平方差公式和完全平方公式强化练习答案
- 格式:doc
- 大小:43.50 KB
- 文档页数:1
第03讲平方差和完全平方公式1.掌握平方差和完全平方公式结构特征,并能从广义上理解公式中字母的含义;2.学会运用平方差和完全平方公式进行计算.了解公式的几何意义,能利用公式进行乘法运算;3.能灵活地运用运算律与乘法公式简化运算.4.能用平方差和完全平方公式的逆运算解决问题知识点1:平方差公式平方差公式:22()()a b a b a b+-=-语言描述:两个数的和与这两个数的差的积,等于这两个数的平方差.注意:在这里,b a ,既可以是具体数字,也可以是单项式或多项式.知识点2:平方差公式的特征抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:①位置变化,(x +y )(-y +x )=x 2-y 2②符号变化,(-x +y )(-x -y )=(-x )2-y 2=x 2-y 2③指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④系数变化,(2a +b )(2a -b )=4a 2-b 2⑤换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m )=x 2y 2-(z 2+zm +zm +m 2)=x 2y 2-z 2-2zm -m 2⑥增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=(x -y )(x -y )-z 2=x 2-xy -xy +y 2-z 2=x 2-2xy +y 2-z 2知识点3:完全平方公式完全平方公式:()2222a b a ab b+=++2222)(b ab a b a +-=-两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍注意:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:()2222a b a b ab +=+-()22a b ab=-+()()224a b a b ab+=-+知识点4:拓展、补充公式2222222a b c ab ac bc=+++++(a+b+c)222112a a a±=+±(a )2()()()x p x q x p q x pq ++=+++;2233()()a b a ab b a b ±+=± ;33223()33a b a a b ab b ±=±+±;2222()222a b c a b c ab ac bc ++=+++++.【题型1平方差公式运算】【典例1】(2023春•渭南期中)计算(3a +2)(3a ﹣2)=9a 2﹣4.【答案】9a 2﹣4.【解答】解:(3a +2)(3a ﹣2)=9a 2﹣4.故答案为:9a 2﹣4.【变式1-1】(2023春•蕉城区校级月考)若a +b =1,a ﹣b =2022,则a 2﹣b 2=2022.【答案】2022.【解答】解:∵a +b =1,a ﹣b =2022,∴(a+b)(a﹣b)=a2﹣b2=1×2022=2022.故答案为:2022.【变式1-2】(2023春•双峰县期末)(4a+b)(﹣b+4a)=16a2﹣b2.【答案】16a2﹣b2.【解答】解:原式=(4a)2﹣b2=16a2﹣b2.故答案为:16a2﹣b2.【变式1-3】(2023春•埇桥区期末)计算:(2x﹣3y)(3y+2x)=4x2﹣9y2.【答案】4x2﹣9y2.【解答】解:(2x﹣3y)(3y+2x)=(2x)2﹣(3y)2=4x2﹣9y2.故答案为:4x2﹣9y2.【典例2】(2023春•佛冈县期中)19992﹣1998×2002.【答案】﹣3995.【解答】解:原式=(2000﹣1)2﹣(2000﹣2)×(2000+2)=20002﹣4000+1﹣20002+4=﹣3995.【变式2-1】(2023•皇姑区校级开学)简便运算:20222﹣2020×2024.【答案】4.【解答】解:20222﹣2020×2024=20222﹣(2022﹣2)×(2022+2)=20222﹣(20222﹣4)=20222﹣20222+4=4.【变式2-2】(2023春•安乡县期中)计算:20222﹣2021×2023.【答案】1.【解答】解:20222﹣2021×2023.=20222﹣(2022﹣1)×(2022+1)=20222﹣20222+1=1.【变式2-3】(2023春•渭滨区期末)用整式乘法公式计算:899×901+1.【答案】810000.【解答】解:899×901+1=(900﹣1)×(900+1)+1=9002﹣1+1=810000.【题型2平方差公式的逆运算】【典例3】(2023春•海阳市期末)已知x+2y=13,x2﹣4y2=39,则多项式x﹣2y的值是3.【答案】3.【解答】解:∵x+2y=13,x2﹣4y2=39,∴x2﹣4y2=(x+2y)(x﹣2y)=39,∴x﹣2y=3.故答案为:3.【变式3-1】(2023春•辽阳期末)若m2﹣n2=6,且m+n=3,则n﹣m等于﹣2.【答案】﹣2.【解答】解:∵(m+n)(m﹣n)=m2﹣n2,∴m﹣n=(m2﹣n2)÷(m+n)=6÷3=2,∴n﹣m=﹣2,故答案为:﹣2.【变式3-2】(2023春•广饶县期中)已知实数a,b满足a2﹣b2=40,a﹣b=4,则a+b的值为10.【答案】10.【解答】解:∵a2﹣b2=40,∴(a+b)(a﹣b)=40,∵a﹣b=4,∴a+b=10.故答案为:10.【变式3-3】(2023春•甘州区校级期末)若m2﹣n2=6,m+n=3,则=1.【答案】1.【解答】解:∵m2﹣n2=6,m+n=3,∴(m﹣n)(m+n)=6,则m﹣n的值是2,∴=1.故答案为:1.【题型3平方差公式的几何背景】【典例4】(2023春•东昌府区校级期末)如图,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),把余下的部分剪拼成垄一个矩形.(1)通过计算两个图形的面积(阴影部分的面积),可以验证的等式是:B.A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2+ab=a(a+b)D.a2﹣b2=(a﹣b)2(2)应用你从(1)选出的等式,完成下列各题:①已知:a+b=7,a2﹣b2=28,求a﹣b的值;②计算:;【答案】(1)B;(2)a﹣b=4;(3).【解答】解:(1)第一个图形面积为a2﹣b2,第二个图形的面积为(a+b)(a ﹣b),∴可以验证的等式是:a2﹣b2=(a+b)(a﹣b),故答案为:B;(2)∵a+b=7,a2﹣b2=28,∴(a+b)(a﹣b)=28,即7(a﹣b)=28,∴a﹣b=4;(3)原式=(1﹣)×(1+)×(1﹣)×(1+)×(1﹣)×(1+)×...