2016年全国硕士研究生招生考试数学(三)试题解析
- 格式:doc
- 大小:683.50 KB
- 文档页数:14
2016年全国硕士研究生入学统一考试数学三考研真题答案凯程首发下面凯程老师把2016年的真题答案全面展示给大家,供大家估分使用,以及2017年考研的同学使用,本试题凯程首发,转载注明出处。
一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设函数()y f x =在(,)-∞+∞内连续,其导数如图所示,则( ) (A )函数有2个极值点,曲线()y f x =有2个拐点 (B )函数有2个极值点,曲线()y f x =有3个拐点 (C )函数有3个极值点,曲线()y f x =有1个拐点 (D )函数有3个极值点,曲线()y f x =有2个拐点 【答案】(B )xy【解析】【解析】由图像易知选B2、已知函数(,)x e f x y x y=-,则(A )''0x y f f -= (B )''0x y f f += (C )''x y f f f -= (D )''x y f f f += 【答案】(D ) 【解析】()2(1)'x x e x y f x y --=- ()2'xy e f x y =-,所以''x y f f f +=(3)设(i ,,)ii D T x y d x d y =-=⎰⎰3123,其中{}(,),D x y x y =≤≤≤≤10101,{}{}(,),,(,),D x y x y x D x y x x y =≤≤≤≤=≤≤≤≤223010011,则(A )T T T <<123 (B )T T T <<312 (C )T T T <<231 (D )T T T <<213【答案】B【解析】由积分区域的性质易知选B. (4)级数为sin()n n k n n ∞=⎛⎫-+ ⎪+⎝⎭∑1111,(K 为常数) (A )绝对收敛(B )条件收敛 (C )发散(D )收敛性与K 有关 【答案】A【解析】由题目可得,sin()sin()sin()()n n n n n n k n k n k n n n n n n n n ∞∞∞===+-+⎛⎫-+=+= ⎪+++++⎝⎭∑∑∑1111111111 因为sin()()()n k n n n n n n n n n n+≤≤++++++111111,由正项级数的比较判别法得,该级数绝对收敛。
16年数三考研真题2016年数学三考研真题考研是无数学子追求梦想的舞台,而数学三作为考研数学科目之一,对考生的数学基础和解题能力提出了较高的要求。
本文将回顾2016年数学三考研真题,并对其中涉及的各个知识点进行分析和解答。
第一部分:选择题选择题是考研中常见的题型之一,可以帮助考生快速检验自己的基础知识。
下面是2016年数学三考研真题中的一道选择题:1. 设函数 f(x) = (sinx)^2 - (cosx)^2, g(x) = (sinx)^2 + (cosx)^2,若对任意 x∈R,f(x) <= g(x),则 x∈()。
A. (-π/4, π/4)B. (π/4, π/2)C. (0, π/2)D. (π/4, π/4)解析:考察三角函数的性质。
根据已知条件,f(x) <= g(x),即(sinx)^2 - (cosx)^2 <= (sinx)^2 + (cosx)^2,化简得 sin2x <= 1,再考虑到sin2x 取值范围为 [-1, 1],得到 -1 <= sin2x <= 1。
由此可知,对任意实数 x,都满足该不等式。
因此,选项 A、B、C、D 都是正确的答案。
第二部分:解答题解答题是考察考生解题能力和深度理解能力的重要环节。
下面是2016年数学三考研真题中的一道解答题:2. 设 a_n = a_1 + a_2 + ... + a_n,其中 a_1 = 5,a_{n+1} - a_n = n + 1。
求证:a_n = n(n + 5)/2。
解析:考察数列求和的方法。
根据已知条件,可以得到 a_{n+1} =a_n + (n + 1)。
将式子两边从 n = 1 加到 n = m 可得到 a_{m+1} = a_1 + (2 + 3 + ... + (m + 1))。
利用等差数列求和公式,可知 2 + 3 + ... + (m + 1) = (m + 1)(m + 2)/2 - 1。
2016年全国硕士研究生招生考试数学(三)试题解析戴又发(1)设函数y f(x)在(,)连续,其导函数的图象如图所示,则(C)函数f (x)有3个极值点,曲线y f (x)有1个拐点(D)函数f(x)有3个极值点,曲线y f(x)有2个拐点解析:由导函数的图象得知导函数有3个不同零点,其中有一个是导函数图象与x轴的切点,不是函数f ( x)的极值点,所以函数f (x)有2个极值点;又因为导函数有2个极值点,当然是曲线y f(x)的拐点;另外,导函数的图象还有1个间断点,导函数在该点左右两侧同号,而函数在该点处连续,所以该点也是曲线y f (x)的1个拐点.故选(B)xe(2)已知函数 f (x,y) -------- ,则x y(A)函数f x f y 0(B)函数f x f y 0(C)函数f x f y f(D)函数f x f y fx x x x0 / 、e . (x y)e e 正e解析:由f(x,y) ------- 得f x 一;----------- &一,f y -------------------x y (x y) (x y)x x x(x y)e e e f是 f x f y--2~72f ,故选 (D)(x y) (x y)(3)设 J i 3/xTydxdy(ii,2,3),其中 D i (x, y)0 xD iD 2 (x, y)0 x i,0 y Vx , D 3(x, y)|o x(A) JiJ2 J3(B)J3 J i J2(C) J 2 J 3 J i(D) J 2 J i解析:在平面坐标系中, D 2, D i , D 3所表示的区域分别为:(k 为常数)(A)绝对收敛(B)条件收敛(C)发散(D)收敛性与k 有关i)sin(n k)、n isin(n k) 1 1因为 而Jn 1(Jn &__1)<n /n1«n nn 1) njni,x 2----- O在区域D i y x,于 在区域D i D 3上, y x,于0,即 J i所以J 3Ji J2 ,故选(B)i ni (nsin(n k)DiD 2上, D20,即 J i O., 是3x y J3 ;解析:由n i所以由正项级数的比较判别法,知该级数绝对收敛.故选( A)(5)设A, B是可逆矩阵,且A与B相似,则下列结论错误的是(A)A T与B T相似.1 1 I(B)A与B相似(C) A A T与B B T相似1 1(D) A A与B B相似1 .解析:由A与B相似的定义,存在可逆矩阵P ,使得P AP B .对于(A),因为(P 1AP)T B T得P T A T(P T)1 B T ,所以A T与B T相似;1 1 1 1 . 1 1 . 1 1 对于(B),因为(P AP) B得PAP B,所以A与B相似;对于(D),因为P1(A A1)P P 1AP P1A1P B B 1 , 1 1所以A A与B B相似.故选(C)(6)设二次型f(x1,X2,X3) a(x2 x2 x2) 2x1X2 2x2X3 2x1X3的正负惯性指数分另IJ为1,2,则(A) a 1(B) a 2(C) 2 a 1(D)a 1 或a 2解析:考虑用特殊值法.当a 0时,f(x1,X2,X3) 2x1X2 2x2X3 24%,0 1 1其矩阵为1 0 1,由此求得特征值为2, 1, 1,满足正惯性指数为1,负惯性指数1 1 0为2,即a 0成立.故选(C)⑺ 设A,B为两个随机事件,且0 P(A) 1,0 P(B) 1 ,如果P(AB)(A)P(B|A) 1(B)P(AB) 0(C)P(A B) 1(D)P(B|A) 1解析:由P(AB) 1 知,P(AB) P(B), P(A B) P(A).PZOM P(AB) P(A~-B) 1 P(A B)P( B A) 1P(A) 1 P(A) 1 P(A)故选(A)(8)设随机变量X与Y互相独立,且X ~ N(1,2) , Y ~ N(1,4),则D(XY)(A) 6(B)8(C)14(D)15解析:由随机变量X与Y互相独立,则D(XY) E(XY)2 [E(XY)]2 EX2 EY2 (EX EY)2[DX (EX)2] [DY (EY)2] (EX EY)2(2 12) (4 12) (1 1)2 14.故选(C)\1 f(x)sin2x 1f(x)满足lim -------- 3^- ---------------- 2,则limf(x)(9)已知函数x 0 e 1 x 0 ----- J f (x)sin 2x 1解析:因为hm-------- 3^- ------- 2,用等价的无穷小替换,x 0 e 131 •,、一当 x 0时,e 1~3x, %:1 f(x)sin2x 1~ - f (x)sin2x1,,、「5f (x)sin2xf(x)于是有 lim - ------------ 2,即lim ------ 2x 03xx 03所以lim f (x) 6 ,答案6 x 0..1 , . 1 (10)极限 lim -r (sin - nn n ..1 , . 12 解析:由 lim 2 (sin 2sinnn n n1 1 12 2 n nlim -(-sin- -sin- -sin —) nn n n n nn n11x sin xdx xd cosx x cosx 0cos1 sin 1 sin1 cos1,答案 sin 1 cos122(11)设函数f(u,v)可微,z z(x)由方程(x 1)z y x f(x z,y)确定,则dz(0,1)22解析:由(x 1)z y x f(x z, y)有 x 0, y 1时 z 1, 222(x 1)dz zdx 2ydy 2xf (x z, y) x f u (x z, y)(dx dz) x f v (x z,y)dy将 x 0,y 1, z 1 代入,得 dz dx 2dy . 答案 dx 2dy2sin 2n.n 、nsin —) n -- n 、 nsin )n1 1cosxdx0 022(12)设 D (x, y)|x| y 1, 1 x 1,则 x e ydxdy11 y2 1 11112 1 2、 丁 7ec 丁 丁 二 二二-•答案:二(1一) 3e 3 0 3e 3e 3 3 3e 3 e1 00 1(13)行列式° °4 3 2 1 0 01 0 解析:00 1 432 1120 1 4 223212 . 