高一数学“每周一练”系列试题(38)新人教A版
- 格式:doc
- 大小:78.00 KB
- 文档页数:2
黄村中学2013学年上学期高一数学期中试卷一.选择题:(本大题共10题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知全集{12345}U =,,,,,集合{1,3}A =,{3,4,5}B =,则集合=⋂)(B A C uA .{3}B .{4,5}C .{1245},,,D .{3,4,5}2.函数y =. (2,) . [2,) . (,2) . (,2]A B C D +∞+∞-∞-∞3.下列函数是偶函数的是:A .x y =B .21x y = C .322-=x y D .]1,0[,2∈=x x y 4.图中的图象所表示的函数的解析式为:A .|1|23-=x y (0≤x ≤2) B .|1|2323--=x y (0≤x ≤2) C .|1|23--=x y (0≤x ≤2) D .|1|1--=x y(0≤x ≤2)5.下列四组函数中表示相等函数的是:A .2)(x x f =与x x g =)( B .x x f =)(与xx x g 2)(=C .2ln )(x x f =与x x g ln 2)(=D .x a a x f log )(=a (>0)1,≠a 与33)(x x g =6.设()833-+=x x f x ,用二分法求方程()2,10833∈=-+x x x在内近似解的过程中得()()(),025.1,05.1,01<><f f f 则方程的根落在区间:A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定7. 当1a >时,在同一坐标系中,函数xy a -=与log a y x =的图象是:8.设12log 3a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则:A .a b c <<B .c b a <<C .c a b <<D .b a c <<9.若奇函数...()x f 在[]3,1上为增函数...,且有最小值7,则它在[]1,3--上: A . 是减函数,有最小值-7 B . 是增函数,有最小值-7 C . 是减函数,有最大值-7 D . 是增函数,有最大值-7 10.对实数a 和b ,定义运算“⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩设函数()()22()2,.f x x x x x R =-⊗-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是:A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭C .111,,44⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭D .⎪⎭⎫ ⎝⎛+∞⋃⎥⎦⎤ ⎝⎛--,4143,1二、填空题:(本大题共5小题,每小题4分,共20分)11.已知(,)x y 在映射f 下的对应元素是(,)x y x y +-,则(4,6)在映射f 下的对应元素是 。
2013—2014学年度高考辅导学校第三次月考 数学试题(文)一. 选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案写在答题卡相应的位置)(1) 已知全集U R =,集合2{20}A x x x =->,{lg(1)}B x y x ==-,则(U C A B ) =( )(A) {12}x x <≤ (B){12}x x << (C){20}x x x ><或 (D){12}x x ≤≤ (2) 下列命题中是假命题的是( ) (A) x x x sin ),2,0(>∈∀π(B)0x R ∃∈,2cos sin 00=+x x(C) x R ∀∈,03>x(D)0lg ,00=∈∃x R x(3) 已知α∈(2π,π),sin α=53,则tan (4πα-)等于( ) (A)7- (B) 17- (C) 7 (D)71(4)已知32log log a =+,92log log b =-,23log c =,则,,a b c 的大小关系是( )(A)a b c =< (B)a b c => (C)a b c <<(D)a b c >>(5) 已知函数2()f x x bx =+()b R ∈,则下列结论正确的是( )(A),()b R f x ∀∈在(0,+∞)上是增函数 (B),()b R f x ∀∈在(0,+∞)上是减函数(C),()b R f x ∃∈为奇函数 (D),()b R f x ∃∈为偶函数(6) .