不同的实数,若b a ,为方程011102=--d cx x 的根,d c ,为方程011102=--b ax x 的根,求d c b a +++的值.解 由韦达定理得10a b c +=,10c d a +=,两式相加得)(10c a d c b a +=+++.……………………5分因为a 是方程011102=--d cx x 的根,所以011102=--d ac a ,又c a d -=10,所以010111102=-+-ac c a a . ① ……………………10分类似可得 010111102=-+-ac a c c . ② ……………………15分 ①-②得 0)121)((=-+-c a c a .因为c a ≠,所以121=+c a ,所以1210)(10=+=+++c a d c b a . ……………………20分二、(本题满分25分)如图,在扇形OAB 中,︒=∠90AOB ,12=OA ,点C 在OA 上,4=AC ,点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD 的交点为F .(1)当四边形ODEC 的面积S 最大时,求EF ;(2)求DE CE 2+的最小值.解 (1)分别过E O ,作CD 的垂线,垂足为N M ,. 由8,6==OC OD ,得10=CD .所以)(21EN OM CD S S S ECD OCD +⋅=+=∆∆ 6012102121=⨯⨯=⋅≤OE CD , ……………………5分 当DC OE ⊥时,S 取得最大值60.此时,536108612=⨯-=-=OF OE EF . ……………………10分 (2)延长OB 至点G ,使12==OB BG ,连结GE GC ,. 因为21==OG OE OE OD ,EOG DOE ∠=∠,所以△ODE ∽△OEG ,所以21=EG DE ,故DE EG 2=.……………………20分所以108824222=+=≥+=+CG EG CE DE CE ,当G E C ,,三点共线时等号成立.故DE CE 2+的最小值为108. ……………………25分C三、(本题满分25分)求所有的正整数n m ,,使得22233)(n m n m n m +-+是非负整数.解 记22233)(n m n m n m S +-+=,则22222)(3)()(]3))[((nm mn n m mn n m n m n m mn n m n m S +-+-+=+--++=. 因为n m ,为正整数,故可令pqn m mn =+,q p ,为正整数,且1),(=q p . 于是 22223)(3)(pq pq n m p q p q n m S +-+=--+=.因为S 为非负整数,所以2|q p ,又1),(=q p ,故1=p ,即mn n m |)(+. ①……………………10分所以nm mn n n m n +-=+2是整数,所以2|)(n n m +,故n m n +≥2,即n m n ≥-2. 又由0≥S ,知02233≥-+n m n m . ② 所以n m m n m m n m n 2223223)(≥-=-≥,所以m n ≥.由对称性,同理可得n m ≥,故n m =. ……………………20分 把n m =代入①,得m |2,则2≥m .把n m =代入②,得0243≥-m m ,即2≤m . 故2=m .所以,满足条件的正整数n m ,为2=m ,2=n . ……………………25分第二试 (B )一、(本题满分20分)若实数c b a ,,满足59)515151)((=-++-++-+++b a c a c b c b a c b a ,求)111)((cb ac b a ++++的值.解 记x c b a =++,y ca bc ab =++,z abc =,则)616161()515151)((cx b x a x x b a c a c b c b a c b a -+-+-=-++-++-+++abc x ca bc ab x c b a x ca bc ab x c b a x x 216)(36)(6)](36)(123[232-+++++-+++++-=23(936)536216x x y x xy z-+=-+-, ……………………10分结合已知条件可得23(936)95362165x x y x xy z -+=-+-,整理得z xy 227=.所以 227)111)((==++++z xy c b a c b a . ……………………20分二、(本题满分25分)如图,点E 在四边形ABCD 的边AB 上,△ABC 和△CDE 都是等腰直角三角形,AC AB =,DC DE =.(1)证明:BC AD //;(2)设AC 与DE 交于点P ,如果︒=∠30ACE ,求PEDP. 解 (1)由题意知45ACB DCE ∠=∠=︒,BC =,EC =,所以DCA ECB ∠=∠,AC DCBC EC=,所以△ADC ∽△BEC ,故DAC ∠= 45EBC ∠=︒,所以ACB DAC ∠=∠,所以BC AD //.……………………10分(2)设x AE =,因为︒=∠30ACE ,可得x AC 3=,2CE x =,DE DC ==.因为90EAP CDP ∠=∠=︒,EPA CPD ∠=∠,所以△APE ∽△DPC ,故可得DPC APE S S ∆∆=21. ……………………15分 又223x S S S ACE APE EPC ==+∆∆∆,2x S S S CDE DPC EPC ==+∆∆∆,于是可得 2)32(x S DPC -=∆,2)13(x S EPC -=∆. ……………………20分所以2131332-=--==∆∆EPC DPC S S PE DP . ……………………25分 三、(本题满分25分)设x 是一个四位数,x 的各位数字之和为m ,1+x 的各位数字之和为n ,并且m 与n 的最大公约数是一个大于2的素数.求x .解 设abcd x =,由题设知m 与n 的最大公约数),(n m 为大于2的素数.若9≠d ,则1+=m n ,所以(,)1m n =,矛盾,故9=d . ……………………5分 若9≠c ,则891-=-+=m m n ,故(,)(,8)m n m =,它不可能是大于2的素数,矛盾,故9=c .……………………10分若9=b ,显然9≠a ,所以269991-=---+=m m n ,故(,)(,26)13m n m ==,但此时可得13≥n ,363926>≥+=n m ,矛盾. ……………………15分若9≠b ,则17991-=--+=m m n ,故(,)m n (,17)17m ==,只可能34,17==m n . ……………………20分 于是可得8899=x 或9799. ……………………25分。
2018年初中数学联赛试题(北京)2018年初中数学联赛试题及答案详解说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第 二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答 不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相 应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a y x ax =++的图象的顶点为A ,与x 轴的交点为B ,C .当ABC △为等边三角形时,其边长为()A ..D .【答】C.由题设知2(,)2a A a --,设(,0),(,0)B x C x ,二次函数的图象的对称轴与x 轴的交点为D ,则12||BC x x =-=又AD =,则2||2a -=26a =或20a =(舍去)所以△ABC 的边长BC ==. 2.如图,在矩形ABCD 中,BAD ∠的平分线交BD 于点E ,115AB CAE =∠=︒,,则BE =()A .C 1D 1 【答】D.延长AE 交BC 于点F ,过点E 作BC 的垂线,垂足为H .由已知得∠BAF = ∠F AD = ∠AFB = ∠HEF =45︒,BF =AB =1,∠EBH = ∠ACB =30︒.设BE =x ,则HF =HE =2x,BH因为BF=BH+HF ,所以12x=,解得1BE x ==. 3.设p q ,均为大于3的素数,则使2254p pq q ++为完全平方数的素数对(p ,q )的个数为()A .1B .2C .3D .4 答案:B设22254p pq q m ++=(m 为自然数),则22(2)p q pq m ++=,即(2)(2)m p q m p p pq --++= 由于p ,q 为素数,且2,2m q p p m q p q ++>++>,所以21m q p --=,2m q p pq ++=,从而2410pq p p ---=,即(4)(2)9p q --=,所以(p ,q )=(5,11)或(7,5).所以,满足条件的素数对(p ,q )的个数为2. 4.若实数a ,b 满足2a b -=,()()22114a b ba-+-=,则55a b -=()A .46B .64C .82D .128【答】C.由条件()()22114a b ba-+-=得22332240a b a b ab a b ----+-=,即22()2[()4]()[()3]0a b a b ab a b a b ab ---++--+=又2a b -=,所以22[44]2[43]0ab ab -+++=,解得1ab =,所以222()26a b a b ab +=-+=33255223322()[()3]14,()()()82a b a b a b ab a b a b a b a b a b -=--+=-=+---=. 5.