×(1﹣)×(1+)=××××××...××=×=.【变式4-1】(2023春•高明区月考)乘法公式的探究及应用.(1)如图1到图2的操作能验证的等式是D.(请选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2B.a2+ab=a(a+b)C.(a﹣b)2=(a+b)2﹣4abD.a2﹣b2=(a+b)(a﹣b)(2)当4m2=12+n2,2m+n=6时,则2m﹣n=2;(3)运用你所得到的公式,计算下列各题:①20232﹣2022×2024;②2×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)+1.【答案】(1)D;(2)2;(3)①1;②332.【解答】解:(1)如图,图1中阴影面积为a2﹣b2,图2的阴影面积为(a+b)(a﹣b),∴图1到图2的操作能验证的等式是a2﹣b2=(a+b)(a﹣b),故答案为:D;(2)∵4m2=12+n2,∴4m2﹣n2=12即(2m+n)(2m﹣n)=12,∵2m+n=6,∴2m﹣n=2,故答案为:2;(3)①20232﹣2022×2024=20232﹣(2023﹣1)×(2023+1)=20232﹣20232+1=1;②2×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)+1=(3﹣1)×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)+1=(32﹣1)×(32+1)×(34+1)×(38+1)×(316+1)+1=(34﹣1)×(34+1)×(38+1)×(316+1)+1=(38﹣1)×(38+1)×(316+1)+1=(316﹣1)×(316+1)+1=332﹣1+1=332.【变式4-2】(2023春•清远期末)如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)根据上述操作利用阴影部分的面积关系得到的等式:C(选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2;B.a2+ab=a(a+b);C.a2﹣b2=(a+b)(a﹣b),D.(a﹣b)2=(a+b)2﹣4ab(2)请应用(1)中的等式,解答下列问题:(1)计算:2022×2024﹣20232;(2)计算:3(22+1)(24+1)(28+1)…(264+1)+1.【答案】(1)C;(2)①﹣1,2128.=a2﹣b2.根据图2知:S阴影=(a+b)(a 【解答】解:(1)根据图1知:S阴影﹣b),∴a2﹣b2=(a+b)(a﹣b),故选:C.(2)①原式=(2023﹣1)(2023+1)﹣20232=20232﹣12﹣20232=﹣1.②原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(264+1)+1=(22﹣1)(22+1)(24+1)(28+1)…(264+1)+1=(24﹣1)(24+1)(28+1)…(264+1)+1=(2128﹣1)+1=2128.【变式4-3】(2023春•屏南县期中)乘法公式的探究及应用:如图,在边长为a 的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪成两个直角梯形后,再拼成一个等腰梯形.(1)通过计算左、右两图的阴影部分面积,可以得到乘法公式:(a+b)(a﹣b)=a2﹣b2;(2)利用上述乘法公式计算:①1002﹣98×102;②(2m+n﹣p)(2m+n+p).【答案】(1)(a+b)(a﹣b)=a2﹣b2;(2)①4;②4m2+4mn+n2﹣p2.【解答】解:(1)两个图形中阴影部分面积一致,大小正方形面积之差等于等腰梯形的面积,且等腰梯形的高为大小正方形边长差,故;故答案为:(a+b)(a﹣b)=a2﹣b2;(2)①1002﹣98×102=1002﹣(100﹣2)(100+2)=1002﹣(1002﹣22)=1002﹣1002+22=4②(2m+n﹣p)(2m+n+p)=(2m+n)2﹣p2=4m2+4mn+n2﹣p2.【题型4完全平方公式】【典例5】(2023春•砀山县校级期末)计算:(x+4)2﹣x2=8x+16.【答案】8x+16.【解答】解:(x+4)2﹣x2=x2+8x+16﹣x2=8x+16,故答案为:8x+16.【变式5-1】(2023春•威宁县期末)已知x2+y2=10,xy=2,则(x﹣y)2=6.【答案】见试题解答内容【解答】解:∵x2+y2=10,xy=2,∴(x﹣y)2=x2+y2﹣2xy=10﹣4=6.故答案为:6.【变式5-2】(2023春•东港市期中)若(2x﹣m)2=4x2+nx+9,则n的值为±12.【答案】±12.【解答】解:∵(2x﹣m)2=4x2﹣4mx+m2,∴m2=9,∴m=±3,∴n=﹣4m=±12.故答案为:±12.【变式5-3】(2023春•未央区校级月考)计算:(x+2)2+(1﹣x)(2+x).【答案】3x+6.【解答】解:原式=x2+4x+4+2+x﹣2x﹣x2=3x+6.【题型5完全平方公式下得几何背景】【典例6】(2023秋•绿园区校级月考)为创建文明校园环境,高校长制作了“节约用水”“讲文明,讲卫生”等宣传标语,标语由如图①所示的板材裁剪而成,其为一个长为2m,宽为2n的长方形板材,将长方形板材沿图中虚线剪成四个形状和大小完全相同的小长方形标语,在粘贴过程中,同学们发现标语可以拼成图②所示的一个大正方形.(1)用两种不同方法表示图②中小正方形(阴影部分)面积:=(m﹣n)2;方法一:S小正方形=(m+n)2﹣4mn;方法二:S小正方形(2)(m+n)2,(m﹣n)2,4mn这三个代数式之间的等量关系为(m+n)2=(m﹣n)2+4mn;(3)根据(2)题中的等量关系,解决如下问题:①已知:a﹣b=5,ab=﹣6,求:(a+b)2的值;②已知:a﹣=1,求:的值.【答案】(1)(m﹣n)2,(m+n)2﹣4mn;(2)(m+n)2=(m﹣n)2+4mn;(3)①1;②5.【解答】解:(1)方法1:;方法2:,故答案为:(m﹣n)2,(m+n)2﹣4mn;(2)∵(m+n)2=m2+2mn+n2,(m﹣n)2+4mn=m2﹣2mn+n2+4mn=m2+2mn+n2,∴(m+n)2=(m﹣n)2+4mn,故答案为:(m+n)2=(m﹣n)2+4mn;(3)①a﹣b=5,ab=﹣6,∴(a+b)2=(a﹣b)2+4ab,=52+4×(﹣6)=25+(﹣24)=1;②=12+4=1+4=5.【变式6-1】(2023春•甘州区校级期中)图1是一个长为2x、宽为2y的长方形,沿图中虚线用剪刀剪成四个完全相同的小长方形,然后按图2所示拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于x﹣y.