若y x ,满足约束条件⎪⎩⎪⎨⎧≤+≥+≥32320y x y x x ,则y x z -=的最小值是 ( )(A )-3(B )0(C )23 (D )3(7) 已知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)nn a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++=( )(A)(21)n n - (B)2(1)n + (C)2n (D)2(1)n -(8) 在ABC 中,a b =“”是cos cos a A b B =“”的 ( )(A)充要条件 (B)必要不充分条件 (C)充分不必要条件(D)既不充分也不必要条件(9) 若)(x f 是R 上的减函数,且)(x f 的图象过点)3,0(和)1,3(-,则不等式21)1(<-+x f 的解集是( )(A) (,2)-∞ (B)(1,4) (C)(0,3) (D) (1,2)- (10) 已知O 是△ABC 外接圆的圆心,A 、B 、C 为△ABC 的内角,若cos cos 2sin sin B C AB AC m AO C B+=⋅,则m 的值为 ( ) (A)1 (B)A sin (C)A cos (D)A tan二.填空题(本大题共5小题,每小题5分,共25分.把答案填写在相应位置的答题卡上) (11) 已知向量a 、b 的夹角为120,2,3a b ==,则2a b -= .(12) 已知0,0a b >>,且12(2y a b x=+为幂函数,则ba 11+的最小值为 .(13) 在ABC ∆中,(cos18,cos72)AB =,(2cos632cos27)BC =,,则ABC ∆面积为_(14) 已知数列{}n a 是等差数列,其前n 项和为n S ,若12345a a a =,且133********3S S S S S S ++=,则2a =_________. (15) 已知集合M 是满足下列条件的函数()f x 的全体:(1)()f x 既不是奇函数也不是偶函数;(2) 函数()f x 有零点.那么在函数① ()1f x x =-, ② ()21xf x =-, ③ 2,0()0,02,0x x f x x x x ->⎧⎪==⎨⎪+<⎩④ 2()1ln f x x x x =--+ 中,属于M 的有________.(写出所有符合的函数序号)三、解答题(本大题共6小题,共75分。
周练卷(1)一、选择题(每小题5分,共35分)1.在赋值语句中,“N=N+1”表示(C)A.没有意义B.N与N+1相等C.将N的原值加1再赋给N,N的值增加1D.无法进行解析:由题意得,赋值语句中“=”的作用是将右边表达式所代表的值赋给左边的变量,故选C.2.下列问题可以设计成循环语句计算的个数为(C)①求1+3+32+…+39的和;②比较a,b两个数的大小;③对于分段函数,要求输入自变量,输出函数值;④求平方值小于100的最大整数.A.0个B.1个C.2个D.3个解析:①④用到循环语句.3.阅读如图所示的程序框图,运行相应的程序,输出的结果是(B)A.3 B.11C.38 D.123解析:第一次循环:a=3,第二次循环:a=11,框图运行后输出的结果为11.4.阅读下面程序:如果输入x=5,则输出结果x为(B)A.-5 B.5C.0 D.不确定解析:x≥0,直接输出x=5.5.下面为一个求20个数的平均数的程序,在横线上应填充的语句为(A)A .i>20B .i<20C .i>=20D .i<=206.执行如图程序框图,若输入x =10,要求输出y =4,则在图中“?”处可填入的算法语句是( C )①x =x -1 ②x =x -2 ③x =x -3 ④x =x -4 A .①②③ B .②③ C .②③④D .③④ 解析:经验证当填入x =x -2,x =x -3或x =x -4时,能得到y =⎝ ⎛⎭⎪⎫12-2=4,故选C.7.如图是一个算法流程图,则流程图输出的结果是45,则判断框内应该填入的是( C )A .i ≥3?B .i >3?C .i ≥5?D .i >5?解析:i =1,m =0,n =0; i =2,m =1,n =11×2;i =3,m =2,n =11×2+12×3;i =4,m =3,n =11×2+12×3+13×4;i =5,m =4,n =11×2+12×3+13×4+14×5=45,所以应填i ≥5?,故选C. 二、填空题(每小题5分,共20分)8.已知函数y =⎩⎪⎨⎪⎧log 2x ,x ≥2,2-x , x <2,如图表示的是给定x 的值,求其对应的函数值y 的程序框图.①处应填写x <2?;②处应填写y =log 2x .解析:因为x <2时,y =2-x ,所以①处应填x <2?,②处应填y =log 2x .9.