对任意的整数x ,y ,定义@x y x y xy =+-,则使得()()@@@@x y z y z x ++()@@0z x y =的整数组(x ,y ,z )的个数为() A .1B .2C .3D .4 答案:D()()()(@@@)x y z x y xy z x y xy z x y xy z x y z xy yz zx xyz =+-=+-+-+-=++---+,由对称性,同样可得()()@@@@.y z x x y z xy yz zx xyz z x y x y z xy yz zx xyz =++---+=++---+,所以,由已知可得0111 1.()()()x y z xy yz zx xyz x y z ++---+=---=-,即所以,x,y,z 为整数时,只能有以下几种情况:111111x y z -=⎧⎪-=⎨⎪-=-⎩,或111111x y z -=⎧⎪-=-⎨⎪-=⎩,或111111x y z -=-⎧⎪-=⎨⎪-=⎩或111111x y z -=-⎧⎪-=-⎨⎪-=-⎩所以,(x ,y ,z )=(2,2,0)或(2,0,2)或(0,2,2)或(0,0,0),故共有4个符合要求的整数组. 6.设11112018201920202050M =++++,则1M的整数部分是() A .60B .61C .62D .63 答案:B 因为1120185336120183333M M <⨯⇒>= 又111111()()201820192030203120322050M =+++++++11134513202030205083230>⨯+⨯=所以18323011856113451345M <=,故的整数部分为61.二、填空题:(本题满分28分,每小题7分)7.如图,在平行四边形ABCD 中,2BC AB CE AB =⊥,于E ,F 为AD 的中点,若AEF ∠48=︒,则B ∠=. 【答】84°.设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知FGCD 为菱形由AB ∥FG ∥DC 及F 为AD 的中点,知H 为CE 的中点. 又CE ⊥AB ,所以CE ⊥FG ,所以FH 垂直平分CE ,故∠DF =∠GFC =∠EFG =∠AEF =48°.所以∠B =∠FGC =180248=84-⋅8.若实数x y ,满足()3311542x y x y+++=,则x y +的最大值为.【答】3.由3115()42x y x y 3+++=可得22115()()()42x y x xy y x y +-+++=,即22115()()42x y x xy y +-++= 令x y k +=,注意到2222131()04244y x xy y x y -++=-++>,故0x y k +=> 又因为22211()344x xy y x y xy -++=+-+,故由①式可得3115342k xyk k -+=,所以3115423k k xy k+==于是,x ,y 可看作关于t 的一元二次方程321154203k k t kt k+=-+=的两根,所以 化简得3211542()403k k k k+=∆=--⋅≥,化简得3300k k +-≤,即2(3)(310)003k k k k -++≤⇒<≤ 故x + y 的最大值为3.思路:从目标出发,判别式法,因式分解 9.没有重复数字且不为5的倍数的五位数的个数为.【答】21504.显然首位数字不能为0,末位不能为0和5.当首位数字不为5时,则首位只能选0,5之外的8个数.相应地个位数只能选除0,5及万位数之外的7个数,千位上只能选万位和个位之外的8个数,百位上只能选剩下的7个数,十位上只能选剩下的6个数.所以,此时满足条件的五位数的个数为87876⨯⨯⨯⨯=18816个.当首位数字为5时,则个位有8个数可选,依次千位有8个数可选,百位有7个数可选,十位有6个数可选.所以,此时满足条件的五位数的个数为8876⨯⨯⨯=2688个.所以,满足条件的五位数的个数为18816+2688=21504(个).10. 已知实数a b c ,,满足0a b c ++=,2221a b c ++=,则555a b c abc++=.答案:52由已知条件可得222233311[()()],322ab bc ac a b c a b c a b c abc ++=++-++=-++=,所以555222333233233233()()[()()()]a b c a b c a b c a b c b a c c a b ++=++++-+++++ 2222222222223[()()()]3()abc a b a b a c a c b c b c abc a b c a c b b c a =-+++++=+++3()abc abc ab bc ca =+++.所以55552a b c abc ++=第一试(B)一、选择题:(本题满分42分,每小题7分) 1.满足()2211x x x ++-=的整数x 的个数为()A .1B .2C .3D .4 答案:C当20x +=且210x x +-≠时,2x =- 当211x x +-=时,2x =-或1x = 当211x x +-=-且2x +为偶数时0x = 所以,满足条件的整数x 有3个 2.已知123x x x ,,(123x x x <<)为关于x 的方程()32320x x a x a -++-=的三个实数根,则22211234x x x x -++=() A .5B .6C .7D .8解析:方程即2(1)(2)0x x x a --+=,它的一个实数根为1,另外两个实数根之和为2,其中必有一根小于1,另一根大于1,于是2131,2x x x =+=,故222112331311314()()412()15x x x x x x x x x x x -++=+-++=++=3. 已知点E F ,分别在正方形ABCD 的边CD ,AD 上,4CD CE EFB FBC =∠=∠,,则t a n ABF ∠=() A .12B .35C .D解析:不妨设4CD =,则1,3CE DE ==设DF x =,则4,AF x EF =-作BH EF ⊥与点H ,因为,90,EFB FBC AFB BAF BHF BF ∠=∠=∠∠==∠公共,所以BAF BHF ∆≅∆,所以4BH BA ==由ABF BEF DEF BCE ABCD S S S S S ∆∆∆∆=+++四边形得2111144(4)43412222x x =⋅⋅-+⋅⋅⋅+⋅⋅,解得85x =所以1245AF x =-=,3tan 5AF ABF AB ∠==.4.方程()A .0B .1C .2D .3解析:令y 0y ≥,且29x y =- 解得1,6y or y ==,从而8x =-或27x =检验可知:8x =-是增根,舍去;27x =是原方程的实数根. 所以,原方程只有1个实数根.5.设a ,b ,c 为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组(a ,b ,c )的个数为() A .4B .5C .6D .7解析:由已知得, 201720182017201820172018a bc b ac c ab +=+=+=,,,两两作差,可得12017012()()()(0170120170)(.)()a b c b c a c a b --=--=--=,, 由120()()170a b c --=,可得1,2017a b or c ==(1)当a b c ==时,有2201720180a a +-=,解得a =1,或20182017a =- (2)当 abc =≠时,解得12017a b ==,120182017c =- (3)当a b ≠时,12017c =,此时有:12017a =,120182017b =-,或120182017a =-,12017b = 故这样的三元数组(a ,b ,c )共有5个. 6.已知实数a ,b 满足3232351355a a a b b b -+=-+=,,则a b +=()A .2B .3C .4D .5【答】A.有已知条件可得331212()()()(1212)a a b b -+-=--+-=,,两式相加得33121121()()()()0a a b b -+-+-+-=,因式分解得22211()[()()()2()11]0a b a a b b +-----+-+=因为2222()()()()[13111121(1)(1)4(202)a a b b a b b ----+-+=---+-+>所以20a b +-=,因此2a b +=.二、填空题:(本题满分28分,每小题7分) 7.已知p q r ,,为素数,且pqr 整除1pq qr rp ++-,则p q r ++=.【答】10. 设11111pq qr rp k pqr p q r pqr ++-==++-,由题意知k 是正整数,又,,2p q r ≥,所以32k < 而1k =,即有1pq qr rp pqr ++-=,于是可知,,p q r 互不相等.当2p q r ≤<<时,13pqr pq qr rp qr =++-<,所以3q <,故 2q =.于是2221qr qr q r =++-故2)23()(q r --=,所以21,23q r -=-=,即 3,5q r ==,所以,()(),,2,3,5p q r =. 再由 ,,p q r 的对称性知,所有可能的数组( ,,p q r )共有6组,即()()()()()() 2,3,5?2,5,33,2,53,5,25,2,35,3,2.,,,,, 于是10p q r ++=. 8.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为.【答】8.