《平方差公式》经典习题
- 格式:doc
- 大小:19.50 KB
- 文档页数:2
平方差公式练习题精选一、基础训练1.下列运算中,正确的是()A.(a+3)(a-3)=a2-3 B.(3b+2)(3b-2)=3b2-4 C.(3m-2n)(-2n-3m)=4n2-9m2 D.(x+2)(x-3)=x2-6 2.在下列多项式的乘法中,可以用平方差公式计算的是()A.(x+1)(1+x)B.(12a+b)(b-12a)C.(-a+b)(a-b)D.(x2-y)(x+y2)3.对于任意的正整数n,能整除代数式(3n+1)(3n-1)-(3-n)(3+n)的整数是() A.3 B.6 C.10 D.94.若(x-5)2=x2+kx+25,则k=()A.5 B.-5 C.10 D.-105.9.8×10.2=________; 6.a2+b2=(a+b)2+______=(a-b)2+________.7.(x-y+z)(x+y+z)=________; 8.(a+b+c)2=_______.9.(12x+3)2-(12x-3)2=________.10.(1)(2a-3b)(2a+3b);(2)(-p2+q)(-p2-q);(3)(x-2y)2;(4)(-2x-12y)2.11.(1)(2a-b)(2a+b)(4a2+b2);(2)(x+y-z)(x-y+z)-(x+y+z)(x-y-z).12.有一块边长为m的正方形空地,想在中间位置修一条“十”字型小路,•小路的宽为n,试求剩余的空地面积;用两种方法表示出来,比较这两种表示方法,•验证了什么公式?二、能力训练13.如果x2+4x+k2恰好是另一个整式的平方,那么常数k的值为() A.4 B.2 C.-2 D.±214.已知a+1a=3,则a2+21a,则a+的值是()A.1 B.7 C.9 D.1115.若a-b=2,a-c=1,则(2a-b-c)2+(c-a)2的值为()A.10 B.9 C.2 D.116.│5x-2y│·│2y-5x│的结果是()A.25x2-4y2B.25x2-20xy+4y2C.25x2+20xy+4y2D.-25x2+20xy-4y2 17.若a2+2a=1,则(a+1)2=_________.三、综合训练18.(1)已知a+b=3,ab=2,求a2+b2;(2)若已知a+b=10,a2+b2=4,ab的值呢?19.解不等式(3x-4)2>(-4+3x)(3x+4).20.观察下列各式的规律.12+(1×2)2+22=(1×2+1)2;22+(2×3)2+32=(2×3+1)2;32+(3×4)2+42=(3×4+1)2;…(1)写出第2007行的式子;(2)写出第n行的式子,并说明你的结论是正确的.参考答案1.C 点拨:在运用平方差公式写结果时,要注意平方后作差,尤其当出现数与字母乘积的项,系数不要忘记平方;D项不具有平方差公式的结构,不能用平方差公式,•而应是多项式乘多项式.2.B 点拨:(a+b)(b-a)=(b+a)(b-a)=b2-a2.3.C 点拨:利用平方差公式化简得10(n2-1),故能被10整除.4.D 点拨:(x-5)2=x2-2x×5+25=x2-10x+25.5.99.96 点拨:9.8×10.2=(10-0.2)(10+0.2)=10-0.2=100-0.04=99.96.6.(-2ab);2ab7.x2+z2-y2+2xz点拨:把(x+z)作为整体,先利用平方差公式,•然后运用完全平方公式.8.a2+b2+c2+2ab+2ac+2bc点拨:把三项中的某两项看做一个整体,•运用完全平方公式展开.9.6x 点拨:把(12x+3)和(12x-3)分别看做两个整体,运用平方差公式(12x+3)2-(12x-3)2=(12x+3+12x-3)[12x+3-(12x-3)]=x·6=6x.10.(1)4a2-9b2;(2)原式=(-p2)2-q2=p4-q2.点拨:在运用平方差公式时,要注意找准公式中的a,b.(3)x4-4xy+4y2;(4)解法一:(-2x-12y)2=(-2x)2+2·(-2x)·(-12y)+(-12y)2=4x2+2xy+14y2.解法二:(-2x-12y)2=(2x+12y)2=4x2+2xy+14y2.点拨:运用完全平方公式时,要注意中间项的符号.11.(1)原式=(4a2-b2)(4a2+b2)=(4a2)2-(b2)2=16a4-b4.点拨:当出现三个或三个以上多项式相乘时,根据多项式的结构特征,•先进行恰当的组合.(2)原式=[x+(y-z)][x-(y-z)]-[x+(y+z)][x-(y+z)]=x2-(y-z)2-[x2-(y+z)2]=x2-(y-z)2-x2+(y+z)2=(y+z)2-(y-z)2=(y+z+y-z)[y+z-(y-z)]=2y·2z=4yz.点拨:此题若用多项式乘多项式法则,会出现18项,书写会非常繁琐,认真观察此式子的特点,恰当选择公式,会使计算过程简化.12.解法一:如图(1),剩余部分面积=m 2-mn-mn+n 2=m 2-2mn+n 2.解法二:如图(2),剩余部分面积=(m-n )2.∴(m-n )2=m 2-2mn+n 2,此即完全平方公式.点拨:解法一:是用边长为m 的正方形面积减去两条小路的面积,注意两条小路有一个重合的边长为n 的正方形.解法二:运用运动的方法把两条小路分别移到边缘,剩余面积即为边长为(m-n )•的正方形面积.做此类题要注意数形结合.13.D 点拨:x 2+4x+k 2=(x+2)2=x 2+4x+4,所以k 2=4,k 取±2.14.B 点拨:a 2+21a=(a+1a )2-2=32-2=7. 15.A 点拨:(2a-b-c )2+(c-a )2=(a+a-b-c )2+(c -a )2=[(a-b )+(a-c )] 2+(c-a )2=(2+1)2+(-1)2=9+1=10.16.B 点拨:(5x-2y )与(2y-5x )互为相反数;│5x-2y │·│2y-5x │=(5x-•2y )2•=25x 2-20xy+4y 2. 17.2 点拨:(a+1)2=a 2+2a+1,然后把a 2+2a=1整体代入上式.18.(1)a 2+b 2=(a+b )2-2ab .∵a+b=3,ab=2,∴a 2+b 2=32-2×2=5.(2)∵a+b=10,∴(a+b )2=102,a 2+2ab+b 2=100,∴2ab=100-(a 2+b 2).又∵a 2+b 2=4,∴2ab=100-4,ab=48.点拨:上述两个小题都是利用完全平方公式(a+b )2=a 2+2ab+b 2中(a+)、ab 、(a 2+b 2)•三者之间的关系,只要已知其中两者利用整体代入的方法可求出第三者.19.