算法流程图(如图所示)的运行结果为20. 解析:a =5,s =1,a ≥4; s =5,a =4,a ≥4; s =20,a =3,输出s =20.10.执行如下图所示的程序框图,若输入x =9,则输出y =299. 解析:第一次循环:y =5,x =5; 第二次循环:y =113,x =113;第三次循环:y =299,此时|y -x |=⎪⎪⎪⎪⎪⎪299-113=49<1,故输出y =299.11.执行如图所示的程序框图,输入l=2,m=3,n=5,则输出的y 的值是68.解析:当输入l=2,m=3,n=5时,不满足l2+m2+n2=0,因此执行:y=70l+21m+15n=70×2+21×3+15×5=278.由于278>105,故执行y=y-105,执行后y=278-105=173,再执行一次y=y-105后y的值为173-105=68,此时68>105不成立,故输出68.三、解答题(本大题共3小题,共45分.解答应写出文字说明,证明过程或演算步骤)12.(本小题15分)已知程序:说明其功能并画出程序框图. 解:该程序的功能为求分段函数 y =⎩⎪⎨⎪⎧4x -1, x <-1,-5, -1≤x ≤1,4x +1, x >1的值.程序框图为:13.(本小题15分)求1+12+13+14+…+1100的值,用程序语言表示其算法.解:解法1:“WHILE语句”解法2:“UNTIL语句”14.(本小题15分)高一(2)班共有40名学生,每次考试数学老师总要统计成绩在85~100分,60~85分和60分以下的各分数段人数.请你帮助数学老师设计一个程序,解决上述问题,并画出程序框图.解析:程序框图如图所示.程序如下:。
高一下学期 数学 每周一练试题A班级 座号 姓名 评分一、选择题:(30分)1.给出下列各函数值: ① ; ② ; ③ ;④ . 其中符号为负的有 ( )A .①B .②C .③D .④2.若角 的终边上有一点 ,则的值是 ( )A .B .C .D ..3.化简 sin 2β+cos 4β+sin 2β·cos 2β的结果是 ( )A .41 B .21 C .1 D .234.函数)4tan(π+=x y 的定义域是 ( )A .},42|{Z k k x R x x ∈+≠∈ππ且 ; B . },4|{Z k k x R x x ∈+≠∈ππ且;C .},|{Z k k x R x x ∈≠∈π且 ;D . },42|{Z k k x R x x ∈±≠∈ππ且.5.函数|cot |cot |tan |tan |cos |cos |sin |sin x xx x x x x x y +++=的值域是 ( )A .{-2,4}B .{-2,0,4}C .{-2,0,2,4}D .{-4,-2,0,4}.二、填空题:(15分)6.设 和分别是角的正弦线和余弦线,则给出的以下不等式:①; ②; ③; ④.其中正确的是_____________________________. 7. 4sin 12- = . 8.sin α·cos α=81,且4π<α<2π,则 sin α-cos α= . 三、解答题:(55分)9.已知角终边上一点且,求和之值.10.已知tan α=51,求sin α, cos α的值.11.化简 .12.证明:(sin α+tan α)(cos α+cot α)=(1+sin α)(1+cos α).☆ ☆13.求函数 的定义域.参考答案:一、1.C 2.B 3.C 4. B 5.B. 二、6.④ ; 7. -cos4 ; 823.三、9., 或,.10. 261sin =α,265cos =α或261sin -=α,265cos -=α11.提示:原式.12.三角函数定义法或用三角函数基本关系证明.(略)☆☆13..提示:由得 .。
实验高中高一数学周练十(必修1复习检测)一、选择题(每小题5分,共50分。
)1.设全集U={1,2,3,4,5},集合A={1,2},B={2,3},则A∩BCu=( )A.{}45,B.{}23,C .{}1D.{}22.下列表示错误的是( )A.0∉ΦB.{}12Φ⊆,C.()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎩⎨⎧=-=+53102,yxyxyx={}4,3D.若,A B⊆则A B A⋂=3.设f:x→x2是集合A到集合B的映射,如果B={1,2},则A∩B等于( ) A.{1} B.∅ C.∅或{1} D.∅或{2}4.已知22()logf x x=,则(2)f=()A .1 B. 2 C.12±D .215.当0<a<1时,在同一坐标系中,函数xy a-=与log ay x=的图象是( ) 6.三个数41log2,1.02,2.02的大小关系式是A. 