设这两个数为22),(m n m n >,则221000m n m n +=-,即2()110(101)m n --= 又100110011143791117713=⨯=⨯=⨯=⨯,所以()21,1()1001,1m n --=或(143,7)或 (91,11)(77,13),验证可知只有()21,(1143,)7m n --=满足条件,此时2144,8m n ==. .9.已知D 是ABC △内一点,E 是AC 的中点,610AB BC BAD BCD ==∠=∠,,,EDC ∠=ABD ∠,则DE =.【答】4.1//2CD F DF DC DE AF DE AF ==延长至,使,则且 ,,,AFD EDC ABD A F B D ∠=∠=∠所以,故四点共圆,于是 10BFD BAD BCD BF BC BD FC ∠=∠=∠==,所以,且⊥,90.FAB FDB ∠=∠=︒故6AB AF =又,故,所以14.2DE AF ==已知二次函数()()222221450y x m n x m n =++++++的图象在x 轴的上方,则满足条件的正整数对(m ,n)的个数为. 解析:16.因为二次函数的图象在x 轴的上方,所以222[()](22)144500m n m n ∆=++-++<,整理得 42449mn m n ++<,即()(5122)11m n ++<.因为,m n 为正整数,所以()(122.)15m n <++ 又12m +≥,所以25212n +<,故5n ≤. 当n=1时,1m +253≤,故223m ≤,符合条件的正整数对(m,n)有8个;当n=2时,1m +5≤,故m ≤4,符合条件的正整数对(m,n)有4个; 当n=3时,1m +257≤,故187m ≤,符合条件的正整数对(m,n)有1个;当n=4时,1m +259≤,故179m ≤,符合条件的正整数对(m,n)有1个;当n=5时,1m +2511≤,故1411m ≤,符合条件的正整数对(m,n)有1个综合可知:符合条件的正整数对(m,n)有8421116++++=个第二试(A)一、(本题满分20分)设a ,b ,c ,d 为四个不同的实数,若a ,b 为方程210110x cx d --=的根, c ,d 为方程2100x ax b --=的根,求a b c d +++的值.解由韦达定理得1010a b c c d a +=+=,,两式相加得1)0(a b c d a c +++=+.因为a 是方程210110x cx d --=的根,所以210110a ac d --=,又10d a c =-,所以 211011100.a a c ac -+-=①类似可得211011100.c c a ac -+-=②①-②得)((1210)a c a c -+-=因为a c ≠,所以121a c +=,所以(11210)0a b c d a c +++=+=.二、(本题满分25分)如图,在扇形OAB 中,9012AOB OA ∠=︒=,,点C 在OA 上,4AC =, 点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD 的交点为F . (1)当四边形ODEC 的面积S 最大时,求EF ; (2)求2CE DE +的最小值.解 (1)分别过O ,E 作CD 的垂线,垂足为M ,N . 由6,8OD OC ==,得10CD =.所以(111101260222)DOCD DECD S S S CD OM EN CD OE =+=⨯+≤⨯=⋅⋅=当OE DC ⊥时,S 取得最大值60.683612=105EF OE OF ⋅=-=-此时,212,.OB G BG OB GC GE ==()延长至点,使,连结 因为1,2OD OE DOE EOG OE OG ==∠=∠,所以ODE OEG ∽,所以12DE EG =故2EG DE =,所以2CE DE CE EG CG +=+≥C ,E ,G 三点共线时等号成立2CE DE +故的最小值为.三、(本题满分25分)求所有的正整数m ,n ,使得()33222m n m n m n +-+是非负整数.解:记()33222m n m n S m n +-=+,则()2222332222()[()3]3()()m n m n mn m n m n m n mn mn S m n m n m n m n m n ++--+-⎛⎫===+-- ⎪+++⎝⎭+,,(,?,,1).mnm n p q p q p q m n==+因为为正整数,故可令为正整数,且 于是222233()()q q pq q S m n m n p p p +=+--=+-因为S 是非负整数,所以2|p q ,11()() .|p q p m n mn ==+,又,故,即①所以2n mn n m n m n=-++是整数,所以2()|m n n +,故2n m n ≥+,即2n m n -≥ 332200.S m n m n +-≥≥又由,知②3223222³(.)n m n m m n m m n n m --≥≥=≥所以,所以³m n m n =由对称性,同理可得,故34|2 2.20 2.m n m m m n m m m =≥=≥-≤把代入①,得,则把代入②,得,即 2.m =故,2 2.m n m n ==所以,满足条件的正整数为,第二试(B)一、(本题满分20分)若实数a ,b ,c 满足()11195555a b c a b c b c a c a b ⎛⎫++++= ⎪+-+-+-⎝⎭,求()111a b c a b c ⎛⎫++++⎪⎝⎭的值. 解:a b c x ab bc ca y abc z ++=++==记,,,则()111111555666a b c x a b c b c a c a b x a x b x c ⎛⎫⎛⎫++++=++⎪ ⎪+-+-+----⎝⎭⎝⎭22323[312()36()](936)6()36()216536216x x a b x ab bc ca x x y x a b c x ab bc ca x abc x xy z -+++++-+==++++++--+- 结合已知条件可得23(936)95362165x x y x xy z -+=-+-,整理得272xy z = 所以()111272xy a b c a b c z ⎛⎫++++==⎪⎝⎭.二、(本题满分25分)如图,点E 在四边形ABCD 的边AB 上,ABC △和CDE △都是等腰直角三 角形,AB AC DE DC ==,. (1)证明:AD BC ∥;(2)设AC 与DE 交于点P ,如果30ACE ∠=︒,求DPPE.145,,ACB DCE BC EC ∠=∠=︒==解()由题意知,所以,AC DCDCA ECB BC EC∠=∠=,所以ADC BEC ∆∆∽,故45DAC EBC ∠=∠=,所以DAC ACB ∠=∠,所以AD BC ∥(2)设AE x =,因为30ACE ∠=,可得,2,AC CE x DE DC === 因为90,EAP CDP EPA CPD ∠=∠=∠=∠,所以APE DPC ∆∆∽,故可得12APE DPC S S ∆∆=又22,=EPC APE AEC EPC DPC CDE S S S S S S x ∆∆∆∆∆∆+==+=,于是可得2(2DPC S x ∆=,21)EPC S x ∆=所以DPC EPC S DP PE S ∆∆==三、(本题满分25分)设x 是一个四位数,x 的各位数字之和为1m x +,的各位数字之和为n ,并 且m 与n 的最大公约数是一个大于2的素数.求x .( ,.) 2x abcd m n m n =解设,由题设知与的最大公约数为大于的素数 91,19(.)d n m m n d ≠=+==若,则,所以,矛盾,故()(9198,,829.)c n m m m n m c ≠=+-=-==若,则,故,它不可能是大于的素数,矛盾,故991()(99926,, 2613)b a n m m m n m =≠=+---=-==若,显然,所以,故,但此时可得13263936.n m n ≥=+≥>,,矛盾若9199()()17,,171717,34b n m m m n m n m ≠=+--=-====,则,故,只可能88999799.x =于是可得或。
2018年全国初中数学联赛决赛试卷(含答案)2018年全国初中数学联赛决赛试卷一、选择题:(每题7分,共42分)1、化简:$\frac{1}{4}+\frac{59+30}{2}+\frac{1}{3}-\frac{66+402}{3}$的结果是(。
)A、无理数B、真分数C、奇数D、偶数2、圆内接四条边长顺次为5、10、11、14;则这个四边形的面积为(。
)A、78.5B、97.5C、90D、1023、设$r\geq4$,$a=-\frac{1}{r^{2}+r+1}$,$b=\frac{1}{r}-\frac{1}{r+1}$,$c=\frac{r}{r+1}$,则下列各式一定成立的是(。
)A、$a>b>c$B、$b>c>a$C、$c>a>b$D、$c>b>a$4、图中的三块阴影部分由两个半径为1的圆及其外公切线分割而成,如果中间一块阴影的面积等于上下两块面积之和,则这两圆的公共弦长是(。
)A、$\frac{5}{\sqrt{2}}$B、$6$C、$\frac{1}{25-\pi^{2}}$ D、$\frac{1}{16-\pi^{2}}$5、已知二次函数$f(x)=ax^{2}+bx+c$的图象如图所示,记$p=|a-b+c|+|2a+b|$,$q=|a+b+c|+|2a-b|$,则(。
)。
A、$p>q$B、$p=q$C、$p<q$D、$p$、$q$大小关系不能确定6、若$x_{1}$,$x_{2}$,$x_{3}$,$x_{4}$,$x_{5}$为互不相等的正奇数,满足$(2005-x_{1})(2005-x_{2})(2005-x_{3})(2005-x_{4})(2005-x_{5})=24$,则$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}$的个位数字是(。