(3x -4)2>(-4+3x )(3x+4),(3x)2+2×3x·(-4)+(-4)2>(3x)2-42,9x2-24x+16>9x2-16,-24x>-32.x<43.点拨:先利用完全平方公式,平方差公式分别把不等式两边展开,然后移项,合并同类项,解一元一次不等式.20.(1)(2007)2+(2007×2008)2+(2008)2=(2007×2008+1)2(2)n2+[n(n+1)] 2+(n+1)2=[n(n+1)+1] 2.证明:∵n2+[n(n+1)] 2+(n+1)2=n2+n2(n+1)2+n2+2n+1=n2+n2(n2+2n+1)+n2+2n+1=n2+n4+2n3+n2+n2+2n+1=n4+2n3+3n2+2n+1.而[n(n+1)+1] 2=[n(n+1)] 2+2n(n+1)+1=n2(n2+2n+1)+2n2+2n+1=n4+2n3+n2+2n2+2n+1=n4+2n3+3n2+2n+1,所以n2+[n(n+1)] 2+(n+1)2=[n(n+1)+1] 2.。
《平方差公式》典型例题《平方差公式》例1 下列两个多项式相乘,哪些可用平方差公式,哪些不能?(1))23)(32(m n n m --;(2))54)(45(xz y z xy --+-;(3)))((c b a a c b ---+;(4))831)(318(3223x y x xy x +-.(5)))((z y x z y x ++-+-例2 计算:(1))32)(32(y x y x -+;(2))53)(53(b a b a ---;(3)))((2332x y y x ---(4))543)(534(z y x z x y +--+. (5))3)(3(y xy xy y +---.例4 利用平方差公式计算:(1)1999×2001;(2)31393240?.例5 计算:(a -2b )(2a -b )-(2a -b )(b +2a )例6 计算:(1))32)(311()32)(23(2)2)(2(y x y x x y y x x y y x -------+- (2)))()(()()(2222y x y x y x y x y x ++---+例7 计算:(x 2+4)(x -2)(x +2)例8 填空(1)(a+d)·( )=d 2-a 2(2)(-xy-1)·( )=x 2y 2-1例9 计算)12()12)(12)(12(242++++n1.你能求出)2111()1611)(411)(211(2n ++++ 的值吗?(1)(a+2)(a 4+16)(a 2+4)(a-2) (2)(-65x-0.7y)( 65x-0.7y)(3)(3x m +2y n +4)(3x m +2y n -4) (4)(a+b-c)(a-b+c)-(a-b-c)(a+b+c)(5)(x 3+x 2+x+1)(x 3-x 2+x-1)-(x 3+x 2+x+2)(x 3-x 2+x-2)【能力素质提高】1.若S =12-22+32-42+……+992-1002+1012,则S 被103除得到的余数是2.若A =(2+1)(22+1)(24+1)(28+1)……(264+1),则A -1996的末位数字是( )A.0B.1C.7D.93.计算:(3m 2+5)(-3m 2+5)-m 2(7m+8)(7m-8)-(8m)24.解方程(2x+1)(2x-1)+3(x+2)(x-2)=(7x+1)·(x-1).5.(a 2+ab+b 2)(a 2-ab+b 2)(a-b)(a+b),其中a=2,b=-1.【渗透拓展创新】已知:(-4x+3y)(-3y-4x)与多项式M 的差是16x 2+27y 2-5xy ,求M.【中考真题演练】 (513x 3-617y 2)(-513x 3 -617y 2) (1)1999199719982?-;(2))54)(2516)(54(2++-x x x ;(3))32)(32(c b a c b a -++-;(4))65)(32)(56)(23(a b a b b a b a +--+;(5))161)(14)(12)(12(16142+++-x x x x ;(6)1)12()12)(12)(12)(12(64842++++++ .3.先化简,再求值)4)(2)(2())()((2222n m n m n m n m n m n m +--+-----+,其中.2,1-==n m4.解方程:2)3)(3(2)2)(2()2)(1(-+-=+-+--x x x x x x .5.计算:1297989910022222-++-+- .6.求值:)1011)(911()411)(311)(211(22222-----.例5 计算:(1)2241)321(x x --;(2))212)(212(+---b a b a ;(3)22)()(y x y x --+.(3)(3a+2b)2-(3a-2b)2 (4)(x2+x+6)(x2-x+6)(5)(a+b+c+d)2 (6)(9-a2)2-(3-a)(3-a)(9+a)2例6 利用完全平方公式进行计算:(1)2201;(2)299;(3)2)3130(例7 已知12,3-==+ab b a ,求下列各式的值.(1)22b a +;(2)22b ab a +-;(3)2)(b a -.例8若2222)()(3c b a c b a ++=++,求证:c b a ==.14.已知x≠0且x+1x =5,求441x x +的值. 17.已知222a b c ++-ab-bc-ca=0,求证a=b=c.18.证明:如果2b =ac,则(a+b+c)(a-b+c)(222a b c -+)=444a b c ++.19.若a+b+c=0, 222a b c ++=1,试求下列各式的值.(1)bc+ac+ab; (2) 444a b c ++.例5 计算题:(1)x x x x 4)4816(34÷--;(2))4()7124(22323a b a b a a -÷-+-;(3)1214)1284(-++÷-+m m m m a a a a .例6 化简:(1)x x x y y y x 2]8)4()2[(2÷-+-+;(2))41()4()412)(124(43362x x x x x x -÷-+++-例7 计算)].(31[)](32)(2)[(23q p q p q p q p +÷+-+-+(1)()()5621021012?÷?--;(2)222221324125??? ??-???? ??-÷??? ??