(2)试用两种不同的方法求图2中阴影部分的面积.方法1:(x﹣y)2;方法2:(x+y)2﹣4xy.(3)根据图2你能写出下列三个代数式之间的等量关系吗?代数式:(x+y)2,(x﹣y)2,4xy.(x+y)2=(x﹣y)2+4xy(4)根据(3)题中的等量关系,解决如下问题:若x+y=4,xy=3,则(x﹣y)2=4.【答案】见试题解答内容【解答】解:(1)图②中的阴影部分的小正方形的边长=x﹣y;故答案为:(x﹣y);(2)方法①(x﹣y)2;方法②(x+y)2﹣4xy;故答案为:(x﹣y)2,(x+y)2﹣4xy;(3)(x+y)2=(x﹣y)2+4xy;故答案为:(x+y)2=(x﹣y)2+4xy;(4)(x﹣y)2=(x+y)2﹣4xy=42﹣12=4故答案为:4.【变式6-2】(2023•永修县校级开学)如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积(直接用含m,n的代数式表示).方法一:(m+n)2﹣4mn;方法二:(m﹣n)2.(2)根据(1)的结论,请你写出代数式(m+n)2,(m﹣n)2,mn之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:已知实数a,b满足:a+b =6,ab=5,求a﹣b的值.【答案】(1)(m+n)2﹣4mn,(m﹣n)2;(2)代数式(m+n)2,(m﹣n)2,mn之间的等量关系可表示为:(m+n)2﹣4mn=(m﹣n)2;(3)±4.【解答】解:(1)由题意得,图②中阴影部分的面积为(m+n)2﹣4mn或(m﹣n)2,故答案为:(m+n)2﹣4mn,(m﹣n)2;(2)由(1)题可得,(m+n)2﹣4mn=(m﹣n)2,∴代数式(m+n)2,(m﹣n)2,mn之间的等量关系可表示为:(m+n)2﹣4mn=(m﹣n)2;(3)由(2)题结果可得,(a+b)2﹣4ab=(a﹣b)2,∴a﹣b=±,∴当a+b=6,ab=5时,a﹣b=±=±==±4.【变式6-3】(2023春•湖州期中)阅读理解:若x满足(30﹣x)(x﹣10)=160,求(30﹣x)2+(x﹣10)2的值.解:设30﹣x=a,x﹣10=b.则(30﹣x)(x﹣10)=ab=160,a+b=(30﹣x)+(x﹣10)=20,(30﹣x)2+(x﹣10)2=a2+b2=(a+b)2﹣2ab=202﹣2×160=80.解决问题:(1)若x满足(2021﹣x)2+(x﹣2018)2=2020.求(2021﹣x)(x﹣2018)的值;(2)如图,在矩形ABCD中,AB=20,BC=12,点E、F是BC、CD上的点,且BE=DF=x.分别以FC、CE为边在矩形ABCD外侧作正方形CFGH 和CEMN,若矩形CEPF的面积为160平方单位,求图中阴影部分的面积和.【答案】(1)﹣;(2)384.【解答】解:(1)设2021﹣x=a,x﹣2008=b.则a+b=3,而(2021﹣x)2+(x﹣2018)2=2020=a2+b2,∴(2020﹣x)(x﹣2018)=ab===﹣;(2)由AB=20,BC=12,BE=DF=x,则CE=12﹣x,CF=20﹣x,∵矩形CEPF的面积为160平方单位,∴(12﹣x)(20﹣x)=160,∴S=CE2+FC2=(12﹣x)2+(20﹣x)2,阴影部分设12﹣x=m,20﹣x=n,则mn=160,m﹣n=﹣8,∴S=CE2+FC2=(12﹣x)2+(20﹣x)2,阴影部分=m2+n2=(m﹣n)2+2mn=64+320=384,即阴影部分的面积为384.【题型6完全平方公式的逆运算】【典例7】(2023春•永丰县期中)已知:a2+b2=3,a+b=2.求:(1)ab的值;(2)(a﹣b)2的值;(3)a4+b4的值.【答案】(1);(2)2;(3).【解答】解:(1)∵a+b=2,∴(a+b)2=4,即a2+2ab+b2=4,∵a2+b2=3,∴3+2ab=4,∴ab=;(2)(a﹣b)2=(a+b)2﹣4ab=4﹣4×=2;(3)a4+b4=(a2+b2)2﹣2a2b2=(a2+b2)2﹣2(ab)2=32﹣2×()2=9﹣=.【变式7-1】(2023春•都昌县期末)已知实数m,n满足m+n=6,mn=﹣3.(1)求(m+2)(n+2)的值;(2)求m2+n2的值.【答案】(1)13;(2)42.【解答】解:(1)因为m+n=6,mn=﹣3,所以(m+2)(n+2)=mn+2m+2n+4=mn+2(m+n)+4=﹣3+2×6+4=13.(2)m2+n2=(m+n)2﹣2mn=62﹣2×(﹣3)=36+6=42.【变式7-2】(2023春•周村区期末)若x+y=2,且(x+3)(y+3)=12.(1)求xy的值;(2)求x2+3xy+y2的值.【答案】见试题解答内容【解答】解:(1)∵(x+3)(y+3)=12,∴xy+3x+3y+9=12,则xy+3(x+y)=3,将x+y=2代入得xy+6=3,则xy=﹣3;(2)当xy=﹣3、x+y=2时,原式=(x+y)2+xy=22+(﹣3)=4﹣3=1.【变式7-3】(2022秋•大安市期末)已知m﹣n=6,mn=4.(1)求m2+n2的值.(2)求(m+2)(n﹣2)的值.【答案】(1)44;(2)﹣12.【解答】解:(1)因为m﹣n=6,mn=4,所以m2+n2=(m﹣n)2+2mn=62+2×4=36+8=44;(2)因为m﹣n=6,mn=4,所以(m+2)(n﹣2)=mn﹣2m+2n﹣4=mn﹣2(m﹣n)﹣4=4﹣2×6﹣4=﹣12.1.(2023•深圳)下列运算正确的是()A.a3•a2=a6B.4ab﹣ab=4C.(a+1)2=a2+1D.(﹣a3)2=a6【答案】D【解答】解:A,a3•a2=a3+2=a5,故A选项错误,不合题意;B,4ab﹣ab=3ab,合并同类项结果错误,故B选项错误,不合题意;C,(a+1)2=a2+2a+1,故C选项错误,不合题意;D,(﹣a3)2=a3×2=a6,故D选项正确,符合题意;故选:D.2.(2022•赤峰)已知(x+2)(x﹣2)﹣2x=1,则2x2﹣4x+3的值为()A.13B.8C.﹣3D.5【答案】A【解答】解:(x+2)(x﹣2)﹣2x=1,x2﹣4﹣2x=1,x2﹣2x=5,所以2x2﹣4x+3=2(x2﹣2x)+3=2×5+3=10+3=13,故选:A.3.(2022•百色)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.(ab)2=a2b2【答案】A【解答】解:根据题意,大正方形的边长为a+b,面积为(a+b)2,由边长为a的正方形,2个长为a宽为b的长方形,边长为b的正方形组成,所以(a+b)2=a2+2ab+b2.故选:A.4.