)A、1B、3C、5D、7二、填空题:(共28分)1、不超过100的自然数中,将凡是3或5的倍数的数相加,其和为___________。
2018年“大梦杯〞省初中数学竞赛试题考试时间 2018年3月18日 9∶00-11∶00 总分值150分一、选择题〔共5小题,每题7分,共35分〕。
每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分〕1.假设关于x 的方程244310x mx m +--=有两个相等的实数根,那么32442m m m ++-的值为〔 〕A .3-B .2-C .1-D .12.如图,ABCD 、DEFG 都是正方形,边长分别为m 、n 〔m n <〕。
坐标原点O 为AD 的中点,A 、D 、E 在y 轴上。
假设二次函数2y ax =的图像过C 、F 两点,那么nm=〔 〕A .31+B .21+C .231-D .221-3.如图,G 为ABC △的重心,点D 在CB 延长线上,且12BD BC =,过D 、G 的直线交AC 于点E ,那么AEAC=〔 〕 A .25B .35C .37D .474.如图,H 、O 分别为ABC △的垂心、外心,45BAC ∠=︒,假设ABC △外接圆的半径 为2,那么AH =〔 〕A .23B .22C .4D .31+5.满足方程22419151x xy y -+=的整数对()x y ,有〔 〕 A .0对 B .2对 C .4对D .6对HOBCA〔第4题图〕〔第2题图〕 EG〔第3题图〕二、填空题〔共5小题,每题7分,共35分〕6.a ,b ,c 为正整数,且a b c >>。
假设b c +,a c +,a b +是三个连续正整数的平方,那么222a b c ++的最小值为。
7.如图,ABCD 为矩形,E 为对角线AC 的中点,A 、B 在x 轴上。
假设函数4y x=〔0x >〕的图像过D 、E 两点,那么矩形ABCD 的面积为。
8.如图,ABC △是边长为8的正三角形,D 为AB 边上一点,1O ⊙为ACD △的切圆,2O ⊙为CDB △的边DB 上的旁切圆。
2018年“TRULY ®信利杯”全国初中数学竞赛试题参考答案和评分标准一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填得零分)1. 已知实数b a ≠,且满足)1(33)1(2+-=+a a ,2)1(3)1(3+-=+b b .则ba a ab b+的值为( ). (A )23 (B )23- (C )2- (D )13- 答:选(B )∵ a 、b 是关于x 的方程()03)1(312=-+++x x的两个根,整理此方程,得0152=++x x ,∵ 0425>-=∆, ∴ 5-=+b a ,1=ab . 故a 、b 均为负数. 因此()232222-=-+-=+-=--=+abab b a ab abb a ab b a ab a b b a a a b b .2. 若直角三角形的两条直角边长为a 、b ,斜边长为c ,斜边上的高为h ,则有 ( ).(A )2h ab = (B )h b a 111=+ (C )222111hb a =+ (D )2222h b a =+ 答:选(C )∵ 0>>h a ,0>>h b ,∴ 2h ab >,222222h h h b a =+>+; 因此,结论(A )、(D )显然不正确.设斜边为c ,则有c b a >+,ab ch h b a 2121)(21=>+,即有 hb a 111>+, 因此,结论(B )也不正确.由ab h b a 212122=+化简整理后,得222111h b a =+, 因此结论(C )是正确的. 3.一条抛物线c bx ax y ++=2的顶点为(4,11-),且与x 轴的两个交点的横坐标为一正一负,则a 、b 、c 中为正数的( ). (A )只有a (B )只有b (C )只有c (D )只有a 和b 答:选(A )由顶点为(4,11-),抛物线交x 轴于两点,知a >0. 设抛物线与x 轴的两个交点的横坐标为1x ,2x ,即为方程02=++c bx ax的两个根.由题设021<x x ,知0<ac,所以0<c . 根据对称轴x =4,即有02>-a b,知b <0.故知结论(A )是正确的.4.如图所示,在△ABC 中,DE ∥AB ∥FG ,且FG 到DE 、AB 的距离之比为1:2. 若△ABC 的面积为32,△CDE 的面积为2,则△CFG的面积S等于( ).(A )6 (B )8 (C )10 (D )12 答:选(B )由DE ∥AB ∥FG 知,△CDE ∽△CAB ,△CDE ∽△CFG ,所以41322===∆∆CAB CDE S S CACD, 又由题设知21=FA FD ,所以 31=AD FD , AC AC AD FD 41433131=⨯==,故DC FD =,于是41212=⎪⎭⎫ ⎝⎛=∆∆CFG CDE S S ,8=∆CFG S . 因此,结论(B )是正确的.(第4题图)5.如果x 和y 是非零实数,使得3=+y x 和03=+x y x ,那么x +y 等于( ).(A )3 (B )13 (C )2131- (D )134- 答:选(D )将x y -=3代入03=+x y x ,得0323=+-x x x .(1)当x >0时,0323=+-x x x ,方程032=+-x x 无实根; (2)当x <0时,0323=--x x x ,得方程032=--x x 解得2131±=x ,正根舍去,从而2131-=x . 于是2137213133-=-+=-=x y . 故134-=+y x .因此,结论(D )是在正确的.二、填空题(共5小题,每小题6分,满分30分) 6. 如图所示,在△ABC 中,AB =AC ,AD =AE ,︒=∠60BAD ,则=∠EDC (度). 答:30°解:设α2=∠CAD ,由AB =AC 知αα-︒=-︒-︒=∠60)260180(21B ,α+︒=︒-∠-︒=∠6060180B ADB , 由AD =AE 知,α-︒=∠90ADE , 所以︒=∠-∠-︒=∠30180ADB ADE EDC .7.据有关资料统计,两个城市之间每天的电话通话次数T 与这两个城市的人口数m 、n (单位:万人)以及两城市间的距离d (单位:km )有2d kmnT =的关系(k 为常数) . 现测得A 、B 、C 三个城市的人口及它们之间的距离如图所示,且已知A 、B 两个城市间每天的电话通话次数为t ,那么B 、C 两个城市间每天的电话通话次数为 次(用t 表示).答:2t(第6题图)解:据题意,有k t 21608050⨯=, ∴t k 532=. 因此,B 、C 两个城市间每天的电话通话次数为2645532320100802tt k T BC =⨯=⨯⨯=. 8.已知实数a 、b 、x 、y 满足2=+=+y x b a ,5=+by ax ,则=+++)()(2222y x ab xy b a .答:5-解:由2=+=+y x b a ,得4))((=+++=++bx ay by ax y x b a , ∵ 5=+by ax , ∴ 1-=+bx ay .因而,5))(()()(2222-=++=+++by ax bx ay y x ab xy b a . 9. 如图所示,在梯形ABCD 中,AD ∥BC (BC >AD ),︒=∠90D ,BC =CD =12, ︒=∠45ABE ,若AE =10,则CE 的长为 . 答:4或6解:延长DA 至M ,使BM ⊥BE . 过B 作BG ⊥AM ,G 为垂足.易知四边形BCDG 为正方形, 所以BC =BG . 又GBM CBE ∠=∠, ∴ Rt △BEC ≌Rt △BMG .∴ BM =BE ,︒=∠=∠45ABM ABE , ∴△ABE ≌△ABM ,AM =AE =10.设CE =x ,则AG =x -10,AD =x x -=--2)10(12,DE =x -12. 在Rt △ADE 中,222DE AD AE +=, ∴ 22)12()2(100x x -++=, 即024102=+-x x , 解之,得41=x ,62=x .(第9题图)(第7题图)故CE 的长为4或6.10.实数x 、y 、z 满足x+y +z =5,xy +yz +zx =3,则z 的最大值是 .答:313解:∵ z y x -=+5,35)5(3)(32+-=--=+-=z z z z y x z xy , ∴ x 、y 是关于t 的一元二次方程035)5(22=+-+--z z t z t的两实根.∵ 0)35(4)5(22≥+---=∆z z z ,即0131032≤--z z ,0)1)(133(≤+-z z .∴ 313≤z ,当31==y x 时,313=z . 故z 的最大值为313.三、解答题(共4题,每小题15分,满分60分)11.通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持平稳的状态,随后开始分散. 学生注意力指标数y 随时间x (分钟)变化的函数图象如图所示(y 越大表示学生注意力越集中). 当100≤≤x 时,图象是抛物线的一部分,当2010≤≤x 和4020≤≤x 时,图象是线段. (1)当100≤≤x 时,求注意力指标数y 与时间x 的函数关系式;(2)一道数学竞赛题需要讲解24分钟. 问老师能否经过适当安排,使学生在听这道题时,注意力的指标数都不低于36. 解:(1)当100≤≤x 时,设抛物线的函数关系式为c bx ax y ++=2,由于它的图象经过点(0,20),(5,39),(10,48),所以⎪⎩⎪⎨⎧=++=++=.4810100,39525,20c b a c b a c 解得,51-=a ,524=b ,20=c .