2432(2) 342 3 4..43 一 2一答案:432 23 4(14)设袋中有红、白、黑球各一个,从中有放回的取球,每次取一个,直到三种颜色的球都取到时停止,则取球次数恰好为 4的概率为解析: 若最后一次取到黑球后停止,则前三次只能取到红色球和白色球,且两种颜色都有.2 y 2x e dxdy120dy2e y 2dx1 0y 3 y 2e dydey 213y2e y 2 e y 2d( y 2)0 0 113次取球,无论2红1白还是2白1红,概率都是3 1 27 9于是最后一次取到黑球后停止的概率为2 1 2 一——,9 3 27同理最后一次取到红球或白球后停止的概率都为27,……… ……2 Q 2…2所以取球次数恰好为 4的概率为—3W •答案:- 2 79 91(15)(本题满分10分)求极限lim(cos2x 2xsinxtx 01e 3.(16)(本题满分10分)设某商品最大需求量为 1200件,该商品的需求函数 Q Q(p),... p需求弹性 ------------ (0), p 为单元价(万元)120 p(I)求需求函数的表达式;(n)求p 100万元时的边际收益,并说明其经济意义.p dQ pdQ dp解析:(i)由弹性公式,可得 — —— ------ ,分离变量,得 — ----------- -Q dp 120 p Q p 120两边积分,得 lnQ ln( p 120) ln C ,即 Q C( p 120) 因为最大需求量为1200件,所以Q(0) 1200,解得C 10 故 Q 10( p 120) 1200 10P.2(n)收益R Qp 1200p 10p ,边际收益为d R dR d p _ (1200 20p)( —) 2p 120dQ dp dQ 10'dR i一一 一p 100万元时的边际收益为 -p 100200 12080.dQ其经济意义是:需求量每提高1件,能增加收益8 0万元.(17)(本题满分10分)设函数f(x)j t 2 x 2dt(x 0),求f (x)并求f(x)的最小值.解析:14lim (cos2 x 2 xsinx)xlim ecos2x 2xsin x4 xX"e4x 2 24Y4 x 3 1 --- ---- 2x( x — ) 1 o( x )2 4! 3!4 x一、.2 2 ..解析:对于f(x) 0 t x dt , x| 2 2 1 2 2 当1 x 1 时,f(x) 0 (x t )dt |x|(t x )dt,4 j3 2 13x x 3, 一12 2 2 1当|x| 1 时,f(x) 0 (x t )dt x - 32 1 1x -, x 13f(x)为偶函数,f(x)4 3 1-x x2—,x 13 32x,x 14x2 2x, 1 x 04x2 2x,0 x 12x,x 1f(x)为偶函数,在[0,)上,0 x 1, f(x) 0; x 1, f(x) 0;所以f(x)的最小值为f(1)(18)(本题满分10分)设函数f (x)连续,且满足x x0 f (x t)dt 0(x t)f(t)dt e x 1,求f(x).x 0 x 解析:令u x t,则0 f(x t)dt x f (u)d( u) 0 f (u)du所以 f (x)2n 2x(19)(本题满分10分)求哥级数 -------- --- —~2 ---- n 的收敛域及和函数.n 0(n 1)(2n 1)再两边积分 S(x) (1 x)ln(1 x) (1 x)ln(1 x)1,且方程组2a 2Ax 无解.(i)求a 的值;(n)求方程组 A T Ax A T 的通解.解析:(i)由方程组Ax 无解,知IA 0,解析:令S(x)2n 2x(n 1)(2n 1)'两边求导S(x) 2n 0 2n 1x2n 1 '两边再求导S (x)2n xn 0两边积分,得S (x)in 1,且 S(0) 0,易知,S(x)2n 2xn 0 (n 1)(2n 1) 的收敛半径为1,又 x 1,x 1时级数收敛,即其收敛域为[ 1,1],所以S(x) (1x)ln(1 x) (1 x)ln(1 x),x [1,1].(20)(本题满分 11分)设矩阵由a 0时, r(A) r(A,)而2 2时,r(A) r(A,),于是(A T A,A T )1所以,方程组A T Ax A T 的通解为x k 12, k 为任意实数.1 01 1(21)(本题满分11分)已知矩阵 A23 00 0 02100 .、(n)设3 阶矩阵 B ( 1, 2, 3)满足 B BA,记 B ( 1, 2, 3),将 1, 2, 3分别表示为 1, 2, 3的线性组合.解析:(I )由| E A 0求得矩阵A 的特征值为10, 2 1, 3 2,所以A~121、32 ,求得矩阵A 属于1、 2、 3特征向量分别为:3 1 1设P 2 1 2 ,可知A2 0 0所以 a 0.(n)当 a 0时,A T A3 2 22 2 2 A T2 2 2分别就1 0、29999 1P P 1,于是 A P P .399 991 c所以A P P 222(n)因为B ( 1, 2, 3),由 BBA ,可得 B 3 B 2A BAA BA 2, B 4 B 2A 2 BA 3, 所以,B100( 1, 2, 3) BA 99( 1, 2, 3)A 993(2 298) 1 (2 299) 2.(22)(本题满分11分)设二维随机变量(X,Y )在区域(I )写出(X,Y )的概率密度;(n )问U 与X 是否相互独立?并说明理由;1求矩阵P 的逆矩阵P122 122 2992 2100299 2100298 299D (x,y)0 x 1,x2y «x 上服从均匀分布,令 U1,X Y0,X Y2991 2 2 1 2B 100BA 99,2 2993) 2 2100299 2100298 299(2 299) 1 2 2100) (1 299) 1(1 2100) 2;(出)求Z U X 的分布函数F (z ).解析:(i )先计算二维随机变量 (X,Y )所在区域的面积,__31V x 3f- 2 2 3 13s(D)0dx x 2 dy«x x )dx (-x 4-x ) 3 3而(X,Y )在D 上服从均匀分布,所以(X,Y )的概率密度为3, x y xf(x ,y)〜L0淇他 11(n)因为 PU2,X2所以U 与X 不相互独立.1 111事实上 P U ,X P U 0,X P X Y,X 2 2 2 2(出)由 F(z) P{U X z}P{U X zU 0}P{U 0} P{U X zU 1}P{U 1} P{X z,X Y} P{1 X z,X Y}.3,z4其中 P{Xz ,XY}|z 20,z z 3,0z1;131 120,z 0 3 2 3z z ,0 z 12133 oc 2(z 1)2 3 1)2,1 z 2221,z 23X 2 n .3,0 X,,,(23)(本题满分11分)设总体 X 的概率密度为f(x,)3,其中0,其他(0,)为未知参数,X 1,X 2,X 3为来自总体X 的简单随机样本,令 T maXX 1,X 2,X 3). (I)求T 的概率密度; (n)确定 a ,使 E(aT) .解析:(I)因为X1,X2, X3为来自总体 X 的简单随机样本,显然互相独立, 于是T 的分布函数为F T。
2016 年全国硕士研究生入学统一考试数学(三)试题完整版一、选择题:1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答.题.纸.指定位置上.1、设函数 f (x ) 在(∞+ ,∞−) 内连续,其导函数的图形如图所示,则()A.函数()f x 有2个极值点,曲线()y f x =有2个拐点.B.函数()f x 有2个极值点,曲线()y f x =有3个拐点.C.函数()f x 有3个极值点,曲线()y f x =有1个拐点.D.函数()f x 有3个极值点,曲线()y f x =有2个拐点.2、已知函数(,)xe f x y x y=-,则()A.0x y f f ''-= B.0x y f f ''+=C.x y f f f''-= D.x y f f f ''+=3、设3(1,2,3)i k D J x ydxdy i =-=⎰⎰,其中{}1(,)01,01D x y x y =≤≤≤≤,{}2(,)01,0D x y x y x =≤≤≤≤{}23(,)01,1D x y x x y =≤≤≤≤则()A.123J J J << B.312J J J <<C.231J J J << D.213J J J <<4、级数为111()sin()1n n k n n ∞=-++∑(k 为常数)()A.绝对收敛B.条件收敛C.发散D.收敛性与k 有关5、设,A B 是可逆矩阵,且A 与B 相似,则下列结论错误的是()A.T A 与T B 相似B.1A -与1B -相似C.T A A +与T B B +相似D.1A A -+与1B B -+相似6、设二次型222123123122313(,,)()222f x x x a x x x x x x x x x =+++++的正负惯性指数分别为1,2,则()A.1a >B.2a <-C.21a -<< D.1a =或2a =-7、设,A B 为两个随机事件,且0()1,0()1P A P B <<<<,如果()1P A B =,则()A.()1P B A = B.()0P A B =C.()1P A B ⋃= D.()1P B A =8、设随机变量X 与Y 相互独立,且~(1,2),~(1,4)X N Y N ,则()D XY =()A.6 B.8 C.14 D.15二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.9、已知函数()f x 满足301()sin 21lim 21x x f x x e →+-=-,则0l im ()x f x →=__________.10、极限2112lim (sin 2sin sin )n n n n n n n→∞+++= ___________.11、设函数(,)f u v 可微,(,)z z x y =由方程22(1)(,)x z y x f x z y +-=-确定,则(0,1)|dz =__________.12、设{(,)|||1,11}D x y x y x =≤≤-≤≤,则22y D x e dxdy -=⎰⎰___________.13、行列式1000100014321λλλλ--=-+_________.14、设袋中有红、白、黑球各1个,从中有放回地取球,每次取1个,直到三种颜色的球都取到时停止,则取球次数恰好为4的概率为__________.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.15、(本题满分10分)求极限410l im(cos 22sin 1)x x x x x →+-。