(2022•兰州)计算:(x+2y)2=()A.x2+4xy+4y2B.x2+2xy+4y2C.x2+4xy+2y2D.x2+4y2【答案】A【解答】解:(x+2y)2=x2+4xy+4y2.故选:A.5.(2023•凉山州)已知y2﹣my+1是完全平方式,则m的值是±2.【答案】±2.【解答】解:∵y2﹣my+1是完全平方式,y2﹣2y+1=(y﹣1)2,y2﹣(﹣2)y+1=(y+1)2,∴﹣m=﹣2或﹣m=2,∴m=±2.故答案为:±2.6.(2023•雅安)若a+b=2,a﹣b=1,则a2﹣b2的值为2.【答案】2.【解答】解:∵a+b=2,a﹣b=1,∴a2﹣b2=(a+b)(a﹣b)=2×1=2.故答案为:2.7.(2023•江西)化简:(a+1)2﹣a2=2a+1.【答案】2a+1.【解答】解:原式=a2+2a+1﹣a2=2a+1,故答案为:2a+1.8.(2022•遵义)已知a+b=4,a﹣b=2,则a2﹣b2的值为8.【答案】8.【解答】解:∵a+b=4,a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=4×2=8,故答案为:8.9.(2022•乐山)已知m2+n2+10=6m﹣2n,则m﹣n=4.【答案】4.【解答】解:∵m2+n2+10=6m﹣2n,∴m2﹣6m+9+n2+2n+1=0,即(m﹣3)2+(n+1)2=0,∴m=3,n=﹣1,∴m﹣n=4,故答案为:4.10.(2022•大庆)已知代数式a2+(2t﹣1)ab+4b2是一个完全平方式,则实数t的值为或﹣..【答案】见试题解答内容【解答】解:根据题意可得,(2t﹣1)ab=±(2×2)ab,即2t﹣1=±4,解得:t=或t=.故答案为:或﹣.11.(2022•滨州)若m+n=10,mn=5,则m2+n2的值为90.【答案】90.【解答】解:∵m+n=10,mn=5,∴m2+n2=(m+n)2﹣2mn=102﹣2×5=100﹣10=90.故答案为:90.12.(2022•德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=4.【答案】4.【解答】解:∵(x+y)2=x2+y2+2xy=25,(x﹣y)2=x2+y2﹣2xy=9,∴两式相减得:4xy=16,则xy=4.故答案为:413.(2023•兰州)计算:(x+2y)(x﹣2y)﹣y(3﹣4y).【答案】x2﹣3y.【解答】解:原式=x2﹣4y2﹣(3y﹣4y2)=x2﹣4y2﹣3y+4y2=x2﹣3y.14.(2022•六盘水)如图,学校劳动实践基地有两块边长分别为a,b的正方形秧田A,B,其中不能使用的面积为M.(1)用含a,M的代数式表示A中能使用的面积a2﹣M;(2)若a+b=10,a﹣b=5,求A比B多出的使用面积.【答案】(1)a2﹣M;(2)50.【解答】解:(1)A中能使用的面积=大正方形的面积﹣不能使用的面积,即a2﹣M,故答案为:a2﹣M;(2)A比B多出的使用面积为:(a2﹣M)﹣(b2﹣M)=a2﹣b2=(a+b)(a﹣b)=10×5=50,答:A比B多出的使用面积为50.1.(2023春•市南区校级期中)下列算式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(x+1)(﹣x﹣1)C.(3x﹣y)(﹣3x+y)D.(﹣m﹣n)(﹣m+n)【答案】D【解答】解:∵(2a+b)(2b﹣a)不符合平方差公式的特点,∴选项A不符合题意;∵(x+1)(﹣x﹣1)=﹣(x+1)2,∴选项B不符合题意;∵(3x﹣y)(﹣3x+y)=﹣(3x﹣y)2,∴选项C不符合题意;∵(﹣m+n)(﹣m﹣n)=(﹣m)2﹣n2,∴选项D符合题意;故选:D.2.(2022秋•睢阳区期末)如图1,在边长为a的正方形中剪去一个边长为b(b<a)的小正方形,把剩下部分拼成一个梯形(如图2),利用这两个图形的面积,可以验证的等式是()A.a2+b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2 C.(a+b)2=a2+2ab+b2D.a2﹣b2=(a+b)(a﹣b)【答案】D【解答】解:∵图1中的阴影部分面积为:a2﹣b2,图2中阴影部分面积为:(2b+2a)(a﹣b),∴a2﹣b2=(2b+2a)(a﹣b),即a2﹣b2=(a+b)(a﹣b),故选:D.3.(2022秋•嵩县期末)已知x+y=8,xy=12,则x2﹣xy+y2的值为()A.42B.28C.54D.66【答案】B【解答】解:∵x+y=8,xy=12,∴原式=(x+y)2﹣3xy=82﹣3×12=64﹣36=28.故选:B.4.(2022秋•海口期末)等式(﹣a﹣1)()=a2﹣1中,括号内应填入.A.a+1B.﹣1﹣a C.1﹣a D.a﹣1【答案】C【解答】解:结合题意,可知相同项是﹣a,相反项是1和﹣1,∴空格中应填:1﹣a.故选:C.5.(2022秋•离石区期末)若二次三项式x2+kx+4是一个完全平方式,则k的值是()A.4B.﹣4C.±2D.±4【答案】D【解答】解:中间项为加上或减去x和2乘积的2倍,故k=±4.故选:D.6.(2023春•攸县期末)若x2﹣y2=3,则(x+y)2(x﹣y)2的值是()A.3B.6C.9D.18【答案】C【解答】解:∵x2﹣y2=(x+y)(x﹣y)=3,∴原式=32=9,故选:C.7.(2022秋•邹城市校级期末)已知x2+2(m﹣1)x+9是一个完全平方式,则m的值为()A.4B.4或﹣2C.±4D.﹣2【答案】B【解答】解:∵x2+2(m﹣1)x+9是一个完全平方式,∴2(m﹣1)=±6,解得:m=4或m=﹣2,故选:B.8.(2022秋•渝北区校级期末)化简:(x+2y)2﹣(x+y)(3x﹣y).【答案】﹣2x2+2xy+5y2.【解答】解:原式=x2+4xy+4y2﹣(3x2﹣xy+3xy﹣y2)=x2+4xy+4y2﹣3x2+xy﹣3xy+y2=﹣2x2+2xy+5y2.9.(2023春•渭滨区期中)请你参考黑板中老师的讲解,用乘法公式进行简便计算:利用乘法公式有时可以进行简便计算.例1:1012=(100+1)2=1002+2×100×1+1=10201;例2:17×23=(20﹣3)(20+3)=202﹣32=391.(1)9992;(2)20222﹣2021×2023.【答案】(1)998001;(2)1.【解答】解:(1)原式=(1000﹣1)2=10002﹣2×1000×1+1=1000000﹣2000+1=998001;(2)20222﹣(2022﹣1)×(2022+1)=20222﹣20222﹣+1=1.10.(2022秋•龙湖区期末)请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简)(2)由(1),你能得到怎样的等量关系?请用等式表示;(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14.