-+n n n n y x y x y x ;(3)()()()44232323649b a b a ba -÷-?-;(4)22221524125??? ??-???? ??-÷??? ??-+n n n nb a b a b a ;(5)()()()12523223156312--÷???? ??-?n n n n a a a a(6)()()()342232242a a a a a a ÷-+-+÷-.4.化简求值()()()()()()22243222xy x x x y y x x y x y x -++---?-÷-,其中1-=x ,2-=y .(1)352433553)1094354(ab b a b a b a ÷-+-;(2))34()5323)(34(222222b a b ab a b a ÷-+-;(423628374)31()915.043(ab b a b a b a -÷+-;(5)a a a a a n n n n ?-÷-+-+++)3()963(1123;;。
(1)(m+2) (m-2)(2)(1+3a) (1-3a)(3) (x+5y)(x-5y)(4)(y+3z) (y-3z)2、利用平方差公式计算(1)(5+6x) (5-6x)(2)(x-2y) (x+2y)(3)(-m+n)(-m-n)3利用平方差公式计算(1)(1)(-41x-y)(-41x+y)(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n 24、利用平方差公式计算(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)(1)803×797(2)398×4027.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)8.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y(x+y)=-x2-y2.A.1个B.2个C.3个D.4个9.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-510.(-2x+y)(-2x-y)=______.11.(-3x2+2y2)(______)=9x4-4y4.12.(a+b-1)(a-b+1)=(_____)2-(_____)2.13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.14.计算:(a+2)(a2+4)(a4+16)(a-2).完全平方公式1利用完全平方公式计算:(1)(21x+32y)2 (2)(-2m+5n)2(3)(2a+5b)2(4)(4p-2q)2 2利用完全平方公式计算:(1)(21x-32y 2)2 (2)(1.2m-3n)2(3)(-21a+5b)2 (4)(-43x-32y)23 (1)(3x-2y)2+(3x+2y)2 (2)4(x-1)(x+1)-(2x+3)2(3)(a+b)2-(a-b)2 (4)(a+b-c)2(5)(x-y+z)(x+y+z) (6)(mn-1)2—(mn-1)(mn+1)4先化简,再求值:(x+y)2 —— 4xy,其中x=12,y=9。
平方差公式(1)参考答案与试题解析一.选择题1.下列式子中可以用平方差公式计算的是()A.(x+2)(x+2)B.(x﹣2)2C.(x+2)(﹣x﹣2)D.(x+2)(x﹣2)【解答】解:A.(x+2)(x+2)=(x+2)2,故本选项不合题意;B.(x﹣2)2=(x﹣2)(x﹣2),故本选项不合题意;C.(x+2)(﹣x﹣2)=﹣(x+2)2,故本选项不合题意;D.(x+2)(x﹣2)可以用平方差公式计算,故本选项符合题意.故选:D.2.化简(﹣2x﹣3)(3﹣2x)的结果是()A.4x2﹣9B.9﹣4x2C.﹣4x2﹣9D.4x2﹣6x+9【解答】解:(﹣2x﹣3)(3﹣2x)=4x2﹣9,故选:A.3.已知a+b=6,a﹣b=5,则a2﹣b2的值是()A.11B.15C.30D.60【解答】解:∵a+b=6,a﹣b=5,∴a2﹣b2=(a+b)(a﹣b)=30,故选:C.4.若m2﹣n2=6,且m﹣n=3,则m+n=()A.1B.2C.2或﹣2D.4【解答】解:∵m2﹣n2=(m+n)(m﹣n)=6,且m﹣n=3,∴m+n=2;故选:B.5.如图1,从边长为a的正方形剪掉一个边长为b的正方形;如图2,然后将剩余部分拼成一个长方形.上述操作能验证的等式是()A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2+ab=a(a+b)D.a2+2ab+b2=(a+b)2【解答】解:由图1可知剩余部分的面积=a2﹣b2,由图2可求长方形的面积=(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b),故选:B.6.下列运算正确的是()A.(5﹣m)(5+m)=m2﹣25B.(1﹣3m)(1+3m)=1﹣3m2C.(﹣4﹣3n)(﹣4+3n)=﹣9n2+16D.(2ab﹣n)(2ab+n)=4ab2﹣n2【解答】解:A、(5﹣m)(5+m)=25﹣m2,错误;B、(1﹣3m)(1+3m)=1﹣9m2,错误;C、(﹣4﹣3n)(﹣4+3n)=﹣9n2+16,正确;D、(2ab﹣n)(2ab+n)=4a2b2﹣n2,错误;故选:C.7.计算:(x+2y﹣3)(x﹣2y+3)=()A.(x+2y)2﹣9B.(x﹣2y)2﹣9C.x2﹣(2y﹣3)2D.x2﹣(2y+3)2【解答】解:原式=[x+(2y﹣3)][x﹣(2y﹣3)]=x2﹣(2y﹣3)2故选:C.8.下列各式中,能用平方差公式计算的是()(1)(a﹣2b)(﹣a+2b);(2)(a﹣2b)(﹣a﹣2b);(3)(a﹣2b)(a+2b);(4)(a﹣2b)(2a+b).A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【解答】解:(1)没有相同的项,故不能计算;(2)能计算;(3)能计算;(4)没有相同的项,故不能利用平方差公式计算.故选:B.9.计算(b﹣a)(a+b)(a2+b2)(a4+b4)的结果是()A.a8﹣b8B.a6﹣b6C.b8﹣a8D.b6﹣a6【解答】解:原式=(b﹣a)(a+b)(a2+b2)(a4+b4)=(b2﹣a2)(a2+b2)(a4+b4)=(b4﹣a4)(a4+b4)=b8﹣a8,故选:C.10.如果(2a+2b+1)(2a+2b﹣1)=3,那么a+b的值为()A.2B.