所以20524512++-=x x y ,100≤≤x . …………………(5分)(第11(A )题图)(2)当4020≤≤x 时,7657+-=x y .所以,当100≤≤x 时,令y =36,得2052451362++-=x x ,解得x =4,20=x (舍去);当4020≤≤x 时,令 y =36,得765736+-=x ,解得74287200==x . ……………………(10分) 因为24742447428>=-,所以,老师可以经过适当的安排,在学生注意力指标数不低于36时,讲授完这道竞赛题. ……………………(15分) 12.已知a ,b 是实数,关于x ,y 的方程组⎩⎨⎧+=--=bax y bx ax x y ,23 有整数解),(y x ,求a ,b 满足的关系式.解:将b ax y +=代入bx ax x y --=23,消去a 、b ,得xy x y -=3, ………………………(5分)3)1(x y x =+.若x +1=0,即1-=x ,则上式左边为0,右边为1-不可能. 所以x +1≠0,于是111123+-+-=+=x x x x x y .因为x 、y 都是整数,所以11±=+x ,即2-=x 或=x 0,进而y =8或=y 0. 故⎩⎨⎧=-=82y x 或⎩⎨⎧==0y x ………………………(10分) 当⎩⎨⎧=-=82y x 时,代入b ax y +=得,082=+-b a ;当⎩⎨⎧==00y x 时,代入b ax y +=得,0=b . 综上所述,a 、b 满足关系式是082=+-b a ,或者0=b ,a 是任意实数.………………………(15分)13.D 是△ABC 的边AB 上的一点,使得AB =3AD ,P 是△ABC 外接圆上一点,使得ACB ADP ∠=∠,求PD PB的值.解:连结AP ,则ADP ACB APB ∠=∠=∠,所以,△APB ∽△ADP , …………………………(5分) ∴AD AP AP AB =, 所以223AD AD AB AP =•=,∴AD AP 3=, …………………………(10分) 所以3==ADAPPD PB . …………………………(15分) 14.已知0<a ,0≤b ,0>c ,且ac b ac b 242-=-,求ac b 42-的最小值. 解:令c bx ax y ++=2,由0<a ,0≤b ,0>c ,判别式042>-=∆ac b ,所以这个二次函数的图象是一条开口向下的抛物线,且与x 轴有两个不同的交点)0,(1x A ,)0,(2x B ,因为021<=acx x ,不妨设21x x <,则210x x <<,对称轴02≤-=abx ,于是 c a ac b b a ac b b x =--=-+-=2424221, ………………(5分)所以aac b a ac b b c a b ac 242444222--≥--=≥-, …………………(10分) 故442≥-ac b ,当1-=a ,b =0,c =1时,等号成立.所以,ac b 42-的最小值为4. ………………………(15分)(第13(A )题图)(第14(A )题图)。
2018年全国初中数学联赛决赛试题(江西卷)(2018年4月19日 上午9:00—11:30)一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为D C B A ,,,的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分. 1、从分数组{}111111,,,,,24681012中删去两个分数,使剩下的数之和为1,则删去两个数是( )(A )1148与 (B)11410与(C)11810与 (D)11812与 2的结果是( )(A )12383、555的末尾三位数字是( )(A )125 (B)375 (C)625 (D)8754、若实数,,x y z 满足方程组: 1.........(1)2 2..........(2)2 3...........(3)2xyx y yzy z zxz x⎧=⎪+⎪⎪=⎨+⎪⎪=⎪+⎩, 则有( )(A )x+2y+3z=0 (B) 7x+5y+2z=0 (C) 9x+6y+3z =0 (D)10x+7y+z=0 5、将正三角形每条边四等份,然后过这些分点作平行于其它两边的直线,则以图中线段为边的菱形个数为( )(A )15 (B)18 (C)21 (D)246、某人将2008看成了一个填数游戏式:2□□8,于是他在每个框中各填写了一个两位数ab cd 与,结果所得到的六位数28abcd 恰是一个完全立方数,则ab cd +=( ) (A )40 (B)50 (C)60 (D)70 二、填空题(本题满分28分,每小题7分)7、设(9,x y +==则 .8、一本书共有61页,顺次编号为1,2,…,61,某人在将这些数相加时,有两个两位数页码都错把个位数与十位数弄反了(即:形如ab 的两位数被当成了两位数ba ),结果得到的总和是2008,那么,书上这两个两位数页码之和的最大值是 . 9、如图,在边长为1的正三角形ABC 中,由两条含0120圆心角的弓形弧 AOB , AOC 及边BC 所围成的(火炬形)阴影部分的面积是 .10、不超过6的最大整数是 . 三、解答题(共70分)11. (本题满分20分)设a 为整数,使得关于x 的方程a 2x -(a+5)x+a+7=0至少有一个有理根,试求方程所有可能的有理根.12. (本题满分25分)如图,四边形中ABCD 中 ,E,F 分别是AB,CD 的中点,P 为对角线AC 延长线上的任意一点,PF 交AD 于M ,PE 交BC 于N ,EF 交MN 于K; 求证:K 是线段MN 的中点.FCD A PE MK BN13. (本题满分25分)120人参加数学竞赛,试题共有5道大题,已知第1、2、3、4、5题分别有96、83、74、66、35人做对,如果至少做对3题便可获奖,问:这次竞赛至少有几人获奖?参考答案-、选择题(每小题7分,共42分) 1 、解:由1114123+=,而1111,236++=故删去11810与后,可使剩下的数之和为1. 故选C212====12.故选A .3、解:555=5×545=5×18125,因125被8除余l ,所以18125被8除余l ,故知555被8除余5,而在125、375、625、875四数中,只有125被8除余5,故选A 4 、解:由(1)、(3)得2x y x =-,63x z x =-,故x ≠0,代人(2)解得2710x =,所以277y =, z =-54.检验知此组解满足原方程组.于是10X +7y +Z =0.故选D5、解:图中只有边长为1或2的两种菱形,每个菱形恰有一条与其边长相等的对角线,原正三角形内部每条长为1的线段,恰是一个边长为1的菱形的对角线;这种线段有18条,对应着18个边长为1的菱形;原正三角形的每条中位线恰是一个边长为2的菱形的对角线,三条中位线对应着3个边长为2的菱形;共得21个菱形. 故选C6、解:设28abcd =3()xy ,则据末位数字特征得y =2,进而确定xy : 因360=216000,370=343000,所以60<xy <70,故只有,xy =62, 而262=238328,则ab =38,cd =32,ab +cd =70. 故选D 二.填空题(每小题7分,共28分)7、解:据条件式9........1xy +=()令z ,则(1)式化为:z xy ++=9,即有9-z =xy81-18z +2z =2222(1)(4)2x y x y xy++++ ……(2),又由2z =2(=2222(4)(1)2x y y x xy++++代入(2)得,81-18z=4,所以7718z =. 8、解:l +2+…+61=1891,2008—1891=117,由于形如ab 的页码被当成ba 后,加得的和数将相差9a b -,因为,a b 只能在1,2,…,9中取值,a b -≤8,得9a b -≤72,由于117=72+45=63+54,设弄错的两位数是ab 和cd ,若9a b -=72,9c d -=45,只有ab =19,而cd 可以取l6,27,38,49;这时ab +cd 的最大值是68;若9a b -=63,9c d -=54,则ab 可以取18,29,而cd 可以取17,28,39,ab +cd 的最大值也是68.9、解:如右图,连OA ,OB ,OC ,线段 OA 将阴影的上方部分剖分成两个弓形,将这两个弓形分别按顺时针及反时针绕点O 旋转0120后,阴影部分便合并成△OBC ,它的面积等于△A BC .10、解:6=3(8+,令 8+a ,8-b ,得 a +b =16,ab=4,a,b 是方程21640x x -+=的两个根, 故得2a =16a -4,2b =16b -4;3a =162a -4a ,32164b b b =-;所以3a +3b =16(2a +2b )-4(a+b )=16(16(a+b )一8)-4(a+b )=252(a+b )-128=3904.∵0<b <1,∴0<3b <1, ∴3a 的最大整数值不超过3903. 三.解答题(共70分)11、解:当a =0时,方程的有理根为75x =; ……5分F CD A PEMK B N以下考虑a ≠0的情况,此时原方程为一元二次方程,由判别式2(5)4(7)0,a a a +-+≥即32a +18a -25≤0a ≤≤ 整数a 只能在其中的非零整数1,-1,-2,-3,-4,-5,-6,-7中取值,10 分由方程得x = (1)当a =1,由(1)得x =2和4;当a=-1时,方程无有理根;当a =-2,由(1)得x =1和-52;当a=-3时,方程无有理根; ……15分 当a =-4,由(1)得x =-1和34;当a=-5时,方程无有理根;当a =-6,由(1)得x =12和-13;当a =-7时,由(1)得x =37和17-; 20分12、证明:EF 截△PMN , 则.. 1..........