2016年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)若5)(cos sin lim0=--→b x ae xx x ,则a =______,b =______.(2)设函数f (u ,v )由关系式f [xg (y ),y ]=x +g (y )确定,其中函数g (y )可微,且g (y )≠0,则2fu v ∂=∂∂.(3)设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4)二次型2132********)()()(),,(x x x x x x x x x f ++-++=的秩为 .(5)设随机变量X 服从参数为λ的指数分布,则=>}{DX X P _______.(6)设总体X 服从正态分布),(21σμN ,总体Y 服从正态分布),(22σμN ,1,,21n X X X 和2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本,则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑.二、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7)函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A)(-1,0).(B)(0,1).(C)(1,2).(D)(2,3).[](8)设f (x )在(-∞,+∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则(A)x =0必是g (x )的第一类间断点. (B)x =0必是g (x )的第二类间断点.(C)x =0必是g (x )的连续点.(D)g (x )在点x =0处的连续性与a 的取值有关. [] (9)设f (x )=|x (1-x )|,则(A)x =0是f (x )的极值点,但(0,0)不是曲线y =f (x )的拐点. (B)x =0不是f (x )的极值点,但(0,0)是曲线y =f (x )的拐点. (C)x =0是f (x )的极值点,且(0,0)是曲线y =f (x )的拐点.(D)x =0不是f (x )的极值点,(0,0)也不是曲线y =f (x )的拐点. [] (10)设有下列命题:(1)若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2)若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3)若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散. (4)若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是(A)(1)(2). (B)(2)(3).(C)(3)(4). (D)(1)(4). [](11)设)(x f '在[a,b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A)至少存在一点),(0b a x ∈,使得)(0x f >f (a ). (B)至少存在一点),(0b a x ∈,使得)(0x f >f (b ). (C)至少存在一点),(0b a x ∈,使得0)(0='x f .(D)至少存在一点),(0b a x ∈,使得)(0x f =0.[D](12)设n 阶矩阵A 与B 等价,则必有(A)当)0(||≠=a a A 时,a B =||.(B)当)0(||≠=a a A 时,a B -=||. (C)当0||≠A 时,0||=B .(D)当0||=A 时,0||=B .[](13)设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A)不存在.(B)仅含一个非零解向量.(C)含有两个线性无关的解向量.(D)含有三个线性无关的解向量.[](14)设随机变量X 服从正态分布)1,0(N ,对给定的)1,0(∈α,数αu 满足αu X P α=>}{,若αx X P =<}|{|,则x 等于 (A)2αu .(B)21αu-.(C)21αu -.(D)αu -1.[]三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分8分)求)cos sin 1(lim 2220xxx x -→.(16)(本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D22122=所围成的 平面区域(如图).(17)(本题满分8分) 设f (x ),g (x )在[a ,b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈[a ,b ),证明:⎰⎰≤baba dx x xg dx x xf )()(.(18)(本题满分9分) 设某商品的需求函数为Q=100-5P ,其中价格P ∈(0,20),Q 为需求量. (I)求需求量对价格的弹性d E (d E >0);(II)推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加. (19)(本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ).求:(I)S (x )所满足的一阶微分方程; (II)S (x )的表达式. (20)(本题满分13分)设T α)0,2,1(1=,T ααα)3,2,1(2-+=,T b αb α)2,2,1(3+---=,Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ)β不能由321,,ααα线性表示;(Ⅱ)β可由321,,ααα唯一地线性表示,并求出表示式;(Ⅲ)β可由321,,ααα线性表示,但表示式不唯一,并求出表示式. (21)(本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=111b b b b b b A .(Ⅰ)求A 的特征值和特征向量;(Ⅱ)求可逆矩阵P ,使得AP P 1-为对角矩阵. (22)(本题满分13分)设A ,B 为两个随机事件,且41)(=A P ,31)|(=AB P ,21)|(=B A P ,令 ⎩⎨⎧=不发生,,发生,A A X 0,1⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ)二维随机变量),(Y X 的概率分布; (Ⅱ)X 与Y 的相关系数XY ρ; (Ⅲ)22Y X Z +=的概率分布. (23)(本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα.设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ)当1=α时,求未知参数β的矩估计量; (Ⅱ)当1=α时,求未知参数β的最大似然估计量; (Ⅲ)当2=β时,求未知参数α的最大似然估计量.2016年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)若5)(cos sin lim0=--→b x ae xx x ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim0=--→b x a e xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以0)(lim 0=-→a e x x ,得a =1.极限化为51)(cos lim )(cos sin lim00=-=-=--→→b b x x x b x a e x x x x ,得b =-4.因此,a =1,b =-4. 【评注】一般地,已知)()(limx g x f =A , (1)若g (x )→0,则f (x )→0;(2)若f (x )→0,且A ≠0,则g (x )→0.(2)设函数f (u ,v )由关系式f [xg (y ),y ]=x +g (y )确定,其中函数g (y )可微,且g (y )≠0,则)()(22v g v g vu f'-=∂∂∂.【分析】令u =xg (y ),v =y ,可得到f (u ,v )的表达式,再求偏导数即可. 【详解】令u =xg (y ),v =y ,则f (u ,v )=)()(v g v g u+,所以,)(1v g u f =∂∂,)()(22v g v g v u f '-=∂∂∂. (3)设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x -1=t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x -1=t ,⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x .【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解.(4)二次型2132********)()()(),,(x x x x x x x x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩,亦即标准型中平方项的项数,于是利用初等变换或配方法均可得到答案.【详解一】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为⎪⎪⎪⎭⎫ ⎝⎛--=211121112A ,由初等变换得⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A ,从而2)(=A r ,即二次型的秩为2.【详解二】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++= 2322321)(23)2121(2x x x x x -+++= 2221232y y +=,其中,21213211x x x y ++=322x x y -=.所以二次型的秩为2.(5)设随机变量X 服从参数为λ的指数分布,则=>}{DX X P e1. 【分析】根据指数分布的分布函数和方差立即得正确答案. 【详解】由于21λDX =,X 的分布函数为 ⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=.【评注】本题是对重要分布,即指数分布的考查,属基本题型.(6)设总体X 服从正态分布),(21σμN ,总体Y 服从正态分布),(22σμN ,1,,21n X X X 和2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本,则22121212)()(21σn n Y Y X X E n j j n i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==.【分析】利用正态总体下常用统计量的数字特征即可得答案.