±2C.4D.±1【解答】解:(2a+2b+1)(2a+2b﹣1)=(2a+2b)2﹣1=3,即4(a+b)2=4,∴(a+b)2=1,∴a+b=±1.故选:D.二.填空题11.计算(x+2)(x﹣2)的结果等于x2﹣4.【解答】解:(x+2)(x﹣2)=x2﹣4.故答案为:x2﹣4.12.计算:(3x+7y)(3x﹣7y)=9x2﹣49y2.【解答】解:(3x+7y)(3x﹣7y)=9x2﹣49y2;故答案为:9x2﹣49y2.13.若a+b=5,a﹣b=3,则a2﹣b2=15.【解答】解:∵a+b=5,a﹣b=3,∴a2﹣b2=(a+b)(a﹣b)=5×3=15,故答案为:15.14.计算:(2a﹣1)(﹣2a﹣1)=1﹣4a2.【解答】解:原式=1﹣4a2,故答案为:1﹣4a215.计算:(1﹣π)0(2a+1)(2a﹣1)=4a2﹣1.【解答】解:原式=1×(4a2﹣1)=4a2﹣1.故答案是:4a2﹣1.三.计算题(1)(3x+7y)(3x﹣7y)(2)(0.2x﹣0.3)(0.2x+0.3)(3)(mn﹣3n)(mn+3n)(4)(﹣2x+3y)(﹣2x﹣3y)【解答】解:(1)(3x+7y)(3x﹣7y)=(3x)2﹣(7y)2=9x2﹣49y2;(2)(0.2x﹣0.3)(0.2x+0.3)=(0.2x)2﹣(0.3)2=0.04x2﹣0.09;(3)(mn﹣3n)(mn+3n)=(mn)2﹣(3n)2=m2n2﹣9n2;(4)(﹣2x+3y)(﹣2x﹣3y)=(﹣2x)2﹣(3y)2=4x2﹣9y2;。
平方差公式经典练习题二、课后练习一、选择题1.下列各式能用平方差公式计算的是:()A.( 2a3b)(3b 2a) B .( 2a3b)( 2a 3b)C.( 2a3b)( 3b 2a) D .(2a3b)(3a 2b)2.下列式子中,不成立的是:()A. ( x y z)( x y z) (x y)2z2B. (x y z)( x y z) x2( y z) 2 C. ( x y z)( x y z) ( x z) 2y2D. ( x y z)( x y z) x2( y z)23.(3x2 4 y2 )16 y49x4,括号内应填入下式中的().A.(3x2 4 y2 ) B .4y23x2C.3x2 4 y2D.3x2 4 y 24.对于任意整数n,能整除代数式(n 3)( n 3) ( n 2)( n 2)的整数是().A. 4 B . 3 C. 5 D .25.在(x y a b)( x y a b)的计算中,第一步正确的是().A.( x b) 2( y a)2B.( x2y2 )( a2b2 )C.( x a) 2( y b)2D.( x b)2( y a) 26.计算(x41)( x21)( x 1)( x 1) 的结果是().A.x81B.x41C.(x1) 8D.x8 17. ( abc 1)( abc 1)(a 2 b 2 c 2 1) 的结果是().A . a 4 b 4 c 4 1B . 1 a 4b 4c 4C . 1 a 4b 4 c 4D . 1 a 4 b 4c 4二、填空题1. ( x 4)(4 x)2 2.2. (a b 1)( a b 1) ( ) 2- ( )2 .3.(8m 6n)(8m6n) ______________.4.(a b)( a b ) _______________ .4 3 4 35. (a b)( ab)(a 2 b 2 ) _______________.6. ( x y 2)( xy 2)_______________ .7. ( x 3y) ()=9 y 2 x 2 .8 . ( )(a 1) 1 a 2 .9. ( 3am)( 4b n) 16b 2 9a 2 ,则 m_______,n ________.10. 1.01 0.99________ . .11.( 1)如图( 1),可以求出阴影部分的面积是 _________.(写成两数平方差的形式)12.如图( 2),若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是________,长是________,面积是 ___________.(写成多项式乘法的形式)13.比较两个图阴影部分的面积,可以得到乘法公式 __________.(用式子表达)三、判断题1. (7m 8n)(7n 8m) 49m 264n 2 .()2.( 4ab1)(4ab 1) 16a2b2 1 .()3.(32x)(3 2x) 9 2x 2.()4.( a b)( a b) a2b2.()5.( 2x y)( 2x y) 4x2y2.()6.( x6)( x 6) x2 6 .()7.(5xy1)( 5xy 1) 1 25x2 y 2.()四、解答题1.用平方差公式计算:(1)( 2a 1b)(1b 2a) ;(2) ( x n y)( x n y) ;3 3( 3)(a3)(a29)(a 3) ;(4) ( x y)( x y)(5)( 2m3n)(2m 3n) (3m 2n)(3m 2n) ;(6) (a2b)(a 2b) ( a)2 (a2 ) ;3( 7)(3a b 2)(3a b 2) ;(8) (4b 3a 5c)(3a 4b5c) ;(9)88 92 ;( 10)251246.7 72.计算:(1)19982 1997 1999 ;(2)( x 4 )( x2 16 )( x 4 );5 25 5(3)( a2b 3c)(a 2b 3c) ;(4) (3a 2b)(6a 5b)(2b 3a)(5b 6a);(5)1(2x 1)(2 x 1)(4x2 1)( x 41) ;16 16(6)( 21)(221)(241)(281) (2641) 1 .3、计算:(1) 若x y 3, x2 y 2 12, 求x y 的值。
平方差公式练习题一、选择题1. 平方差公式是指()A. (a + b)² = a² + 2ab + b²B. (a b)² = a² 2ab + b²C. a² b² = (a + b)(a b)D. a² + b² = (a + b)²2. 下列哪个式子可以用平方差公式进行分解?()A. x² + 4x + 4B. x² 4x + 4C. x² 9D. x² + 6x 93. 已知a² b² = 16,那么下列哪个选项可能是 a 和 b 的值?()A. a = 5, b = 3B. a = 4, b = 8C. a = 6, b = 2D. a = 9, b = 3二、填空题1. 平方差公式是:a² b² = (______)(______)2. 若x² 9 = 0,则 x 的值为(______)和(______)。