求:①a+b的值;②a2﹣b2的值.【答案】见试题解答内容【解答】解:(1)两个阴影图形的面积和可表示为:a2+b2,(a+b)2﹣2ab,(2)a2+b2=(a+b)2﹣2ab,(3)①∵a2+b2=53,ab=14,∴(a+b)2=a2+b2+2ab=53+2×14=81,∴a+b=±9,又∵a>0,b>0,∴a+b=9.②∵(a﹣b)2=a2+b2﹣2ab=53﹣2×14=25∴a﹣b=±5又∵a>b>0,∴a﹣b=5∴a2﹣b2=(a+b)(a﹣b)=9×5=45.11.(2022秋•高安市期末)已知a+b=7,ab=﹣2.求:(1)a2+b2的值;(2)(a﹣b)2的值.【答案】(1)53.(2)57.【解答】解:(1)∵a+b=7,ab=﹣2,∴(a+b)2=a2+b2+2ab=a2+b2+(﹣4)=49.∴a2+b2=53.(2)∵a+b=7,ab=﹣2,∴(a﹣b)2=a2+b2﹣2ab=a2+b2﹣(﹣4)=53+4=57.12.(2022•荆门)已知x+=3,求下列各式的值:(1)(x﹣)2;(2)x4+.【答案】(1)5;(2)47.【解答】解:(1)∵=,∴===﹣4x•=32﹣4=5;(2)∵=,∴=+2=5+2=7,∵=,∴=﹣2=49﹣2=47.13.(2022秋•阳城县期末)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是C;(请选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2B.b2+ab=b(a+b)C.a2﹣b2=(a+b)(a﹣b)D.a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x的值.②计算:.【答案】(1)C;(2);(3).【解答】解:(1)第一个图形中阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b).故选:C;(2)①∵x2﹣4y2=(x+2y)(x﹣2y),∴12=4(x﹣2y),得:x﹣2y=3,联立,①+②,得2x=7,解得:x=;②=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)==×=.14.(2023春•威海期中)利用简便方法计算:(1)501×499+1;(2)0.125×104×8×104.【答案】见试题解答内容【解答】解:(1)原式=(500+1)×(500﹣1)+1=5002﹣1+1=5002=250000;(2)原式=(0.125×8)×(104×104)=108.15.(2022秋•南昌期末)图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)求图2中的阴影部分的正方形的周长;(2)观察图2,请写出下列三个代数式(a+b)2,(a﹣b)2,ab之间的等量关系;(3)运用你所得到的公式,计算:若m、n为实数,且mn=﹣3,m﹣n=4,试求m+n的值.(4)如图3,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB=8,两正方形的面积和S1+S2=26,求图中阴影部分面积.【答案】答:(1)4a﹣4b;(2)(a﹣b)2=(a﹣b)2+4ab;(3)m+n=±2;=.(4)S阴影【解答】解:(1)阴影部分的正方形边长为a﹣b,故周长为4(a﹣b)=4a﹣4b,故答案为:4a﹣4b;(2)大正方形面积可以看作四个矩形面积加阴影面积,故可表示为:4ab+(a ﹣b)2,大正方形边长为a+b,故面积也可以表达为:(a+b)2,因此(a+b)2=(a﹣b)2+4ab,故答案为:(a+b)2=(a﹣b)2+4ab;(3)由(2)可知:(m+n)2=(m﹣n)2+4mn,已知m﹣n=4,mn=﹣3,所以(m+n)2=16+4×(﹣3)=4,所以m+n=±2;故m+n的值为±2;(4)设AC=a,BC=b,因为AB=8,S1+S2=26,所以a+b=8,a2+b2=26,因为(a+b)2=a2+b2+2ab,所以64=26+2ab,解得ab=19,由题意:∠ACF=90°,=ab=.所以S阴影16.(2022秋•丹棱县期末)阅读下列文字,我们知道对于一个图形,通过不同的方法计算图形的面积,可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图2中所表示的数学等式(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac =38,求a2+b2+c2的值;(3)图3中给出了若干个边长为a和边长为b的小正方形纸片.若干个长为a和宽为b的长方形纸片,利用所给的纸片拼出一个几何图形,使得计算它的面积能得到数学公式:2a2+5ab+2b2=(2a+b)(a+2b).【答案】见试题解答内容【解答】解:(1)根据题意,大矩形的面积为:(a+b+c)(a+b+c)=(a+b+c)2,各小矩形部分的面积之和=a2+2ab+b2+2bc+2ac+c2,∴等式为(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc=112﹣2×38=45.(3)如图所示。
平方差公式、完全平方公式应用例说例1 计算(1))1)(1(+-ab ab ;(2))32)(32(---x x ;(3)1022;(4)992. 解:(1))1)(1(+-ab ab =11)(222-=-b a ab ;(2))32)(32(---x x = )23)(23(x x --+-=22249)2()3(x x -=--;(3)1022= 2)2100(+=1040444001000022100210022=++=+⨯⨯+;(4)992=2)1100(-=98011200100001110021002=+-=+⨯⨯-.例2 计算 (1))1)(1(-+++b a b a ;(2)2)2(p n m +-.解:(1))1)(1(-+++b a b a =121)(]1)][(1)[(222-++=-+=-+++b ab a b a b a b a ;(2)2)2(p n m +-=222)2(2)2(])2[(p p n m n m p n m +⋅-⋅+-=+- =2224244p np mp n mn m +-++-.例3 当2)2()23)(23(1,1b a b a b a b a ---+=-=时,求的值.【点拨】先用乘法公式计算,去括号、合并同类项后,再将a 、b 的值代入计算出结果.解:)44(49)2()23)(23(22222b ab a b a b a b a b a +---=---+=2222228484449b ab a b ab a b a -+=-+--;当时,1,1=-=b a222848)2()23)(23(b ab a b a b a b a -+=---+=8(-1)81)1(42-⨯-+=-4. 