【详解】因为2121])(11[1σX X n E n i i =--∑=,2122])(11[2σY Y n E n j j =--∑=, 故应填2σ.【评注】本题是对常用统计量的数字特征的考查.二、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7)函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A)(-1,0).(B)(0,1).(C)(1,2).(D)(2,3).[A]【分析】如f (x )在(a ,b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在(a ,b )内有界.【详解】当x ≠0,1,2时,f (x )连续,而183sin )(lim1-=+-→x f x ,42sin )(lim 0-=-→x f x ,42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x , 所以,函数f (x )在(-1,0)内有界,故选(A).【评注】一般地,如函数f (x )在闭区间[a ,b ]上连续,则f (x )在闭区间[a ,b ]上有界;如函数f (x )在开区间(a ,b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在开区间(a ,b )内有界.(8)设f (x )在(-∞,+∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 (A)x =0必是g (x )的第一类间断点. (B)x =0必是g (x )的第二类间断点.(C)x =0必是g (x )的连续点.(D)g (x )在点x =0处的连续性与a 的取值有关. [D] 【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元xu 1=,可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 0u f x f x g u x x ∞→→→===a (令xu 1=),又g (0)=0,所以,当a =0时,)0()(lim 0g x g x =→,即g (x )在点x =0处连续,当a ≠0时,)0()(lim 0g x g x ≠→,即x =0是g (x )的第一类间断点,因此,g (x )在点x =0处的连续性与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性. (9)设f (x )=|x (1-x )|,则(A)x =0是f (x )的极值点,但(0,0)不是曲线y =f (x )的拐点. (B)x =0不是f (x )的极值点,但(0,0)是曲线y =f (x )的拐点. (C)x =0是f (x )的极值点,且(0,0)是曲线y =f (x )的拐点.(D)x =0不是f (x )的极值点,(0,0)也不是曲线y =f (x )的拐点. [C] 【分析】由于f (x )在x =0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x =0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0<δ<1,当x ∈(-δ,0)⋃(0,δ)时,f (x )>0,而f (0)=0,所以x =0是f (x )的极小值点. 显然,x =0是f (x )的不可导点.当x ∈(-δ,0)时,f (x )=-x (1-x ),02)(>=''x f ,当x ∈(0,δ)时,f (x )=x (1-x ),02)(<-=''x f ,所以(0,0)是曲线y =f (x )的拐点.故选(C).【评注】对于极值情况,也可考查f (x )在x =0的某空心邻域内的一阶导数的符号来判断. (10)设有下列命题:(1)若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2)若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3)若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散. (4)若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 (A)(1)(2). (B)(2)(3). (C)(3)(4). (D)(1)(4). [B] 【分析】可以通过举反例及级数的性质来说明4个命题的正确性. 【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由1lim1>+∞→nn n u u 可得到n u 不趋向于零(n →∞),所以∑∞=1n n u 发散. (4)是错误的,如令n v n u n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而∑∞=+1)(n n n v u 收敛.故选(B).【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型. (11)设)(x f '在[a,b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A)至少存在一点),(0b a x ∈,使得)(0x f >f (a ). (B)至少存在一点),(0b a x ∈,使得)(0x f >f (b ). (C)至少存在一点),(0b a x ∈,使得0)(0='x f .(D)至少存在一点),(0b a x ∈,使得)(0x f =0.[D]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知)(x f '在[a,b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,0)()(lim)(>--='+→ax a f x f a f a x ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >.同理,至少存在一点),(0b a x ∈使得)()(0b f x f >.所以,(A)(B)(C)都正确,故选(D).【评注】本题综合考查了介值定理与极限的保号性,有一定的难度. (12)设n 阶矩阵A 与B 等价,则必有(A)当)0(||≠=a a A 时,a B =||.(B)当)0(||≠=a a A 时,a B -=||. (C)当0||≠A 时,0||=B .(D)当0||=A 时,0||=B .[D] 【分析】利用矩阵A 与B 等价的充要条件:)()(B r A r =立即可得.【详解】因为当0||=A 时,n A r <)(,又A 与B 等价,故n B r <)(,即0||=B ,故选(D).【评注】本题是对矩阵等价、行列式的考查,属基本题型.(13)设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组b Ax =的 互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A)不存在.(B)仅含一个非零解向量.(C)含有两个线性无关的解向量.(D)含有三个线性无关的解向量. [B]【分析】要确定基础解系含向量的个数,实际上只要确定未知数的个数和系数矩阵的秩. 【详解】因为基础解系含向量的个数=)(A r n -,而且⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r根据已知条件,0*≠A 于是)(A r 等于n 或1-n .又b Ax =有互不相等的解, 即解不惟一,故1)(-=n A r .从而基础解系仅含一个解向量,即选(B).【评注】本题是对矩阵A 与其伴随矩阵*A 的秩之间的关系、线性方程组解的结构等多个知识点的综合考查. (14)设随机变量X 服从正态分布)1,0(N ,对给定的)1,0(∈α,数αu 满足αu X P α=>}{,若αx X P =<}|{|,则x 等于 (A)2αu .(B)21αu-.(C)21αu -.(D)αu -1.[C]【分析】利用标准正态分布密度曲线的对称性和几何意义即得. 【详解】由αx X P =<}|{|,以及标准正态分布密度曲线的对称性可得21}{αx X P -=>.故正确答案为(C). 【评注】本题是对标准正态分布的性质,严格地说它的上分位数概念的考查.三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分8分)求)cos sin 1(lim 2220xxx x -→. 【分析】先通分化为“”型极限,再利用等价无穷小与罗必达法则求解即可. 【详解】xx xx x x x x x x 2222202220sin cos sin lim )cos sin 1(lim -=-→→=346)4(21lim 64cos 1lim 44sin 212lim 2sin 41lim 22020304220==-=-=-→→→→xx x x x x x x x x x x x x .【评注】本题属于求未定式极限的基本题型,对于“0”型极限,应充分利用等价无穷小替换来简化计算. (16)(本题满分8分) 求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).【分析】首先,将积分区域D 分为大圆}4|),{(221≤+=y x y x D 减去小圆}1)1(|),{(222≤++=y x y x D ,再利用对称性与极坐标计算即可.【详解】令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,由对称性,0=⎰⎰Dyd σ.⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d .)23(916932316-=-=ππ所以,)23(916)(22-=++⎰⎰πσDd y y x . 【评注】本题属于在极坐标系下计算二重积分的基本题型,对于二重积分,经常利用对称性及将一个复杂区域划分为两个或三个简单区域来简化计算. (17)(本题满分8分) 设f (x ),g (x )在[a ,b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈[a ,b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤baba dx x xg dx x xf )()(.【分析】令F (x )=f (x )-g (x ),⎰=xa dt t F x G )()(,将积分不等式转化为函数不等式即可. 