3. 已知 a = 5, b = 3,那么a² b² 的值为(______)。
三、解答题1. 利用平方差公式分解因式:x² 4。
2. 已知a² b² = 25,求 a 和 b 的可能值。
3. 计算:(3x + 4y)² (2x 3y)²。
4. 分解因式:9m² 16n²。
5. 已知a² b² = 28,且 a + b = 10,求 a 和 b 的值。
四、应用题1. 小明家的花园是一个长方形,长比宽多 3 米,面积比宽多225 平方米,求花园的长和宽。
2. 一块正方形土地的面积比一个长方形土地的面积大 48 平方米,已知正方形土地的边长为 8 米,求长方形土地的长和宽。
五、综合题1. 已知一组数据中有两个数的平方差为 81,这两个数的和为 18。
平方差公式经典练习题二、课后练习一、选择题1.下列各式能用平方差公式计算的是:()A.(2a - 3b)(3b - 2a) B.(-2a + 3b)(-2a - 3b)C.(2a - 3b)(-3b + 2a) D.(2a - 3b)(3a + 2b)2.下列式子中,不成立的是:()(x -y +z)(x -y -z) = (x -y)2-z 2B.(x +y -z)(x -y -z) =x2- ( y -z)2A.(x -y -z)(x +y -z) = (x -z)2-y2D.(x -y -z)(x +y +z) =x2- ( y +z)2 C.3.(-3x2- 4 y2)()=16 y4-9x4,括号内应填入下式中的().A.(3x2- 4 y2)B.4 y2-3x2C.-3x2- 4 y2D.3x2+ 4 y24.对于任意整数 n,能整除代数式(n + 3)(n - 3) - (n + 2)(n - 2) 的整数是().A.4 B.3 C.5 D.25.在(x +y +a -b)(x -y +a +b) 的计算中,第一步正确的是().A.(x +b)2- ( y -a)2B.(x2-y2)(a2-b2)C.(x +a)2- ( y -b)2D.(x -b)2- ( y +a)26.计算(x4+1)(x2+1)(x +1)(x -1) 的结果是().A.x8+1B.x4+1 C.(x +1)8D.x8-17. (abc +1)(-abc +1)(a2b 2c 2 +1) 的结果是().A. a 4b 4c 4 -1B. 1- a 4b 4c 4 C. -1- a 4b 4c 4D.1+ a 4b 4c 4二、填空题1. (x - 4)(4 + x ) = ( )2- ( )2.2. (a + b +1)(a + b -1) = ()2-()2 .3. (8m + 6n )(8m - 6n ) = .4. ( a 4.5. (a + b )(a - b )(a 2 + b 2 ) =. - b )(- a3 4 - b ) =36. (x + y + 2)(x + y - 2) =.7. (x + 3y ) ()= 9 y 2 - x 2 .8.() (a -1) = 1- a 2 .9. (-3a + m )(4b + n ) = 16b 2 - 9a 2 ,则 m =, n = .10.1.01⨯ 0.99 =. .11.(1)如图(1),可以求出阴影部分的面积是.(写成两数平方差的形式)12.如图(2),若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是,面积是.(写成多项式乘法的形式)13.比较两个图阴影部分的面积,可以得到乘法公式 .(用式子表达)三、判断题1 1 1. (7m + 8n )(7n - 8m ) = 49m2 - 64n 2 .()2. (4ab +1)(4ab -1) = 16a 2b 2 -1 .()3. (3 + 2x )(3 - 2x ) = 9 - 2x 2 .()4. (a - b )(a - b ) = a 2 - b 2 .()5. (2x - y )(-2x + y ) = 4x 2 - y 2 .()6. (x - 6)(x + 6) = x 2 - 6 .( )7. (5xy +1)(-5xy +1) = 1- 25x 2 y 2 .( )四、解答题1. 用平方差公式计算:(1) (2a - b )(- b - 2a ) ; (2) (x n + y )(x n - y ) ;3 3(3) (a - 3)(a 2 + 9)(a + 3) ;(4) (-x - y )(x - y )(5) (2m + 3n )(2m - 3n ) - (3m - 2n )(3m + 2n ) ;(6) (a 2 + b )(a 2 - b ) - (-a )2 ⋅ (-a 2 );1(7) (3a + b - 2)(3a - b + 2) ;(8) (4b + 3a - 5c )(3a - 4b + 5c ) ;(9) 88⨯ 92 ;(10) 25 ⨯ 24 6.7 72. 计算:(1)19982 -1997 ⨯1999 ;(2) (x - 4)(x 2 +16 )(x + 4) ; 525 5(3) (a - 2b + 3c )(a + 2b - 3c ) ;(4) (3a + 2b )(6a - 5b )(2b - 3a )(5b + 6a ) ;(5) 1 (2x -1)(2x +1)(4x 2 +1)(x 4 + 1) ;1616(6) (2 +1)(22 +1)(24 +1)(28 +1) (264 +1) +1 .1 63、计算:(1)若 x + y = 3, x 2 - y 2 = 12, 求 x - y 的值。