例4 求证:当n 为整数时,两个连续奇数的平方差22)12()12(--+n n 是8的倍数.证明:22)12()12(--+n n =)144(14422+--++n n n n=n n n n n 814414422=-+-++,又∵n 为整数,∴8n 也为整数且是8的倍数.例5 观察下列等式:10122=-,31222=-,52322=-,73422=-,……请用含自然数n 的等式表示这种规律为:________________.例6已知2294y Mxy x +-是一个完全平方式,求M 的值.解:根据2)32(y x ±=229124y xy x +±得: 12±=-M .∴12±=M答:M 的值是±12.例7 计算 1584221)211)(211)(211)(211(+++++. 【点拨】若按常规思路从左到右逐个相乘,比较麻烦;如果乘或除以一个数或一个整式,将本来复杂的问题转化成我们已知的、熟悉的,从而找到问题的捷径.解:1584221)211)(211)(211)(211(+++++ =158422121)211)(211)(211)(211)(211(+÷++++- =1584222121)211)(211)(211)(211(+÷+++- =158442121)211)(211)(211(+÷++- =15882121)211)(211(+÷+- =15162121)211(+÷-=2-15152121+=2. 第一种情况:直接运用公式1.(a+3)(a-3)2..( 2a+3b)(2a-3b)3. (1+2c)(1-2c)4. (-x+2)(-x-2)5. (2x+12)(2x-12) 6. (a+2b)(a-2b)7. (2a+5b)(2a-5b) 8. (-2a-3b)(-2a+3b)第二种情况:运用公式使计算简便1、 1998×20022、498×5023、999×10014、1.01×0.995、30.8×29.26、(100-13)×(99-23)7、(20-19)×(19-89)第三种情况:两次运用平方差公式1、(a+b)(a-b)(a2+b2)2、(a+2)(a-2)(a2+4)3、(x-12)(x2+14)(x+12)第四种情况:需要先变形再用平方差公式1、(-2x-y)(2x-y)2、(y-x)(-x-y) 3.(-2x+y)(2x+y) 4.(4a-1)(-4a-1) 5.(b+2a)(2a-b) 6.(a+b)(-b+a) 7.(ab+1)(-ab+1)第五种情况:每个多项式含三项1.(a+2b+c)(a+2b-c)2.(a+b-3)(a-b+3)3.x-y+z)(x+y-z)4.(m-n+p)(m-n-p)完全平方公式公式:语言叙述:两数的 ,. 。
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2 ② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2 ⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2 =x 2-2xy +y 2-z 2 ⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz 例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+ ∵2=+b a ,1=ab ∴22b a +=21222=⨯- 例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a - ∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯- 例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
乘法公式的复习一、复习:(a+b)(a-b)=a2-b2 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 (a+b)(a2-ab+b2)=a3+b3 (a-b)(a2+ab+b2)=a3-b3归纳小结公式的变式,准确灵活运用公式:①位置变化,(x+y)(-y+x)=x2-y2②符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2③指数变化,(x2+y2)(x2-y2)=x4-y4④系数变化,(2a+b)(2a-b)=4a2-b2⑤换式变化,[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2y2-z2-2zm-m2⑥增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2⑦连用公式变化,(x+y)(x-y)(x2+y2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z )=-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
8.3 平方差公式与完全平方公式一、选择一、以下运算正确的选项是( )A 、223)3)(3(y x y x y x -=-+B 、229)3)(3(y x y x y x -=--C 、229)3)(3(y x y x y x --=-+-D 、229)3)(3(y x y x y x -=--+-二、以下算式可用平方差公式的是( )A 、(m+2m )(m-2m)B 、(-m-n )(m+n)C 、(-m-n )(m-n)D 、(m-n )(-m+n)3、计算2)55)(5151(y y x y x -+-+的结果是( ) A 、x 2 B 、-x 2 C 、2y 2-x 2 D 、x 2-2y 24.(-x 2-y )2的运算结果正确的选项是 ( )A.—x 2-2xy+y 2B.-x 4-2x 2y+y 2C.x 4+2x 2y+y 2D.x 4-2x 2y+y 25.以下各式计算结果是2mn-m 2-n 2的是( )A.(m-n )2B.-(m-n )2C.-(m+n )2D.(m+n)26.以劣等式:①(a-b )2=(b-a )2②(a+b )2=(-a-b )2③(a-b )2=(a+b )2④a 2-b 2=(b-a)(-b-a)⑤(a+b)(a-b)=(b+a)(b-a).其中必然成立的是( )A.1个B.2个C.3个D.4个7.计算(-x-2y )2的结果是( )A.x 2-4xy+4y 2B.-x 2-4xy-4y 2C.x 2+4xy+4y 2D.-x 2+4xy-4y 28.