【详解】令F (x )=f (x )-g (x ),⎰=xa dt t F x G )()(,由题设G (x )≥0,x ∈[a ,b ],G (a )=G (b )=0,)()(x F x G ='.从而⎰⎰⎰⎰-=-==bab ababa b a dx x G dx x G x xG x xdG dx x xF )()()()()(,由于G (x )≥0,x ∈[a ,b ],故有0)(≤-⎰badx x G ,即0)(≤⎰ba dx x xF .因此⎰⎰≤babadx x xg dx x xf )()(.【评注】引入变限积分转化为函数等式或不等式是证明积分等式或不等式的常用的方法. (18)(本题满分9分) 设某商品的需求函数为Q=100-5P ,其中价格P ∈(0,20),Q 为需求量. (I)求需求量对价格的弹性d E (d E >0);(II)推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.【分析】由于d E >0,所以dP dQ Q P E d =;由Q=PQ 及dPdQQ P E d =可推导 )1(d E Q dPdR-=. 【详解】(I)PPdP dQ Q P E d -==20. (II)由R=PQ ,得)1()1(d E Q dPdQ Q P Q dP dQ P Q dP dR -=+=+=. 又由120=-=PPE d ,得P=10.当10<P<20时,d E >1,于是0<dPdR,故当10<P<20时,降低价格反而使收益增加.【评注】当d E >0时,需求量对价格的弹性公式为dPdQQ P dP dQ Q P E d -==. 利用需求弹性分析收益的变化情况有以下四个常用的公式:Qdp E dR d )1(-=,Q E dpdRd )1(-=,p E dQ dR d )11(-=, d E EpER-=1(收益对价格的弹性). (19)(本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ).求:(I)S (x )所满足的一阶微分方程; (II)S (x )的表达式.【分析】对S (x )进行求导,可得到S (x )所满足的一阶微分方程,解方程可得S (x )的表达式.【详解】(I) +⋅⋅⋅+⋅⋅+⋅=864264242)(864x x x x S , 易见S (0)=0,+⋅⋅+⋅+='642422)(753x x x x S)642422(642 +⋅⋅+⋅+=x x x x)](2[2x S x x +=.因此S (x )是初值问题0)0(,23=+='y x xy y 的解.(II)方程23x xy y +='的通解为]2[3C dx e x e y xdx xdx +⎰⎰=⎰- 22212x Ce x +--=,由初始条件y(0)=0,得C=1.故12222-+-=x e x y ,因此和函数12)(222-+-=x e x x S .【评注】本题综合了级数求和问题与微分方程问题,2002年考过类似的题. (20)(本题满分13分)设T α)0,2,1(1=,T ααα)3,2,1(2-+=,T b αb α)2,2,1(3+---=,Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ)β不能由321,,ααα线性表示;(Ⅱ)β可由321,,ααα唯一地线性表示,并求出表示式;(Ⅲ)β可由321,,ααα线性表示,但表示式不唯一,并求出表示式.【分析】将β可否由321,,ααα线性表示的问题转化为线性方程组βαk αk αk =++332211是否有解的问题即易求解. 【详解】设有数,,,321k k k 使得βαk αk αk =++332211.(*)记),,(321αααA =.对矩阵),(βA 施以初等行变换,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+-=323032221111),(b a a b a βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111b a b a .(Ⅰ)当0=a 时,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→10001001111),(b βA .可知),()(βA r A r ≠. 故方程组(*)无解,β不能由321,,ααα线性表示. (Ⅱ)当0≠a ,且b a ≠时,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→0100101011001a a 3),()(==βA r A r , 方程组(*)有唯一解:ak 111-=,a k 12=,03=k .此时β可由321,,ααα唯一地线性表示,其表示式为211)11(αaαa β+-=.(Ⅲ)当0≠=b a 时,对矩阵),(βA 施以初等行变换,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→0000111011001a a , 2),()(==βA r A r , 方程组(*)有无穷多解, 其全部解为a k 111-=,c ak +=12,c k =3,其中c 为任意常数. β 可由321,,ααα线性表示,但表示式不唯一, 其表示式为321)1()11(αc αc aαa β+++-=.【评注】本题属于常规题型,曾考过两次(1991,2000).(21)(本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=111 b b b b b b A .(Ⅰ)求A 的特征值和特征向量;(Ⅱ)求可逆矩阵P ,使得AP P 1-为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题,通常可由求解特征方程0||=-A E λ和齐次线性方程组0)(=-x A E λ来解决.【详解】 (Ⅰ)1当0≠b 时,111||---------=-λbbb λb b b λA E λ=1)]1(][)1(1[------n b λb n λ,得A 的特征值为b n λ)1(11-+=,b λλn -===12 . 对b n λ)1(11-+=,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b n b b b b n b b b b n A E λ)1()1()1(1 →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------)1(111)1(111)1(n n n→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------0000111111111111 n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------0000111111111111 n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---000000001111n n n n n →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000110010101001解得Tξ)1,,1,1,1(1 =,所以A 的属于1λ的全部特征向量为 Tk ξk )1,,1,1,1(1 = (k 为任意不为零的常数). 对b λ-=12,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b b b b b b b b b A E λ 2→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛000000111 得基础解系为T ξ)0,,0,1,1(2 -=,T ξ)0,,1,0,1(3 -=,T n ξ)1,,0,0,1(,-= .故A 的属于2λ的全部特征向量为n n ξk ξk ξk +++ 3322 (n k k k ,,,32 是不全为零的常数).2 当0=b 时,n λλλλA E λ)1(1010001||-=---=-,特征值为11===n λλ ,任意非零列向量均为特征向量.(Ⅱ)1当0≠b 时,A 有n 个线性无关的特征向量,令),,,(21n ξξξP =,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---+=-b b b n AP P 11)1(112 当0=b 时,E A =,对任意可逆矩阵P ,均有E AP P =-1.【评注】本题通过考查矩阵的特征值和特征向量而间接考查了行列式的计算,齐次线性方程组的求解和矩阵的对角化等问题,属于有一点综合性的试题.另外,本题的解题思路是容易的,只要注意矩阵中含有一个未知参数,从而一般要讨论其不同取值情况. (22)(本题满分13分)设A ,B 为两个随机事件,且41)(=A P ,31)|(=AB P ,21)|(=B A P ,令 ⎩⎨⎧=不发生,,发生,A A X 0,1⎩⎨⎧=.0,1不发生,发生,B B Y求(Ⅰ)二维随机变量),(Y X 的概率分布; (Ⅱ)X 与Y 的相关系数XY ρ; (Ⅲ)22Y X Z +=的概率分布.【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.【详解】(Ⅰ)因为121)|()()(==A B P A P AB P , 于是 61)|()()(==B A P AB P B P , 则有 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , 121)()()(}1,0{=-====AB P B P B A P Y X P ,32)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P , (或 32121611211}0,0{=---===Y X P ), 即),(Y X 的概率分布为:(Ⅱ) 方法一:因为 4)(==A P EX ,6)(==B P EY ,12)(=XY E , 41)(2==A P EX ,61)(2==B P EY ,163)(22=-=EX EX DX ,165)(22=-=EY EY DY ,241)(),(=-=EXEY XY E Y X Cov ,所以X 与Y 的相关系数 1515151),(==⋅=DYDX Y X Cov ρXY . 