平方差公式 【2 】1.应用平方差公式盘算:(1)(m+2) (m-2)(2)(1+3a) (1-3a)(3) (x+5y)(x-5y)(4)(y+3z) (y-3z)2.应用平方差公式盘算(1)(5+6x)(5-6x)(2)(x-2y)(x+2y)(3)(-m+n)(-m-n)3应用平方差公式盘算(1)(1)(-41x-y)(-41x+y)(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n 24.应用平方差公式盘算(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)5.应用平方差公式盘算(1)803×797(2)398×4027.下列多项式的乘法中,可以用平方差公式盘算的是() A.(a+b)(b+a) B.(-a+b)(a-b)C.(13a+b)(b-13a) D.(a2-b)(b2+a)8.下列盘算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x )(x+3)=x 2-9;④(-x+y )·(x+y )=-(x -y )(x+y )=-x 2-y 2.A .1个B .2个C .3个D .4个9.若x 2-y 2=30,且x -y=-5,则x+y 的值是()A .5B .6C .-6D .-510.(-2x+y )(-2x -y )=______.11.(-3x 2+2y 2)(______)=9x 4-4y 4.12.(a+b -1)(a -b+1)=(_____)2-(_____)2.13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.14.盘算:(a+2)(a 2+4)(a 4+16)(a -2).完整平方公式1应用完整平方公式盘算:(1)(21x+32y)2 (2)(-2m+5n)2(3)(2a+5b)2(4)(4p-2q)2 2应用完整平方公式盘算:(1)(21x-32y 2)2 (2)(1.2m-3n)2(3)(-21a+5b)2 (4)(-43x-32y)23 (1)(3x-2y)2+(3x+2y)2 (2)4(x-1)(x+1)-(2x+3)2(a+b)2-(a-b)2 (4)(a+b-c)2(5)(x-y+z)(x+y+z) (6)(mn-1)2—(mn-1)(mn+1)4先化简,再求值:(x+y)2-4xy,个中x=12,y=9.5已知x ≠0且x+1x =5,求441x x 的值.平方差公式演习题精选(含答案)一.基本练习1.下列运算中,准确的是()A.(a+3)(a-3)=a2-3 B.(3b+2)(3b-2)=3b2-4 C.(3m-2n)(-2n-3m)=4n2-9m2 D.(x+2)(x-3)=x2-6 2.鄙人列多项式的乘法中,可以用平方差公式盘算的是()A.(x+1)(1+x) B.(12a+b)(b-12a)C.(-a+b)(a-b) D.(x2-y)(x+y2)3.对于随意率性的正整数n,能整除代数式(3n+1)(3n-1)-(3-n)(3+n)的整数是()A.3 B.6 C.10 D.94.若(x-5)2=x2+kx+25,则k=()A.5 B.-5 C.10 D.-105.9.8×10.2=________; 6.a2+b2=(a+b)2+______=(a-b)2+________.7.(x-y+z)(x+y+z)=________; 8.(a+b+c)2=_______.9.(12x+3)2-(12x-3)2=________.10.(1)(2a-3b)(2a+3b); (2)(-p2+q)(-p2-q);(3)(x-2y)2; (4)(-2x-12y)2.11.(1)(2a-b)(2a+b)(4a2+b2);(2)(x+y-z)(x-y+z)-(x+y+z)(x-y-z).12.有一块边长为m的正方形旷地,想在中央地位修一条“十”字型巷子,•巷子的宽为n,试求残剩的旷地面积;用两种办法表示出来,比较这两种表示办法,•验证了什么公式?二.才能练习13.假如x2+4x+k2正好是另一个整式的平方,那么常数k的值为()A.4 B.2 C.-2 D.±214.已知a+1a=3,则a2+21a,则a+的值是()A.1 B.7 C.9 D.1115.若a-b=2,a-c=1,则(2a-b-c)2+(c-a)2的值为()A.10 B.9 C.2 D.116.│5x-2y│·│2y-5x│的成果是()A.25x2-4y2 B.25x2-20xy+4y2 C.25x2+20xy+4y2 D.-25x2+20xy-4y217.若a2+2a=1,则(a+1)2=_________.三.分解练习18.(1)已知a+b=3,ab=2,求a2+b2;(2)若已知a+b=10,a2+b2=4,ab的值呢?19.解不等式(3x-4)2>(-4+3x)(3x+4).参考答案1.C 点拨:在应用平方差公式写成果时,要留意平方后作差,尤其当消失数与字母乘积的项,系数不要忘却平方;D项不具有平方差公式的构造,不能用平方差公式,•而应是多项式乘多项式.2.B 点拨:(a+b)(b-a)=(b+a)(b-a)=b2-a2.3.C 点拨:应用平方差公式化简得10(n2-1),故能被10整除.4.D 点拨:(x-5)2=x2-2x×5+25=x2-10x+25.5.99.96 点拨:9.8×10.2=(10-0.2)(10+0.2)=10-0.2=100-0.04=99.96.6.(-2ab);2ab7.x2+z2-y2+2xz点拨:把(x+z)作为整体,先应用平方差公式,•然后应用完整平方公式.8.a2+b2+c2+2ab+2ac+2bc点拨:把三项中的某两项看做一个整体,•应用完整平方公式睁开.9.6x 点拨:把(12x+3)和(12x-3)分离看做两个整体,应用平方差公式(12x+3)2-(12x-3)2=(12x+3+12x-3)[12x+3-(12x-3)]=x·6=6x.10.(1)4a2-9b2;(2)原式=(-p2)2-q2=p4-q2.点拨:在应用平方差公式时,要留意找准公式中的a,b.(3)x4-4xy+4y2;(4)解法一:(-2x-12y)2=(-2x)2+2·(-2x)·(-12y)+(-12y)2=4x2+2xy+14y2.解法二:(-2x-12y)2=(2x+12y)2=4x2+2xy+14y2.点拨:应用完整平方公式时,要留意中央项的符号.11.(1)原式=(4a2-b2)(4a2+b2)=(4a2)2-(b2)2=16a4-b4.点拨:当消失三个或三个以上多项式相乘时,依据多项式的构造特点,•先辈行适当的组合.(2)原式=[x+(y-z)][x-(y-z)]-[x+(y+z)][x-(y+z)]=x2-(y-z)2-[x2-(y+z)2]=x2-(y-z)2-x2+(y+z)2=(y+z)2-(y-z)2=(y+z+y-z)[y+z-(y-z)]=2y·2z=4yz.点拨:此题若用多项式乘多项式轨则,会消失18项,书写会异常繁琐,卖力不雅察此式子的特色,适当选择公式,会使盘算进程简化.12.解法一:如图(1),残剩部分面积=m2-mn-mn+n2=m2-2mn+n2.解法二:如图(2),残剩部分面积=(m-n)2.∴(m-n)2=m2-2mn+n2,此即完整平方公式.点拨:解法一:是用边长为m的正方形面积减去两条巷子的面积,留意两条巷子有一个重合的边长为n的正方形.