41log2<2.02<1.02 B. 41log2<1.02<2.02C. 1.02<2.02<41log2D. 1.02<41log2<2.027.函数2()ln f x x x =-的零点所在的大致区间是( )A .(1,2)B .(2,3)C .11,e ⎛⎫ ⎪⎝⎭和(3,4)D .(),e +∞8.若2log 31x =,则39x x+的值为( )A .6B .3C .52D .129设()f x 为定义在R 上的奇函数,当0x ≥时,()22xf x x b =++(b 为常数),则(1)f -=A .-3B .-1C .1D .310.已知函数2()2,()f x x g x x =-=.若定义函数()min{(),()},F x f x g x =则()F x 的最大值是 ( )A .0 B.1 C.2 D.311.定义在R 上的偶函数)(x f ,满足)()1(x f x f -=+,且在区间]0,1[-上为递增,则(3)(2)f f f 、、的大小关系是 .12.函数33x y a -=+恒过定点 . 13.计算823log 16log 3log 2+⋅= .14.若2()(2)2f x ax a b x =+++(其中[21,4]x a a ∈-+)是偶函数,则实数=b _________ 15.函数()()2log 31x f x =+的值域为 .16.已知函数f (x )=232,1,,1,x x x ax x +<⎧⎨+≥⎩若f (f (0))=4a ,则实数a = .17.函数()xf x a =(0a >且1a ≠)在区间[1,2]上的最大值比最小值大2a,则a 的值为______ .三、解答题(共65分.解答应写出文字说明,证明过程或演算步骤.) 18.(本题满分12分) 已知集合{}{}{}37,210,A x x B x x C x x a =≤≤=<<=<。
高一下学期数学周测(5)一、选择题(每题5分,共40分) 1 .下列各数中,最小的数是 ( )A .75B .105(8)C .200(6)D .111 111(2) 2 .将两个数8, 17a b ==交换,使17, 8a b ==,则下面语句正确的一组是3 .读右图的程序:上面的程序在执行时如果输入6,那么输出的结果为 ( )720 C .120 D .1第4题 第5题 4 .如图是一个算法的程序框图,当输入x 的值为3时,输出y 的结果恰好为13,则?处的关系式是 ( )A .3y x = B .3xy -= C .3xy = D .13y x = 5 .如图,若程序框图输出的S 是126,则判断框①中应为 ( )A .?5≤nB .?6≤nC .?7≤nD .?8≤n6 .先后抛掷两枚均匀的正方体骰子(他们六个面分别标有点数1,2,3,4,5,6),骰子朝上面的点数分别为X,Y ,则1log 2=Y X 的概率是( )A .61 B .365 C .121 D .217 .如果右边程序执行后输出的结果是132,那么在程序UNTIL 后面的“条件”应为 ( ) A .i > 11 B .i >=11 C .i <=11 D .i<11INPUT NI=1 S=1WHILE I<=N S =S*I I = I+1 WEND PRINT S ENDa =b b =ac =b b =a a =c b =aa =b a =cc =b b =a AB .C .Di=12 s=1 DO s= s ﹡ i i = i -1LOOP UNTIL “条件” PRINT s END (第3题)Read xIf x >0 Then1y x ←+Else1y x ←-End If Print y8 .甲、乙两人相约在某地见面,没有安排确定的时间,但都要在晚上7点到8点之间到达,先到的人等待10分钟,若没有见到另一人则离开,那么他们能见面的概率是(A .23B .1136C .13D .169 .如图,汉诺塔问题是指有3根杆子A .B .C ,B 杆上有若干碟子,把所有碟子从B 杆移到C 杆上,每次只能移动一个碟子,大的碟子不能叠在小的碟子上面。