方法二:X,Y 的概率分布分别为X01Y01P4341P 6561则61,41==EY EX ,163=DX ,DY=365,E(XY)=121,故241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ (Ⅲ)Z 的可能取值为:0,1,2.32}0,0{}0{=====Y X P Z P , 41}1,0{}0,1{}1{===+====Y X P Y X P Z P , 121}1,1{}2{=====Y X P Z P , 即Z 【评注】本题考查了二维离散随机变量联合概率分布,数字特征和二维离散随机变量函数的分布等计算问题,属于综合性题型 (23)(本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα.设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ)当1=α时,求未知参数β的矩估计量; (Ⅱ)当1=α时,求未知参数β的最大似然估计量; (Ⅲ)当2=β时,求未知参数α的最大似然估计量.【分析】本题是一个常规题型,只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数,从而先由分布函数求导得密度函数. 【详解】当1=α时,X 的概率密度为⎪⎩⎪⎨⎧≤>=+,,,101,),(1x x x ββx f β(Ⅰ)由于 ⎰⎰+∞++∞∞--=⋅==11,1);(ββdx x βx dx βx xf EX β 令X ββ=-1,解得1-=X X β, 所以,参数β的矩估计量为1-=X Xβ. (Ⅱ)对于总体X 的样本值n x x x ,,,21 ,似然函数为∏=+⎪⎩⎪⎨⎧=>==ni i βn ni n i x x x x βαx f βL 1121.,0),,,2,1(1,)();()(其他 当),,2,1(1n i x i =>时,0)(>βL ,取对数得∑=+-=ni i x ββn βL 1ln )1(ln )(ln ,对β求导数,得∑=-=ni i x βn βd βL d 1ln )]([ln ,令0ln )]([ln 1=-=∑=ni i x βn βd βL d , 解得 ∑==ni ixnβ1ln ,于是β的最大似然估计量为∑==ni ixnβ1ln ˆ.(Ⅲ)当2=β时,X 的概率密度为⎪⎩⎪⎨⎧≤>=,,,αx αx x αβx f 0,2),(32对于总体X 的样本值n x x x ,,,21 ,似然函数为∏=⎪⎩⎪⎨⎧=>==ni i n nn i n i αx x x x ααx f βL 13212.,0),,,2,1(,)(2);()(其他 当),,2,1(n i αx i =>时,α越大,)(αL 越大,即α的最大似然估计值为},,,m in{ˆ21n x x x α=, 于是α的最大似然估计量为},,,m in{ˆ21n X X X α=. 声明:此资源由本人收集整理于网络,只用于交流学习,请勿用作它途。
2016数三考研真题2016年的数学三科考研真题对于考研学子来说是非常重要的一场考试。
本文将会对2016年数学三科考研真题进行分析和解答,帮助考生更好地理解和应对这次考试。
第一道题目:解析:这道题目是一个典型的微积分问题,要求求出函数f(x)的导数。
根据题目给出的条件,f(x) = ∫[0,x] g(t) dt,其中g(x) = ∫[0,1] 2xy dx。
根据微积分的基本原理,如果要求出f(x)的导数,可以利用牛顿-莱布尼兹公式。
根据该公式,f(x)的导数等于g(x)的函数值。
根据题目给出的条件,计算g(x):g(x) = ∫[0,1] 2xy dx= 2∫[0,1] xy dx= 2 * x * ∫[0,1] y dx= 2 * x * y * [0,1]= 2 * x * y将g(x)的表达式带入f(x)的表达式中,得到:f(x) = ∫[0,x] g(t) dt= ∫[0,x] 2 * t * y dt= 2 * y * ∫[0,x] t dt= 2 * y * (t^2 / 2) | [0,x]= y * x^2因此,f(x)的导数为f'(x) = 2 * y * x。
答案为B。
第二道题目:解析:这道题目是一个概率统计的问题,要求计算随机变量X的期望和方差。
根据题目给出的条件,X是满足分布函数F(x)的连续型随机变量。
我们先来计算随机变量X的期望E(X):E(X) = ∫[-∞,+∞] x f(x) dx根据题目给出的条件,得到:∫[-∞,+∞] (x - 1) f(x) dx = 0将x - 1拆分为x和-1两部分,得到:∫[-∞,+∞] xf(x) dx - ∫[-∞,+∞] f(x) dx = 0根据随机变量的概率密度函数与分布函数的关系,有:f(x) = dF(x) / dx将概率密度函数带入上式中,得到:∫[-∞,+∞] x (dF(x) / dx) dx - ∫[-∞,+∞] (dF(x) / dx) dx = 0根据微积分的基本原理,可以得到:xdF(x) - ∫[-∞,+∞] dF(x) = 0对上式进行积分,得到:xF(x)|[-∞,+∞] - [F(x)|[-∞,+∞] = 0根据题目给出的条件,分布函数在正负无穷处的值分别为0和1,得到:0 - 0 = 0因此,随机变量X的期望为E(X) = 1。
2016年考研数三真题2016年考研数学三真题是考研数学考试中的一道经典题目,它涉及到了数学的多个领域,如线性代数、概率论和数理统计等。
这道题目的难度较大,需要考生具备扎实的数学基础和逻辑思维能力。
下面将对这道题目进行分析和解答。
首先,我们来看一下这道题目的具体内容。
题目中给出了一个4阶实对称矩阵A,且满足A^2 = 4A - 3E,其中E为单位矩阵。
考生需要证明A的特征值只能是-1, 1, 3或4。
为了解决这道题目,我们需要运用一些线性代数的知识。
首先,我们知道实对称矩阵一定可以对角化,即存在一个正交矩阵P,使得P^TAP = D,其中D是对角矩阵。
所以我们可以假设A可以对角化为D,即A = PDP^T。
接下来,我们将A^2 = 4A - 3E代入上式,得到PDP^T PDP^T = 4PDP^T - 3E。
由于P是正交矩阵,所以P^TP = E,代入上式得到DP^TDP = 4DP^T - 3E。
进一步整理得到DP^TD - 4DP^T + 3E = 0。
根据上式,我们可以得到D的特征值满足一个关于λ(特征值)的方程:λP^TP - 4P^T + 3E = 0。
由于P是正交矩阵,所以P^TP = E,代入上式得到λE - 4P^T + 3E = 0。
进一步整理得到(λ + 3)E - 4P^T = 0。
由于E是非零矩阵,所以(λ + 3)E - 4P^T = 0只有零解,即(λ + 3) = 0,即λ =-3。
所以A的特征值中至少包含-3。
接下来,我们需要证明A的特征值只能是-1, 1, 3或4。
为了证明这一点,我们需要考虑A的特征多项式。
由于A是4阶矩阵,所以它的特征多项式可以表示为:f(λ) = (λ - λ1)(λ - λ2)(λ - λ3)(λ - λ4)。
根据前面的分析,我们已经知道A的特征值中至少包含-3。
假设A的特征值还有其他值,即存在一个特征值λi,其中λi不等于-3。
根据特征多项式的性质,f(-3) = (-3 - λ1)(-3 - λ2)(-3 - λ3)(-3 - λ4) = 0。
2016年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim0=--→b x ae xx x ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim0=--→b x a e xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以 0)(lim 0=-→a e x x ,得a = 1. 极限化为51)(cos lim )(cos sin lim00=-=-=--→→b b x x xb x a e x x x x ,得b = -4.因此,a = 1,b = -4. 【评注】一般地,已知)()(limx g x f = A , (1) 若g (x ) → 0,则f (x ) → 0;(2) 若f (x ) → 0,且A ≠ 0,则g (x ) → 0.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则)()(22v g v g vu f'-=∂∂∂.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可. 【详解】令u = xg (y ),v = y ,则f (u , v ) =)()(v g v g u+,所以,)(1v g u f =∂∂,)()(22v g v g v u f '-=∂∂∂. (3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x - 1 = t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x - 1 = t ,⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x .【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解.(4) 二次型2132********)()()(),,(x x x x x x x x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案.【详解一】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛--=211121112A ,由初等变换得 ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A ,从而 2)(=A r , 即二次型的秩为2.【详解二】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++= 2322321)(23)2121(2x x x x x -+++= 2221232y y +=,其中 ,21213211x x x y ++= 322x x y -=.所以二次型的秩为2.(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X Pe1. 【分析】 根据指数分布的分布函数和方差立即得正确答案. 【详解】 由于21λDX =, X 的分布函数为 ⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=.【评注】本题是对重要分布, 即指数分布的考查, 属基本题型.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X Λ和 2,,21n Y Y Y Λ分别是来自总体X 和Y 的简单随机样本, 则22121212)()(21σn n Y Y X X En j j n i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==.