(1)NK MF PE KM FP EN =……5分 BC 截 △PAE ,则.. 1...........(2)EB AC PNBA CP NE =, 即有2,PN CPNE AC= 所以2..............(3)PE CP ACEN AC+=, 10分 AD 截△PCF ,则..1,FD CA PMDC AP MF= 即22,............(4)PM AP PF AP ACMF AC MF AC-=∴=……15分 因AP =AC +CP ,得2CP + AC =2AP -AC ,由(3),(4)得,,........20PE FPEN MF=分 即.1,MF PEFP EN=所以由(1)得 NK =KM ,即K 是线段 AM 的中点 ……25分 13、解:将这120人分别编号为12120,,....,P P P ,并视为数轴上的120个点,用k A 表示这120人之中未答对第k 题的人所成的组,k A 为该组人数, k=l ,2,3,4,5,则1A =24,234537,46,54,85,A A A A ==== ……5分将以上五个组分别赋予五种颜色,如果某人未做对第k 题,则将表示该人点染第k 色,k=l ,2,3,4,5,问题转化为,求出至少染有三色的点最多有几个?由于1A +2345A A A A +++=246, 故至少染有三色的点不多于2463=82个,……10分 右上图是满足条件的一个最佳染法,即点1285,,....,P P P 这85 个点染第五色;点1237,,....,P P P 这37个点染第二色;点383983,,....,P P P 这46个点染第四色;点1224,,....,P P P 这24 个点染第一色;点252678,,....,P P P 这54个点染第三色;于是染有三色的点最多有78个. …20分因此染色数不多于两种的点至少有42个,即获奖人数至少有42个人(他们每人至多答错两题,而至少答对三题,例如7980120,,...,P P P 这 42 个人) …… 25分8546 5437 24。
2018 年初中数学联赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设 7 分和 0 分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分 42 分,每小题 7 分)1.设二次函数 y = x 2+ 2ax + a 2的图象的顶点为 A ,与 x 轴的交点为 B , C .当△ ABC 为等边三角2形时,其边长为 ()A. 62 2 .C. 2 3D. 3 2 .【答】C.由题设知 A (-a ,- a 2 ) .设 B (x ,0) , C (x ,0) ,二次函数的图象的对称轴与 x 轴的交点为 D ,则2 12= 4a2- 4 ⨯ a 2BC =| x - x2 |= (x + x )2 - 4x x 2 = 2a 2 .11212a 233又 AD = BC ,则| - |= ⋅ 2a 2 ,解得 a 2 = 6 或 a 2 = 0 (舍去).2 2 2所以,△ ABC 的边长 BC = 2a 2= 2 .32.如图,在矩形 ABCD ∠BAD的平分线交 BD于点 E AB =1 ∠CAE = 15︒,则 BE =)中,,,(32 -1.D.-1.A. .B..C. 2 32 3【答】D.E延长 AE 交 BC 于点 F ,过点 E 作 BC 的垂线,垂足为 H .由已知得 ∠BAF = ∠FAD = ∠AFB = ∠HEF = 45︒, BF = AB = 1,B∠EBH = ∠ACB = 30︒ .设 BE = x ,则 HF = HE = x , BH = 3x .2 2因为 BF = BH + HF ,所以1 = 3x + x ,解得 x = -1.所以 BE =-1 .332 23.设 p , q 均为大于 3 的素数,则使 p 2 + 5 pq + 4q 2为完全平方数的素数对 ( p , q ) 的个数为(). . . .【答】B.2018 年初中数学联赛试题参考答案及评分标准第 1 页(共 10 页)设 p 2 + 5 pq + 4q 2 = m 2 ( m 为自然数),则 ( p + 2q )2 + pq = m 2,即(m - p - 2q )(m + p + 2q ) = pq .由于 p , q 为素数,且 m + p + 2q > p , m + p + 2q > q ,所以 m - p - 2q =1 , m + p + 2q = pq ,从而 pq - 2 p - 4q -1 = 0 ,即 ( p - 4)(q - 2) = 9 ,所以 ( p , q ) = (5,11) 或 (7, 5) .所以,满足条件的素数对 ( p , q ) 的个数为 2.4.若实数 a , b 满足 a - b = 2,(1 - a )2 (1 + b ) 2 55ab....【答】C.(1 - a )2(1 + b )2由条件-= 4 得 a - b - 2a 2 - 2b 2 - 4ab + a 3 - b 3= 0 ,ba即 (a - b ) - 2[(a - b )2 + 4ab ] + (a - b )[(a - b )2+ 3ab ] = 0 ,又 a - b = 2,所以 2 - 2[4 + 4ab ] + 2[4 + 3ab ] = 0 ,解得 ab = 1.所以 a 2 + b 2 = (a - b ) 2 + 2ab = 6 ,a 3 -b 3 = ( a - b )[( a - b ) 2 + 3ab ] =14 , a 5 - b 5 = (a 2 + b 2 )(a 3 - b 3 ) - a 2b 2(a - b ) = 82 .5.对任意的整数 x , y ,定义 x @ y = x + y - xy ,则使得 ( x @ y ) @ z + ( y @ z ) @ x +( z @ x ) @ y= 0 的整数组 (x , y , z ) 的个数为( )....【答】D.(x @ y ) @ z = (x + y - xy ) @ z = (x + y - xy ) + z - (x + y - xy )z = x + y + z - xy - yz - zx + xyz ,由对称性,同样可得( y @ z ) @ x = x + y + z - xy - yz - zx + xyz , (z @ x ) @ y = x + y + z - xy - yz - zx + xyz .所以,由已知可得 x + y + z - xy - yz - zx + xyz = 0 ,即 (x -1)( y -1)(z -1) = -1.所以, x , y , z 为整数时,只能有以下几种情况:⎧ x -1 = 1,⎧ x -1 = 1,⎧x -1 = -1,⎧x -1 = -1,⎪⎪⎪= 1, ⎪= -1,⎨ y -1 = 1,或 ⎨y -1 = -1,或 ⎨ y -1或 ⎨y -1 ⎪ ⎪ ⎪= 1,⎪-1 = -1,⎩z -1 = -1, ⎩ z -1 = 1, ⎩ z -1 ⎩z所以, (x , y , z ) = (2,2,0) 或 (2,0,2) 或 (0,2,2) 或 (0,0,0) ,故共有 4 个符合要求的整数组.2018 年初中数学联赛试题参考答案及评分标准 第 2 页(共 10 页)6.设 M =1 + 1 + 1 + + 1 ,则 1 的整数部分是()2018 2019 2020 2050M. . . .【答】B.因为 M < 20181 ⨯ 33 ,所以 M 1 >201833 = 61 335.又 M = ( 20181 + 20191 + + 20301) + ( 20311 + 20321+ + 20501) > 20301 ⨯13 + 20501⨯ 20 = 5,所以 M 1 < 5 = 45 ,故 M 1的整数部分为 61.二、填空题:(本题满分 28 分,每小题 7 分)1.如图,在平行四边形 ABCD 中,BC = 2AB ,CE ⊥ AB 于 E ,F 为 AD 的中点,若 ∠AEF = 48︒, 则∠B = _______. 【答】 84︒ . AF设 BC 的中点为 G ,连结 FG 交 CE 于 H ,由题设条件知 FGCD 为菱形.D由 AB又 CE ⊥ AB ,所以 CE ⊥ FG ,所以 FH 垂直平分 CE ,故E H∠DFC = ∠GFC = ∠EFG = ∠AEF = 48︒ .BCG所以 ∠B = ∠FGC =180︒ - 2 ⨯ 48︒ = 84︒ .2.若实数 x , y 满足 x 3 + y 3+ 1 (x + y ) = 15 ,则 x + y 的最大值为.42【答】3.由 x 3 + y 3 + 1 (x + y ) =15可得 ( x + y )( x 2 - xy + y 2 ) + 1 ( x + y ) =15,即4242( x + y )( x 2 - xy + y 2 + 1 ) = 15.①4 2令 x + y = k ,注意到 x 2 - xy + y 2 +14 = ( x - 2y ) 2 + 43y 2 +14 > 0 ,故 x + y = k > 0 .又因为 x 2 - xy + y 2 + 14 = ( x + y ) 2 - 3xy + 14 ,故由①式可得 k 3 - 3xyk + 14 k = 152 ,所以k 3 + 1k - 15xy =4 2 .3kk 3 + 1 k - 15 于是, x , y 可看作关于 t 的一元二次方程 t 2- kt + 4 2= 0 的两根,所以3kk 3 + 1 k - 152 ∆ = ( - k ) 2 - 4 ⋅4 ≥ 0 ,3k化简得 k 3 + k - 30 ≤ 0 ,即 (k - 3)(k 2+ 3k +10) ≤ 0 ,所以 0 < k ≤ 3.