假设(9+x 2)(x+3)( )=x 4-81,那么括号里应填入的因式是( )A.x-3B.3-xC.3+xD.x-99.计算(a m +b n )(a 2m -b 2n )(a m -b n )正确的选项是 ( )A.a 4m -2a 2m b 2n +b 4mB.a 4m -b 4C.a 4m +b 4nD.a 2m +b 2n +2a m b n10.(3x+2y )2=(3x-2y)2+A,那么代数式A 是 ( )A.-12xyB.12xyC.24xyD.-24xy二、填空题11.(a-b+1)(a+b-1)= .12.已知x 2+4x+y 2-2y+5=0,则x+y= .13.已知0)13(132=+++-x y x ,则x 2+y 2= . 14.若x+y=3,x-y=1,则x 2+y 2= xy= . 15.22491)(_____)231(y x y x -=+-16.(1+4m 2) (_____) (______)=1-16m4 17.x 2-px+16是完全平方式,则p= .18.(a+b)2= (a-b)2+________.19.若x+2y=3,xy=2,则x 2+4y 2=______.20.已知(x+y)2=9,(x-y)2=5,则xy=三、解答题21.计算:①)2)(2(b a b a --+-②2009200720082⨯-③))()((22b a b a b a +-+④.,12,222的值求若b a b a b a +=-=-⑤22)1()3(--+a a22.①已知a 2-8a+k 是完全平方式,试问k 的值.②已知x 2+mx+9是完全平方式,求m 的值.23.已知21=+xx ,求221x x +的值. 24.【探讨题】给出以下算式32-12=8=8×1;52-32=16=8×272-52=24=8×3;92-72=32=8×4………⑴观看上面一系列式子,你能发觉什么规律?用含有n 的式子表示出来: (n 为正整数): ⑵依照你发觉的规律,计算:20052-20032= .这时,n= .参考答案一、 选择1.D2.C3.B4.C5.B6.C7.C8.A9.A 10.C二、填空题11.a 2-b 2+2b-1 12.-1 13.91 14. 5, 2 15.y x 231-- 16. (1-2m)(1+2m) 17.±8 18. 4ab 19.1 20.1二、 解答题21.解析: ①原式=(-2a)2-b 2=4a 2-b 2.②原式=20202-(2020-1)(2020+1)=20202-(20202-1)=1.③原式=(a 2-b 2)(a 2+b 2)=a 4-b 4.④因为a 2-b 2=12, (a+b)(a-b)= a 2-b 2因此a+b=6.⑤原式=(a+3+a-1)(a+3-a+1)=4(2a+2)=8a+8;22. 解析:①设m 2=k ;因为a 2-8a+k 是完全平方式,因此a 2-8a+m 2=(a-m)2= a 2-2ma+m 2,因此8a=2ma,解得m=4,因此k=16. ②因为x 2+mx+9是完全平方式,因此x 2+mx+9=(x±3)2,因此m=±6. 23.解:∵ 4)1(2=+xx , ∴41222=++x x , 故221x x +=2; 24.解:⑴(2n+1)2-(2n-1)2=8n⑵8016。
平方差与完全平方公式练习1、用平方差公式进行计算:
(1) 103×97; (2)118×122 (3) 102×98 (4) 51×49
2、平方差公式在混合运算中的应用:
(3) (4)
利用平方差公式进行证明:
3、对于任意的正整数n,整式(3n+1)(3n-1)-(3-n)(3+n)的值一定是10的整数倍吗?
即(3n+1)(3n-1)-(3-n)(3+n)的值是10的倍数.
方法总结:在探究整除性或倍数问题时,一般先将代数式化为最简,然后根据结果的特征,判断其是否具有整除性或倍数关系.
4、如果两个连续奇数分别是2n-1,2n+1(其中n为正整数),证明两个连续奇数的平方差是8的倍数.
注意:逆用了平方差公式!5、
6、
7、
8、
9、对于任意一个正整数n,整式A=(4n+1)·(4n-1)-(n+1)·(n-1)能被15整除吗?请说明理由.
10、王大伯家把一块边长为a米的正方形土地租给了邻居李大妈.今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增加4米,继续租给你,你看如何?”李大妈一听,就答应了.你认为李大妈吃亏了吗?为什么?
完全平方公式
1、利用完全平方公式计算:
2、下面各式的计算是否正确?如果不正确,应当怎样改正?
3、利用完全平方公式计算
4、利用完全平方公式的变形求整式的值:
5、填空:
6、
7、
8、(1)(3a+b-2)(3a-b+2) (2)(x-y-m+n)(x-y+m-n) 9、
10、已知x+y=8, x-y=4,求xy.。
平方差公式强化练习平方差公式:22ba-+特点是相乘的两个二项式中,a表示-=a)b)(a(b的是完全相同的项,+b和-b表示的是互为相反数的两项。
所以说,两个二项式相乘能不能用平方差公式,关键看是否存在两项完全相同的项,两项互为相反数的项。
一:正用公式的条件是:方法有:1. a(a-5)-(a+6)(a-6)2. ( x+y)( x-y)( x2+y2)3.9982-44.5. 6.(5x2-4y2)(5x2+4y2) 7.(x+x+6)(x-x+6) 8.(2x+y-z+5)(2x-y+z+5) 9:)3ba2(cc)(3+)(--a-b)(++1-3+ba())(a3b10: (1)(2+1)(22+1)(24+1) (2) (3+1)(32+1)(34+1)(3)(2+1)(22+1)(24+1)…(22n +1)+1(n 是正整数);(4)(3+1)(32+1)(34+1)…(32008+1)-401632.二:逆用公式的条件是: 计算1.(1)(2m) – (3n) (2)(x+y+z) –(x-y)22)331()331)(3(b a b a --+ (4)(2a +b+c) - (2a+b-c)2.(1)222222221295969798991002-⋅⋅⋅⋅⋅+-+-+-)(三;变形用(整体思想)计算:1.若x 2-y 2=30,且x -y=-5,求 x+y 的值完全平方公式一:正用公式的条件是::方法有: 变符号:(1)(-a-b )2=(2) (-a+b )2=1.(1)()23a b + (2)()23x y -+ (3)212x ⎛⎫+ ⎪⎝⎭变项数:2. (1)()22x y z +- (2)21993. 计算:(1) ()221m -- (2)()()()22a b a b a b -+-(3)()2a b c +- (4)()2220.43m n -(5)()2231a b -+ (6) 472-94×27+272二; 有关配方问题(逆用)逆用公式的条件是:1. 