【分析】利用正态总体下常用统计量的数字特征即可得答案.【详解】因为 2121])(11[1σX X n E n i i =--∑=, 2122])(11[2σY Y n E n j j =--∑=, 故应填 2σ.【评注】本题是对常用统计量的数字特征的考查.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界.(A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ]【分析】如f (x )在(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在(a , b )内有界.【详解】当x ≠ 0 , 1 , 2时,f (x )连续,而183sin )(lim1-=+-→x f x ,42sin )(lim 0-=-→x f x ,42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x , 所以,函数f (x )在(-1 , 0)内有界,故选(A).【评注】一般地,如函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界;如函数f (x )在开区间(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在开区间(a , b )内有界.(8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 (A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ] 【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元xu 1=, 可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 0u f x f x g u x x ∞→→→=== a (令xu 1=),又g (0) = 0,所以,当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a ≠ 0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性. (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ] 【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 < δ < 1,当x ∈ (-δ , 0) ⋃ (0 , δ)时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点. 显然,x = 0是f (x )的不可导点. 当x ∈ (-δ , 0)时,f (x ) = -x (1 - x ),02)(>=''x f ,当x ∈ (0 , δ)时,f (x ) = x (1 - x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点.故选(C).【评注】对于极值情况,也可考查f (x )在x = 0的某空心邻域内的一阶导数的符号来判断. (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3).(C) (3) (4).(D) (1) (4).[ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性. 【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由1lim1>+∞→nn n u u 可得到n u 不趋向于零(n → ∞),所以∑∞=1n n u 发散. (4)是错误的,如令n v n u n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而∑∞=+1)(n n n v u 收敛. 故选(B).【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型.(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,0)()(lim)(>--='+→ax a f x f a f a x ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).【评注】 本题综合考查了介值定理与极限的保号性,有一定的难度.(12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ] 【分析】 利用矩阵A 与B 等价的充要条件: )()(B r A r =立即可得.【详解】因为当0||=A 时, n A r <)(, 又 A 与B 等价, 故n B r <)(, 即0||=B , 故选(D). 【评注】本题是对矩阵等价、行列式的考查, 属基本题型.(13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的 互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系(A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ B ] 【分析】 要确定基础解系含向量的个数, 实际上只要确定未知数的个数和系数矩阵的秩. 【详解】 因为基础解系含向量的个数=)(A r n -, 而且⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r根据已知条件,0*≠A 于是)(A r 等于n 或1-n . 又b Ax =有互不相等的解, 即解不惟一, 故1)(-=n A r . 从而基础解系仅含一个解向量, 即选(B).【评注】本题是对矩阵A 与其伴随矩阵*A 的秩之间的关系、线性方程组解的结构等多个知识点的综合考查.(14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ C ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得. 【详解】 由αx X P =<}|{|, 以及标准正态分布密度曲线的对称性可得21}{αx X P -=>. 故正确答案为(C). 【评注】本题是对标准正态分布的性质, 严格地说它的上分位数概念的考查.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. 【分析】先通分化为“”型极限,再利用等价无穷小与罗必达法则求解即可. 【详解】xx xx x x x x x x 2222202220sin cos sin lim )cos sin 1(lim -=-→→ =346)4(21lim 64cos 1lim 44sin 212lim 2sin 41lim 22020304220==-=-=-→→→→x x x x x x x x x x x x x x . 【评注】本题属于求未定式极限的基本题型,对于“0”型极限,应充分利用等价无穷小替换来简化计算. (16) (本题满分8分) 求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).【分析】首先,将积分区域D 分为大圆}4|),{(221≤+=y x y x D 减去小圆}1)1(|),{(222≤++=y x y x D ,再利用对称性与极坐标计算即可.【详解】令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,由对称性,0=⎰⎰Dyd σ.⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d .)23(916932316-=-=ππ所以,)23(916)(22-=++⎰⎰πσDd y y x . 【评注】本题属于在极坐标系下计算二重积分的基本题型,对于二重积分,经常利用对称性及将一个复杂区域划分为两个或三个简单区域来简化计算. (17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤ba b a dx x xg dx x xf )()(.【分析】令F (x ) = f (x ) - g (x ),⎰=xa dt t F x G )()(,将积分不等式转化为函数不等式即可. 【详解】令F (x ) = f (x ) - g (x ),⎰=x a dt t F x G )()(,由题设G (x ) ≥ 0,x ∈ [a , b ],G (a ) = G (b ) = 0,)()(x F x G ='.从而⎰⎰⎰⎰-=-==bab aba babadx x G dx x G x xG x xdG dx x xF )()()()()(,由于 G (x ) ≥ 0,x ∈ [a , b ],故有 0)(≤-⎰badx x G ,即0)(≤⎰ba dx x xF .因此⎰⎰≤babadx x xg dx x xf )()(.【评注】引入变限积分转化为函数等式或不等式是证明积分等式或不等式的常用的方法. (18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加. 【分析】由于d E > 0,所以dP dQ Q P E d =;由Q = PQ 及dPdQQ P E d =可推导 )1(d E Q dPdR-=. 【详解】(I) PPdP dQ Q P E d -==20. (II) 由R = PQ ,得)1()1(d E Q dPdQ Q P Q dP dQ P Q dP dR -=+=+=. 又由120=-=PPE d ,得P = 10.当10 < P < 20时,d E > 1,于是0<dPdR,故当10 < P < 20时,降低价格反而使收益增加.【评注】当d E > 0时,需求量对价格的弹性公式为dPdQQ P dP dQ Q P E d -==. 利用需求弹性分析收益的变化情况有以下四个常用的公式:Qdp E dR d )1(-=,Q E dpdRd )1(-=,p E dQ dR d )11(-=, d E EpER-=1(收益对价格的弹性). (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x Λ的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.【分析】对S (x )进行求导,可得到S (x )所满足的一阶微分方程,解方程可得S (x )的表达式.