故 x + y 的最大值为 3.2018 年初中数学联赛试题参考答案及评分标准 第 3 页(共 10 页)3.没有重复数字且不为 5 的倍数的五位数的个数为 .【答】21504.显然首位数字不能为 0,末位不能为 0 和 5.当首位数字不为 5 时,则首位只能选 0,5 之外的 8 个数.相应地个位数只能选除 0,5 及万位数之外的 7 个数,千位上只能选万位和个位之外的 8 个数,百位上只能选剩下的 7 个数,十位上只能选剩下的 6 个数.所以,此时满足条件的五位数的个数为 8⨯7 ⨯8⨯7 ⨯6 = 18816 个.当首位数字为 5 时,则个位有 8 个数可选,依次千位有 8 个数可选,百位有 7 个数可选, 十位有 6 个数可选.所以,此时满足条件的五位数的个数为 8⨯8⨯ 7 ⨯ 6 = 2688 个.所以,满足条件的五位数的个数为18816 + 2688 = 21504 (个).4.已知实数 a ,b , c 满足 a + b + c = 022 2a 5 +b 5 +c 5, a+ b + c =1 ,则=.abc【答】 5 .2由已知条件可得 ab + bc + ca = 1 [(a + b + c )2 - (a 2 + b 2 + c 2 )] = - 1 ,a 3 + b 3+ c 3 = 3abc ,所以2 2a 5 +b 5 +c 5 = (a 2 + b 2 + c 2 )(a 3 + b 3 + c 3 ) -[a 2 (b 3 + c 3 ) + b 2 (a 3 + c 3 ) + c 2 (a 3 + b 3 )]= 3abc - [ a 2b 2 ( a + b ) + a 2 c 2 ( a + c ) + b 2 c 2 (b + c )] = 3abc + (a 2b 2c + a 2c 2b + b 2c 2a )= 3abc + abc (ab + bc + ca ) = 3abc -12 abc =52 abc .a 5 +b 5 +c 5 = 5所以abc 2 .第一试(B)一、选择题:(本题满分 42 分,每小题 7 分)1.满足 (x 2 + x -1) x +2= 1的整数 x 的个数为(). ...【答】C.当 x + 2 = 0 且 x 2+ x -1 ≠ 0 时, x = -2 .当 x 2 + x -1 = 1时, x = -2 或 x = 1.当 x 2+ x -1 = -1且 x + 2 为偶数时, x = 0 .所以,满足条件的整数 x 有 3 个. 2.已知x , x , x ( x < x < x ) 为关于 x 的方程 x -3 x 2 + ( a +2) x- a = 0 的三个实数根,则 4x - x + x + x =( ). . ..2018 年初中数学联赛试题参考答案及评分标准第 4 页(共 10 页)【答】A.方程即 (x -1)(x 2- 2x + a ) = 0 ,它的一个实数根为 1,另外两个实数根之和为 2,其中必有一根小 于 1,另一根大于 1,于是 x 2 = 1, x 1 + x 3 = 2 ,故4 x - x 2 + x 2 + x 2 = ( x + x )( x - x ) + 4 x + 1 = 2( x - x ) + 4 x +1 = 2( x + x ) + 1 =5 .112331311311313.已知点 E , F 分别在正方形 ABCD 的边 CD , AD 上, CD = 4CE , ∠EFB = ∠FBC ,则 tan ∠ABF = ( )A. 1 .B. 3 .C. 2 .D. 3 .2 52 2【答】B.不妨设 CD = 4 ,则 CE = 1, DE = 3.设 DF = x ,则 AF = 4 - x , EF = x 2+ 9 .作 BH ⊥ EF 于点 H .因为 ∠EFB = ∠FBC = ∠AFB , ∠BAF = 90︒ = ∠BHF , BF 公共,所以△ BAF ≌△ BHF ,所以 BH = BA = 4 .由 S 四边形= S ∆ABF + S ∆BEF + S ∆DEF + S∆BCE得AFDABCD111142 = ⋅ 4 ⋅ (4 - x ) + ⋅ 4 ⋅ x 2+ 9 + ⋅3 ⋅ x + ⋅ 4 ⋅1,2 2 2 2H8解得 x = .5E12 AF 3C所以 AF = 4 - x = 5 , tan ∠ABF = AB =5 .B4.方程 3 += 39 + x x 的实数根的个数为( ).... 【答】B.令 y = 9 + x ,则 y ≥ 0 ,且 x = y 2 -9 ,原方程变为 3 + y = 3 y 2 - 9 ,解得 y =1或 y = 6 ,从而可得 x = -8 或 x = 27 .检验可知: x = -8 是增根,舍去; x = 27 是原方程的实数根. 所以,原方程只有 1 个实数根.5.设 a , b , c 为三个实数,它们中任何一个数加上其余两数之积的 2017 倍都等于 2018,则这样的三元数组 (a , b , c ) 的个数为( )....【答】B.由已知得, a + 2017bc = 2018 , b + 2017ac = 2018 , c + 2017ab = 2018 ,两两作差,可得 (a - b )(1 - 2017c ) = 0 , (b - c )(1 - 2017a ) = 0 , (c - a )(1 - 2017b ) = 0 .2018 年初中数学联赛试题参考答案及评分标准 第 5 页(共 10 页)由 (a - b )(1 - 2017c ) = 0 ,可得 a = b 或 c = 20171.(1)当 a = b = c 时,有 2017a 2+ a - 2018 = 0 ,解得 a = 1 或 a = - 2018 .2017(2)当 a = b ≠ c 时,解得 a = b =1 , c = 2018 - 1 .2017 2017(3)当 a ≠ b 时,c = 1 ,此时有:a =1 , b = 2018 - 1 ,或 a = 2018 - 1 , b = 1 . 2017 20172017 2017 2017故这样的三元数组 (a , b , c ) 共有 5 个.6.已知实数 a , b 满足 a 3 - 3a 2 + 5a = 1, b 3 - 3b 2+ 5b = 5 ,则 a + b = (). ...【答】A.有已知条件可得 (a -1)3+ 2(a -1) = -2 , (b -1)3+ 2(b -1) = 2 ,两式相加得( a - 1) 3 + 2( a - 1) + (b - 1) 3 + 2(b - 1) = 0 ,因式分解得 ( a + b - 2)[( a - 1) 2 - ( a - 1)(b - 1) + (b - 1) 2 + 2] = 0 .因为(a -1)2 - (a -1)(b -1) + (b -1)2 + 2 = [(a -1) - 1 (b -1)]2 + 3 (b -1)2+ 2 > 0 ,2 4所以 a + b - 2 = 0 ,因此 a + b = 2 .二、填空题:(本题满分 28 分,每小题 7 分)1.已知 p , q , r 为素数,且 pqr 整除 pq + qr + rp -1,则 p + q + r = _______.【答】10 .设 k = pq + qr + rp -1 = 1 + 1 + 1 -1 ,由题意知 k 是正整数,又 p , q , r ≥2 ,所以 k <3 ,从 pqrp q r pqr 2而 k = 1 ,即有 pq + qr + rp -1 = pqr ,于是可知 p , q , r 互不相等.当 2 ≤ p < q < r 时, pqr = pq + qr + rp -1 < 3qr ,所以 q < 3 ,故 q = 2 .于是 2qr = qr + 2q + 2r-1,故 (q - 2)(r - 2) = 3,所以 q - 2 = 1, r - 2 = 3 ,即 q = 3, r = 5 ,所以, ( p , q , r ) = (2,3,5) .再由 p , q , r 的对称性知,所有可能的数组 ( p , q , r ) 共有 6 组,即 (2,3,5) ,(2,5,3) ,(3,2,5) ,(3,5,2) ,(5,2,3) , (5,3,2) .于是 p + q + r = 10 .2018 年初中数学联赛试题参考答案及评分标准 第 6 页(共 10 页)2.已知两个正整数的和比它们的积小 1000,若其中较大的数是完全平方数,则较小的数为 .【答】8.设这两个数为 m 2, n (m 2> n ) ,则 m 2+ n = m 2n -1000 ,即 ( m 2 - 1)( n - 1) =1001 .又1001 = 1001⨯1 = 143 ⨯ 7 = 91⨯11 = 77 ⨯13 ,所以 ( m 2 - 1, n -1) = (1001,1) 或 (143, 7) 或 (91,11)或 (77,13) ,验证可知只有 (m 2 -1, n -1) = (143,7) 满足条件,此时 m 2= 144, n = 8 .3 . 已知 D 是 △ ABC 内一点, E 是 AC 的中点, AB = 6 , BC =10 , ∠BAD = ∠BCD ,∠EDC = ∠ABD ,则 DE = .【答】4.F延长 CD 至 F ,使 DF = DC ,则 DEBC1又 AB = 6 ,故 AF = = 8 ,所以 DE = AF = 4 .102 - 6224.