解法二:应用活动的办法把两条巷子分离移到边缘,残剩面积即为边长为(m-n)•的正方形面积.做此类题要留意数形联合.13.D 点拨:x 2+4x+k 2=(x+2)2=x 2+4x+4,所以k 2=4,k 取±2. 14.B 点拨:a 2+21a=(a+1a )2-2=32-2=7. 15.A 点拨:(2a-b-c )2+(c-a )2=(a+a-b-c )2+(c -a )2=[(a-b )+(a-c )] 2+(c-a )2=(2+1)2+(-1)2=9+1=10.16.B 点拨:(5x-2y )与(2y-5x )互为相反数;│5x-2y │·│2y-5x │=(5x-•2y )2•=25x 2-20xy+4y 2.17.2 点拨:(a+1)2=a 2+2a+1,然后把a 2+2a=1整体代入上式.18.(1)a 2+b 2=(a+b )2-2ab .∵a+b=3,ab=2,∴a 2+b 2=32-2×2=5.(2)∵a+b=10,∴(a+b )2=102,a 2+2ab+b 2=100,∴2ab=100-(a 2+b 2).又∵a 2+b 2=4,∴2ab=100-4,ab=48.点拨:上述两个小题都是应用完整平方公式(a+b)2=a2+2ab+b2中(a+).ab.(a2+b2)•三者之间的关系,只要已知个中两者应用整体代入的办法可求出第三者.19.(3x-4)2>(-4+3x)(3x+4),(3x)2+2×3x·(-4)+(-4)2>(3x)2-42,9x2-24x+16>9x2-16,-24x>-32.x<43.点拨:先应用完整平方公式,平方差公式分离把不等式双方睁开,然后移项,归并同类项,解一元一次不等式.八年级数学上学期平方差公式同步检测演习题1.(2004·青海)下列各式中,相等关系必定成立的是( )A.(x-y)2=(y-x)2B.(x+6)(x-6)=x2-6C.(x+y)2=x2+y2D.6(x-2)+x(2-x)=(x-2)(x-6)2.(2003·泰州)下列运算准确的是( )A.x2+x2=2x4B.a2·a3= a5C.(-2x2)4=16x6D.(x+3y)(x-3y)=x2-3y23.(2003·河南)下列盘算准确的是( )A.(-4x)·(2x2+3x-1)=-8x3-12x2-4xB.(x+y)(x2+y2)=x3+y3C.(-4a-1)(4a-1)=1-16a2D.(x-2y)2=x2-2xy+4y24.(x+2)(x-2)(x2+4)的盘算成果是( )A.x4+16B.-x4-16C.x4-16D.16-x45.19922-1991×1993的盘算成果是( )A.1B.-1C.2D.-26.对于随意率性的整数n,能整除代数式(n+3)(n-3)-(n+2)(n-2)的整数是( )A.4B.3C.5D.27.()(5a+1)=1-25a2,(2x-3)=4x2-9,(-2a2-5b)()=4a4-25b28.99×101=()()=.9.(x-y+z)(-x+y+z)=[z+()][]=z2-()2.10.多项式x2+kx+25是另一个多项式的平方,则k=.11.(a+b)2=(a-b)2+,a2+b2=[(a+b)2+(a-b)2](),a2+b2=(a+b)2+,a2+b2=(a-b)2+.12.盘算.(1)(a+b)2-(a-b)2;(2)(3x-4y)2-(3x+y)2;(3)(2x+3y)2-(4x-9y)(4x+9y)+(2x-3y)2;(4)1.23452+0.76552+2.469×0.7655;(5)(x+2y)(x-y)-(x+y)2.13.已知m 2+n 2-6m+10n+34=0,求m+n 的值14.已知a +a 1=4,求a 2+21a 和a 4+41a的值. 15.已知(t+58)2=654481,求(t+84)(t+68)的值.16.解不等式(1-3x)2+(2x-1)2>13(x-1)(x+1).17.已知a =1990x+1989,b=1990x+1990,c=1990x+1991,求a 2+b 2+c 2-a b-a c-bc 的值.18.(2003·郑州)假如(2a +2b+1)(2a +2b-1)=63,求a +b 的值.19.已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值.参考答案1.A2.B3.C4.C5.A6.C7.1-5a 2x+3 -2a 2+5b8.100-1100+1 99999.x-yz-(x-y) x-y10.±1011.4a b 21 - 2a b 2a b 12.(1)原式=4a b;(2)原式=-30xy+15y;(3)原式=-8x 2+99y 2;(4)提醒:原式=1.23452+2×1.2345×0.7655+0.76552=(1.2345+0.7655)2=22=4. (5)原式=-xy-3y 2.13.提醒:逆向应用整式乘法的完整平方公式和平方的非负性. ∵m 2+n 2-6m+10n+34=0,∴(m 2-6m+9)+(n 2+10n+25)=0,即(m-3)2+(n+5)2=0,由平方的非负性可知,⎩⎨⎧=+=-,05,03n m ∴⎩⎨⎧-==.5,3n m ∴m+n=3+(-5)=-2. 14.提醒:应用倒数的乘积为1和整式乘法的完整平方公式.∵a +a 1=4,∴(a +a1)2=42. ∴a 2+2a ·a 1+21a =16,即a 2+21a+2=16. ∴a 2+21a =14.同理a 4+41a=194. 15.提醒:应用整体的数学思惟办法,把(t 2+116t)看作一个整体. ∵(t+58)2=654481,∴t 2+116t+582=654481.∴t 2+116t=654481-582.∴(t+48)(t+68)=(t 2+116t)+48×68=654481-582+48×68=654481-582+(58-10)(58+10)=654481-582+582-102=654481-100=654381.16.x <23 17.解:∵a =1990x+1989,b=1990x+1990,c=1990x+1991, ∴a -b=-1,b-c=-1,c-a =2.∴a 2+b 2+c 2-a b-a c-be =21(2a 2+2b 2+2c 2-2a b-2bc-2a c) =21[(a 2-2a b+b 2)+(b 2-2bc+c 2)+(c 2-2a c+a 2)] =21[(a -b 2)+(b-c)2+(c-a)2] =21[(-1)2+(-1)2+22] =21(1+1+4) =3.18.解:∵(2a +2b+1)(2a +2b-1)=63,∴[(2a +2b)+1][(2a +2b)-1]=63,∴(2a +2b)2-1=63,∴(2a +2b)2=64,∴2a +2b=8或2a +2b=-8,∴a +b=4或a +b=-4,∴a +b 的值为4或一4.19.a 2+b 2=70,a b=-5.。