【详解】(I) Λ+⋅⋅⋅+⋅⋅+⋅=864264242)(864x x x x S , 易见 S (0) = 0,Λ+⋅⋅+⋅+='642422)(753x x x x S)642422(642Λ+⋅⋅+⋅+=x x x x)](2[2x S x x +=.因此S (x )是初值问题0)0(,23=+='y x xy y 的解.(II) 方程23x xy y +='的通解为]2[3C dx e x e y xdx xdx +⎰⎰=⎰-22212x Ce x +--=,由初始条件y(0) = 0,得C = 1.故12222-+-=x e x y ,因此和函数12)(222-+-=x e x x S .【评注】本题综合了级数求和问题与微分方程问题,2002年考过类似的题. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式.【分析】将β可否由321,,ααα线性表示的问题转化为线性方程组βαk αk αk =++332211是否有解的问题即易求解. 【详解】 设有数,,,321k k k 使得βαk αk αk =++332211. (*) 记),,(321αααA =. 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+-=323032221111),(b a a b a βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111b a b a .(Ⅰ) 当0=a 时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→10001001111),(b βA . 可知),()(βA r A r ≠. 故方程组(*)无解, β不能由321,,ααα线性表示. (Ⅱ) 当0≠a , 且b a ≠时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→0100101011001a a 3),()(==βA r A r , 方程组(*)有唯一解:ak 111-=, a k 12=, 03=k .此时β可由321,,ααα唯一地线性表示, 其表示式为 211)11(αaαa β+-=. (Ⅲ) 当0≠=b a 时, 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→0000111011001a a , 2),()(==βA r A r , 方程组(*)有无穷多解, 其全部解为a k 111-=, c ak +=12, c k =3, 其中c 为任意常数. β 可由321,,ααα线性表示, 但表示式不唯一, 其表示式为321)1()11(αc αc aαa β+++-=. 【评注】本题属于常规题型, 曾考过两次(1991, 2000).(21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=111ΛM M M ΛΛb b b bb b A . (Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题, 通常可由求解特征方程0||=-A E λ和齐次线性方程组0)(=-x A E λ来解决.【详解】 (Ⅰ) ο1当0≠b 时,111||---------=-λbbb λb b b λA E λΛM M M M ΛΛ=1)]1(][)1(1[------n b λb n λ ,得A 的特征值为b n λ)1(11-+=,b λλn -===12Λ. 对b n λ)1(11-+=,⎪⎪⎪⎪⎪⎭⎫⎝⎛---------=-b n b b b b n bb b bn A E λ)1()1()1(1ΛM M M ΛΛ→⎪⎪⎪⎪⎪⎭⎫⎝⎛---------)1(111)1(111)1(n n n ΛM M M ΛΛ →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛------------0000111111111111ΛΛM M M M ΛΛn n n →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---------0000111111111111ΛΛM M MM ΛΛn n n→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---000000001111ΛΛM M M M ΛΛn n n n n →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000110010101001ΛΛM M M MΛΛ解得Tξ)1,,1,1,1(1Λ=,所以A 的属于1λ的全部特征向量为 Tk ξk )1,,1,1,1(1Λ= (k 为任意不为零的常数). 对b λ-=12,⎪⎪⎪⎪⎪⎭⎫⎝⎛---------=-b b b b b b b b b A E λΛM M M ΛΛ2→⎪⎪⎪⎪⎪⎭⎫⎝⎛000000111ΛM M M ΛΛ 得基础解系为T ξ)0,,0,1,1(2Λ-=,T ξ)0,,1,0,1(3Λ-=,T n ξ)1,,0,0,1(,-=ΛΛ.故A 的属于2λ的全部特征向量为n n ξk ξk ξk +++Λ3322 (n k k k ,,,32Λ是不全为零的常数).ο2 当0=b 时,n λλλλA E λ)1(1010001||-=---=-ΛM M M ΛΛ,特征值为11===n λλΛ,任意非零列向量均为特征向量.(Ⅱ) ο1当0≠b 时,A 有n 个线性无关的特征向量,令),,,(21n ξξξP Λ=,则⎪⎪⎪⎪⎪⎭⎫⎝⎛---+=-b b b n AP P 11)1(11Oο2 当0=b 时,E A =,对任意可逆矩阵P , 均有E AP P =-1.【评注】本题通过考查矩阵的特征值和特征向量而间接考查了行列式的计算, 齐次线性方程组的求解和矩阵的对角化等问题, 属于有一点综合性的试题. 另外,本题的解题思路是容易的, 只要注意矩阵中含有一个未知参数, 从而一般要讨论其不同取值情况. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布.【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.【详解】 (Ⅰ) 因为 121)|()()(==A B P A P AB P , 于是 61)|()()(==B A P AB P B P , 则有 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , 121)()()(}1,0{=-====AB P B P B A P Y X P , 32)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P , ( 或 32121611211}0,0{=---===Y X P ), 即),(Y X 的概率分布为:(Ⅱ) 方法一:因为 41)(==A P EX ,61)(==B P EY ,121)(=XY E , 41)(2==A P EX ,61)(2==B P EY ,163)(22=-=EX EX DX ,165)(22=-=EY EY DY ,241)(),(=-=EXEY XY E Y X Cov ,所以X 与Y 的相关系数 1515151),(==⋅=DYDX Y X Cov ρXY . 方法二: X, Y 的概率分布分别为X 0 1 Y 0 1P 43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ(Ⅲ) Z 的可能取值为:0,1,2 .32}0,0{}0{=====Y X P Z P , 41}1,0{}0,1{}1{===+====Y X P Y X P Z P , 121}1,1{}2{=====Y X P Z P , 即Z 的概率分布为:【评注】本题考查了二维离散随机变量联合概率分布,数字特征和二维离散随机变量函数的分布等计算问题,属于综合性题型 (23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21Λ为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.【分析】本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数, 从而先由分布函数求导得密度函数. 【详解】 当1=α时, X 的概率密度为⎪⎩⎪⎨⎧≤>=+,,,101,),(1x x x ββx f β(Ⅰ) 由于⎰⎰+∞++∞∞--=⋅==11,1);(ββdx x βx dx βx xf EX β 令X ββ=-1, 解得 1-=X X β, 所以, 参数β的矩估计量为 1-=X Xβ.(Ⅱ) 对于总体X 的样本值n x x x ,,,21Λ, 似然函数为∏=+⎪⎩⎪⎨⎧=>==ni i βnni n i x x x x βαx f βL 1121.,0),,,2,1(1,)();()(其他ΛΛ当),,2,1(1n i x i Λ=>时, 0)(>βL , 取对数得 ∑=+-=ni ixββn βL 1ln )1(ln )(ln ,对β求导数,得∑=-=ni i x βn βd βL d 1ln )]([ln , 令0ln )]([ln 1=-=∑=ni i x βn βd βL d , 解得 ∑==ni ixnβ1ln ,于是β的最大似然估计量为∑==ni ixn1ln ˆβ.( Ⅲ) 当2=β时, X 的概率密度为⎪⎩⎪⎨⎧≤>=,,,αx αx x αβx f 0,2),(32对于总体X 的样本值n x x x ,,,21Λ, 似然函数为∏=⎪⎩⎪⎨⎧=>==ni i nnn i n i αx x x x ααx f βL 13212.,0),,,2,1(,)(2);()(其他ΛΛ当),,2,1(n i αx i Λ=>时, α越大,)(αL 越大, 即α的最大似然估计值为},,,m in{ˆ21n x x x αΛ=, 于是α的最大似然估计量为},,,m in{ˆ21n X X X αΛ=.。
2016年全国硕士研究生招生考试数学(三)试题解析
戴又发
另外,导函数的图象还有1个间断点,导函数在该点左右两侧同号,而函数在该点处
故选(B)
(A)绝对收敛(B)条件收敛(C)发散
故选(C)
数分别为1,2,则
故选(C)
(A)6
(B)8
(C)14
(D)15
故选(C)
(14)设袋中有红、白、黑球各一个,从中有放回的取球,每次取一个,直到三种颜色的球都取到时停止,则取球次数恰好为4的概率为
解析:若最后一次取到黑球后停止,则前三次只能取到红色球和白色球,且两种颜色都有.
(Ⅰ)求需求函数的表达式;
其经济意义是:需求量每提高1件,能增加收益80万元.。