472-94×27+272 =_____.2.若x 2+mx+9是完全平方式,则m=_____.3. 若x 2+12x+m 2是完全平方式,则m=_____.4. 若4x 2-mx+9是完全平方式,则m=_____.5.若(mx)2+12x+9是完全平方式,则m=_____.6.若mx 2+12x+9是完全平方式,则m=_____.7.已知x 2-2(m+1)xy+16y 2是一个完全平方式,那么m 的值是_____.8.已知x 2-2x+y 2+6y+10=0,求x=_____,y=_____,x+y=_____.9.试说明N=x 2-4x+y 2+6y+15永远为正值.10.(1)化简(a-b)2+(b-c)2+(a-c)2(2)利用上题的结论,且a-b=10, b-c=5,求a 2+b 2+c 2-ab-bc-ac 的值.三、整体计算方面1.已知3=+b a ,1=ab ,求22b a +和44a b +2.若5a b -=,4ab =,求22b a +的值;3.()28a b -=,()22a b +=,求 ab4. 若a 2+ b 2=9,ab=4,求3(a+b)2和(a-b)2的值.5.已知x+x 1=4,求x 2+(x 1)2,(x-x 1)2的值.。
平方差公式和完全平方公式(含参二)(人教版)一、单选题(共10道,每道10分)1.已知,则的值分别为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:平方差公式2.若,则的值为( )A.-4B.4C.8D.±4答案:D解题思路:试题难度:三颗星知识点:平方差公式3.若是一个完全平方式,则的值为( )A.±4B.±2C.4D.2答案:B解题思路:试题难度:三颗星知识点:完全平方公式4.若是一个完全平方式,则的值为( )A. B.±3yC. D.3y答案:B解题思路:试题难度:三颗星知识点:完全平方公式5.若是一个完全平方式,则的值为( )A.6或-3B.8或-2C.8D.-5或3答案:B解题思路:试题难度:三颗星知识点:完全平方公式6.若是完全平方式,则为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:完全平方公式7.若,则的值为( )A.2B.-2C.-4D.±2答案:B解题思路:试题难度:三颗星知识点:完全平方公式8.若,则的值分别为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:完全平方公式9.计算的结果是( )A.0B.1C.-1D.2 004答案:B解题思路:试题难度:三颗星知识点:平方差公式10.计算的结果为( )A.27 501B.29 501C.39 601D.49 501答案:C解题思路:试题难度:三颗星知识点:完全平方公式。
平方差公式与完全平方公式试题含答案Company number:【0089WT-8898YT-W8CCB-BUUT-202108】乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,xyyxx 2y 2 ② 符号变化,xyxyx 2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a 2b 2⑤ 换式变化,xyzmxyzmxy 2zm 2 x 2y 2z 22zm +m 2x 2y 2z 22zmm 2⑥ 增项变化,xyzxyzxy 2z 2 x 22xy y 2z 2⑦ 连用公式变化,xyxyx 2y 2x 2y 2x 2y 2x 4y 4⑧ 逆用公式变化,xyz 2xyz 2xyzxyzxyzxyz2x 2y 2z 4xy 4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
解:19992-2000×1998 =19992-(1999+1)×(1999-1)=19992-(19992-12)=+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。
平方差公式
公式:
语言叙述:, . 。
公式结构特点:
左边:
右边:
熟悉公式:公式中的a和b既可以表示数字也可以表示字母,还可以表示一个单项式或者一个多项式。
(5+6x)(5-6x)
中是公式中的a,是公式中的b (5+6x) (5+6x)
中是公式中的a,是公式中的b (x-2y)(x+2y)
中是公式中的a,是公式中的b (-m+n)(-m-n)
中是公式中的a,是公式中的b (a+b+c)(a+b-c)
中是公式中的a,是公式中的b (a-b+c)(a-b-c)
中是公式中的a,是公式中的b (a+b+c)(a-b-c)
中是公式中的a,是公式中的b 填空:
1、(2x-1)( )=4x2-1
2、(-4x- )( -4x)=16x2-49y2
第一种情况:直接运用公式
1.(a+3)(a-3)
2..( 2a+3b)(2a-3b)
3. (1+2c)(1-2c)
4. (-x+2)(-x-2)
5. (2x+1
2
)(2x-
1
2
) 6. (a+2b)(a-2b)
7. (2a+5b)(2a-5b) 8. (-2a-3b)(-2a+3b)
第二种情况:运用公式使计算简便
1、1998×2002
2、498×502
3、999×1001
4、1.01×0.99
5、30.8×29.2
6、(100-1
3
)×(99-
2
3
)
第三种情况:两次运用平方差公式
1、(a+b)(a-b)(a2+b2)
2、(a+2)(a-2)(a2+4)
3、(x-
1
2
)(x2+
1
4
)(x+
1
2
)
第四种情况:需要先变形再用平方差公式
1、(-2x-y)(2x-y)
2、(y-x)(-x-y)
3.(-2x+y)(2x+y)
4.(4a-1)(-4a-1)
5.(b+2a)(2a-b)
6.(a+b)(-b+a)
7.(ab+1)(-ab+1)
第五种情况:每个多项式含三项
1.(a+2b+c)(a+2b-c)
2.(a+b-3)(a-b+3)
3.x-y+z)(x+y-z)
4.(m-n+p)(m-n-p)
完全平方公式
公式:
语言叙述:两数的完全平方和(差)等于
这两个数各自平方和与这两个数乘积2倍的
和(差)。
,
公式结构特点:
左边:
右边:
熟悉公式:公式中的a和b既可以表示数字
也可以表示字母,还可以表示一个单项式或
者一个多项式。
公式变形
1、a2+b2=(a+b)2 - =(a-b)2
2、(a-b)2=(a+b)2 - (a+b)2=(a-b)2
3、(a+b)2 +(a-b)2=
4、(a+b)2 --(a-b)2=
一、利用完全平方公式计算:
(1)1022(2)1972
二、计算:
(1)(x+3)2-x2(2)y2-(x+y)2
(3)(3x-2y)2-(2x-3y)2(4)(2a+b)(2a-b)-(2a+b)2。