已知二次函数 y = x 2 + 2(m + 2n +1)x + (m 2 + 4n 2+ 50) 的图象在 x 轴的上方,则满足条件的正整数对 (m , n ) 的个数为.【答】16.因为二次函数的图象在 x 轴的上方,所以 ∆ = [2(m + 2n +1)]2- 4(m 2+ 4n 2+ 50) < 0 ,整理得4mn + 2m + 4n < 49 ,即 (m +1)(2n +1) <512 .因为 m , n 为正整数,所以 (m +1)(2n +1) ≤ 25 .又 m +1 ≥ 2 ,所以 2n +1 <252 ,故 n ≤ 5 .当 n = 1时, m +1 ≤ 253 ,故 m ≤ 223 ,符合条件的正整数对 (m , n ) 有 8 个;当 n = 2 时, m +1 ≤ 5 ,故 m ≤ 4 ,符合条件的正整数对 (m , n ) 有 4 个; 当 n = 3 时, m +1 ≤ 257 ,故 m ≤187 ,符合条件的正整数对 (m , n ) 有 2 个;当 n = 4 时, m +1 ≤259 ,故 m ≤ 179 ,符合条件的正整数对 (m , n ) 有 1 个;当 n = 5 时, m +1 ≤ 1125 ,故 m ≤ 1411 ,符合条件的正整数对 (m , n ) 有 1 个.综合可知:符合条件的正整数对 (m , n ) 有 8+4+2+1+1=16 个.2018 年初中数学联赛试题参考答案及评分标准 第 7 页(共 10 页)第二试 (A )一、(本题满分 20 分)设 a , b , c , d 为四个不同的实数,若 a , b 为方程 x 2-10cx -11d = 0 的根,c , d为方程 x 2-10ax -11b = 0 的根,求 a + b + c + d 的值.解 由韦达定理得 a + b =10c , c + d =10a ,两式相加得 a + b + c + d = 10(a + c ) .……………………5 分因为 a 是方程 x 2-10cx -11d = 0 的根,所以 a 2-10ac -11d = 0 ,又 d = 10a - c ,所以a 2-110a +11c -10ac = 0 .① ……………………10 分 类似可得 c 2-110c +11a -10ac = 0 . ②……………………15 分①-②得 (a - c )(a + c -121) = 0 .因为 a ≠ c ,所以 a + c = 121,所以 a + b + c + d =10(a + c ) =1210 . ……………………20 分二、(本题满分 25 分)如图,在扇形 OAB 中, ∠AOB = 90︒,OA = 12 ,点 C 在 OA 上, AC = 4 ,点 D 为 OB 的中点,点 E 为弧 AB 上的动点, OE 与 CD 的交点为F . (1)当四边形 ODEC 的面积 S 最大时,求 EF ; (2)求 CE + 2DE 的最小值.解 (1)分别过 O , E 作 CD 的垂线,垂足为 M , N .由 OD = 6, OC = 8 ,得 CD = 10 .所以S = S ∆OCD + S ∆ECD = 12 CD ⋅ (OM + EN )≤ 12 CD ⋅OE = 12 ⨯10 ⨯12 = 60 ,当 OE ⊥ DC 时, S 取得最大值 60.ACEM FNODBG……………………5 分此时, EF = OE - OF = 12 - 6 ⨯8 = 36 .……………………10 分510(2)延长 OB 至点 G ,使 BG = OB = 12 ,连结 GC , GE .因为 OD = OE = 1 ,∠DOE = ∠EOG ,所以△ ODE ∽△ OEG ,所以 DE = 1 ,故 EG = 2DE .OEOG2EG 2……………………20 分所以 CE + 2DE = CE + EG ≥ CG = 242 + 82= 8 ,当 C , E , G 三点共线时等号成立.10 故 CE + 2DE 的最小值为 8.10 ……………………25 分2018 年初中数学联赛试题参考答案及评分标准 第 8 页(共 10 页)m 3 + n 3 - m 2 n 2三、(本题满分 25 分)求所有的正整数 m , n ,使得是非负整数.解 记 S = m 3 + n 3 - m 2 n 2 ,则(m + n )2S =(m + n )[(m + n )2 - 3mn ] - m 2 n 2= (m + n ) - 3mn - ( mn )2 . (m + n )2 m + nm + n因为 m , n 为正整数,故可令mn = q , p , q 为正整数,且 ( p , q ) = 1.m + n p于是 S = (m + n ) -3q - q 2 = (m + n ) - 3 pq + q2.pp 2 p 2因为 S 为非负整数,所以 p | q 2,又 ( p , q ) = 1,故 p = 1,即 (m + n ) | mn .①……………………10 分所以 n 2= n - mn 是整数,所以 (m + n ) | n 2 ,故 n 2 ≥ m + n ,即 n 2- m ≥ n .m + n m + n又由 S ≥ 0 ,知 m 3 + n 3 - m 2n 2 ≥ 0 .② 所以 n 3 ≥ m 2n 2 - m 3 = m 2(n 2- m ) ≥ m 2n ,所以 n ≥ m .由对称性,同理可得 m ≥ n ,故 m = n .……………………20 分把 m = n 代入①,得 2 | m ,则 m ≥ 2 .把 m = n 代入②,得 2m 3- m 4≥ 0 ,即 m ≤ 2 . 故 m = 2 .所以,满足条件的正整数 m , n 为 m = 2 , n = 2 .……………………25 分第二试 (B )一、(本题满分 20 分)若实数 a , b , c 满足 (a + b + c )(1 + 1 + 1 ) = 9 ,求 5a +b - 5c b + c - 5a c + a - 5b (a + b + c )( 1 + 1 + 1 ) 的值.a bc解 记 a + b + c = x , ab + bc + ca = y , abc = z ,则111111(a + b + c )(++) = x (++)a +b - 5c b + c - 5a c + a - 5b x - 6a x - 6b x - 6c= x [3x 2-12(a + b + c )x + 36(ab + bc + ca )] = x ( -9 x 2 + 36 y ),x - 6(a + b + c )x + 36(ab + bc + ca )x - 216abc -5 x 3 + 36 xy - 216z ……………………10 分2018 年初中数学联赛试题参考答案及评分标准 第 9 页(共 10 页)结合已知条件可得x ( -9 x 2 + 36 y ) = 9 ,整理得 xy = 27 z .所以-5 x 3+ 36 xy - 216 z 52(a + b + c )( 1 + 1 + 1 ) = xy = 27 .……………………20 分a b zc 2二、(本题满分 25 分)如图,点 E 在四边形 ABCD 的边 AB 上,△ ABC 和△ CDE 都是等腰直角三角形, AB = AC , DE = DC .(1)证明: ADP E解 (1)由题意知 ∠ACB = ∠DCE = 45︒,BC =AC ,EC =DC ,2 2ADP所以 ∠DCA = ∠ECB , AC = DC ,所以△ ADC ∽△ BEC ,故 ∠DAC =EBC EC∠EBC = 45︒ ,所以 ∠DAC = ∠ACB ,所以 AD……………………10 分BC(2)设 AE = x ,因为 ∠ACE = 30︒,可得 AC = 3x , CE = 2x , DE = DC = 2x . 因为 ∠EAP = ∠CDP = 90︒ ,∠EPA = ∠CPD ,所以△ APE ∽△ DPC ,故可得 S ∆APE =12 S ∆DPC .……………………15 分又 S ∆EPC + S ∆APE = S ∆ACE =23x 2 , S ∆EPC + S ∆DPC = S ∆CDE = x 2 ,于是可得S ∆DPC = (2 -= (-1)x 2 .3)x 2 , S ∆EPC 3 ……………………20 分S∆DPC 2 --1所以DP ==3 = 3 .……………………25 分PE S∆EPC -123三、(本题满分 25 分)设 x 是一个四位数, x 的各位数字之和为 m , x +1的各位数字之和为 n ,并且 m 与 n 的最大公约数是一个大于 2 的素数.求 x .解 设 x = abcd ,由题设知 m 与 n 的最大公约数 (m , n ) 为大于 2 的素数.若 d ≠ 9 ,则 n = m +1 ,所以 ( m , n ) =1,矛盾,故 d = 9 .……………………5 分若 c ≠ 9 ,则 n = m +1 - 9 = m -8 ,故 ( m , n ) = ( m ,8) ,它不可能是大于 2 的素数,矛盾,故 c = 9 .……………………10 分若 b = 9 ,显然 a ≠ 9 ,所以 n = m +1- 9 - 9 - 9 = m - 26 ,故 ( m , n ) = ( m , 26) =13 ,但此时可得n ≥ 13 , m = n + 26 ≥ 39 > 36 ,矛盾.……………………15 分若 b ≠ 9 ,则 n = m +1- 9 - 9 = m -17 ,故 ( m , n ) = ( m ,17) =17 ,只可能 n = 17, m = 34 .于是可得 x = 8899 或 9799 .……………………20 分……………………25 分2018 年初中数学联赛试题参考答案及评分标准第 10 页(共 10 页)。