平方差公式练习题精选一、基础训练1.下列运算中,正确的是()A.(a+3)(a-3)=a2-3 B.(3b+2)(3b-2)=3b2-4 C.(3m-2n)(-2n-3m)=4n2-9m2 D.(x+2)(x-3)=x2-6 2.在下列多项式的乘法中,可以用平方差公式计算的是()A.(x+1)(1+x)B.(12a+b)(b-12a)C.(-a+b)(a-b)D.(x2-y)(x+y2)3.对于任意的正整数n,能整除代数式(3n+1)(3n-1)-(3-n)(3+n)的整数是() A.3 B.6 C.10 D.94.若(x-5)2=x2+kx+25,则k=()A.5 B.-5 C.10 D.-105.9.8×10.2=________; 6.a2+b2=(a+b)2+______=(a-b)2+________.7.(x-y+z)(x+y+z)=________; 8.(a+b+c)2=_______.9.(12x+3)2-(12x-3)2=________.10.(1)(2a-3b)(2a+3b);(2)(-p2+q)(-p2-q);(3)(x-2y)2;(4)(-2x-12y)2.11.(1)(2a-b)(2a+b)(4a2+b2);(2)(x+y-z)(x-y+z)-(x+y+z)(x-y-z).12.有一块边长为m的正方形空地,想在中间位置修一条“十”字型小路,•小路的宽为n,试求剩余的空地面积;用两种方法表示出来,比较这两种表示方法,•验证了什么公式?二、能力训练13.如果x2+4x+k2恰好是另一个整式的平方,那么常数k的值为() A.4 B.2 C.-2 D.±214.已知a+1a=3,则a2+21a,则a+的值是()A.1 B.7 C.9 D.1115.若a-b=2,a-c=1,则(2a-b-c)2+(c-a)2的值为()A.10 B.9 C.2 D.116.│5x-2y│·│2y-5x│的结果是()A.25x2-4y2B.25x2-20xy+4y2C.25x2+20xy+4y2D.-25x2+20xy-4y2 17.若a2+2a=1,则(a+1)2=_________.三、综合训练18.(1)已知a+b=3,ab=2,求a2+b2;(2)若已知a+b=10,a2+b2=4,ab的值呢?19.解不等式(3x-4)2>(-4+3x)(3x+4).20.观察下列各式的规律.12+(1×2)2+22=(1×2+1)2;22+(2×3)2+32=(2×3+1)2;32+(3×4)2+42=(3×4+1)2;…(1)写出第2007行的式子;(2)写出第n行的式子,并说明你的结论是正确的.。
平方差公式1、利用平方差公式计算:(1)(m+2) (m-2)(2)(1+3a) (1-3a)(3) (x+5y)(x-5y)(4)(y+3z) (y-3z)2、利用平方差公式计算(1)(5+6x)(5-6x)(2)(x-2y)(x+2y)(3)(-m+n)(-m-n)3利用平方差公式计算(1)(1)(-41x-y)(-41x+y)(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n24、利用平方差公式计算(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)5、利用平方差公式计算(1)803×797(2)398×4027.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)8.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个9.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-510.(-2x+y)(-2x-y)=______.11.(-3x2+2y2)(______)=9x4-4y4.12.(a+b-1)(a-b+1)=(_____)2-(_____)2.13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.14.计算:(a+2)(a2+4)(a4+16)(a-2).完全平方公式 1利用完全平方公式计算:(1)(21x+32y)2(2)(-2m+5n)2(3)(2a+5b)2(4)(4p-2q)2 2利用完全平方公式计算:(1)(21x-32y 2)2(2)(1.2m-3n)2(3)(-21a+5b)2 (4)(-43x-32y)23 (1)(3x-2y)2+(3x+2y)2(2)4(x-1)(x+1)-(2x+3)2(a+b)2-(a-b)2(4)(a+b-c)2(5)(x-y+z)(x+y+z) (6)(mn-1)2—(mn-1)(mn+1)4先化简,再求值:(x+y)2-4xy,其中x=12,y=9。
平方差公式练习题及答案第一题:已知 a² - b² = 9,求 a² + b²的值。
解答:我们知道平方差公式为 a² - b² = (a + b)(a - b)。
根据已知条件 a² - b² = 9,我们可以设立方程 (a + b)(a - b) = 9。
由于我们需要求解 a² + b²的值,我们可以采用如下的方法:将两边平方,得到 (a + b)²(a - b)² = 9²。
化简得 (a + b)²(a - b)² = 81。
再次采用平方差公式展开,得到 (a² + 2ab + b²)(a² - 2ab + b²) = 81。
根据平方差公式展开式的特点,我们可以得到:a⁴ - (2ab)² + b⁴ = 81。
进一步化简,得到 a⁴ - 4a²b² + b⁴ = 81 。
我们需要注意到, a² + b² = (a² + 2ab + b²) - 2ab。
而根据已知条件的平方差公式,我们可以将以上等式中的 (a² + 2ab + b²) 用 9 替换,得到:a² + b² = 9 - 2ab。
将这个等式代入到前面的等式中,我们可以得到:9 - 2ab - 4a²b² + b⁴ = 81。
简化合并同类项,得到:b⁴ - 4a²b² - 2ab + 72 = 0。
这是一个四次方程,我们可以通过求解这个方程来得到 a² + b²的值。
通过因式分解的方法,我们可以得到一个解为 b = 2 。
将 b = 2 代入到原方程中,可以得到 a = ±3。