高一数学高中数学新课标人教A版试题答案及解析1.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为.【答案】y-1=-(x-2).【解析】根据题意可知:直线l1的斜率为−1,所以l1的点斜式方程为y-1=-(x-2).【考点】两直线垂直的斜率关系.2.已知直角梯形中,是腰上的动点,则的最小值为__________.【答案】5【解析】以D为原点建系,设长为,,最小为5【考点】向量运算3.某港口要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口北偏西且与该港口相距20海里的处,并以30海里/时的航行速度沿正东方向匀速行驶,假设该小船沿直线方向以海里/时的航行速度匀速行驶,经过小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.【答案】(1)当t=时,Smin=10,此时v==30(2)航行方向为北偏东30°,航行速度为30海里/小时,小艇能以最短时间与轮船相遇.【解析】(1)设相遇时小艇的航行距离为海里,则由余弦定理得,再由二次函数的性质求得最值;(2)根据题意,要用时最小,则首先速度最高,即为海里/小时,然后是距离最短,则,解得,再解得相应角.试题解析:(1)设相遇时小艇的航行距离为海里,则故当时,即小艇以海里/小时的速度航行,相遇小艇的航行距离最小(2)设小艇与轮船在处相遇.则,故∵,∴,即,解得又时,,故时,取得最小值,且最小值等于此时,在中,有,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时【考点】函数模型的选择与应用.4.已知点,,,,则向量在方向上的投影为__________.【答案】【解析】由题意可得,由于,所以,所以,应填答案。
周练卷(三)一、选择题(每小题5分,共40分)1.函数f(x)=x2+3的奇偶性是(B)A.奇函数B.偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数解析:函数f(x)=x2+3的定义域为R,f(-x)=(-x)2+3=x2+3=f(x),所以该函数是偶函数.2.函数f(x)=x2(x<0)的奇偶性为(D)A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数解析:∵函数f(x)=x2(x<0)的定义域为(-∞,0),不关于原点对称,∴函数f(x)=x2(x<0)为非奇非偶函数.3.下列函数中,既是偶函数又在(-3,0)上单调递减的函数是(C)A.y=x3B.y=-x2+1C.y=|x|+1 D.y=x解析:A项为奇函数;B项为偶函数,但在(-3,0)上单调递增,不合题意;C项,函数是偶函数,当x∈(-3,0)时,y=-x+1单调递减,符合题意;D项,函数的定义域为[0,+∞),不关于原点对称,所以该函数既不是奇函数也不是偶函数,不合题意.故选C.4.若函数y=x2-6x-7,则它在[-2,4]上的最大值、最小值分别是(C)A.9,-15 B.12,-15C.9,-16 D.9,-12解析:函数的对称轴为x =3,所以当x =3时,函数取得最小值为-16, 当x =-2时,函数取得最大值为9,故选C.5.设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( C )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数解析:f (x )为奇函数,g (x )为偶函数,故f (x )g (x )为奇函数,|f (x )|g (x )为偶函数,f (x )|g (x )|为奇函数,|f (x )g (x )|为偶函数,故选C.6.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0],x 1≠x 2,有f (x 2)-f (x 1)x 2-x 1<0,则( B )A .f (-3)<f (-2)<f (1)B .f (1)<f (-2)<f (-3)C .f (-2)<f (1)<f (-3)D .f (-3)<f (1)<f (-2)解析:由任意的x 1,x 2∈(-∞,0](x 1≠x 2),f (x 2)-f (x 1)x 2-x 1<0可知函数f (x )在(-∞,0]上单调递减.又因为函数f (x )为R 上的偶函数,所以f (1)=f (-1). 而-3<-2<-1,所以f (-3)>f (-2)>f (-1), 即f (-3)>f (-2)>f (1).故选B.7.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( D )A .y =x (x -2)B .y =x (|x |+2)C .y =|x |(x -2)D .y =x (|x |-2)解析:由x ≥0时,f (x )=x 2-2x ,f (x )是定义在R 上的奇函数得,当x <0时,-x >0,f (x )=-f (-x )=-(x 2+2x )=x (-x -2).∴f (x )=⎩⎪⎨⎪⎧x (x -2),x ≥0,x (-x -2),x <0,即f (x )=x (|x |-2).8.定义在R 上的奇函数f (x )满足f ⎝ ⎛⎭⎪⎫12=0,且在(0,+∞)上单调递减,则xf (x )>0的解集为( B )A.⎩⎨⎧⎭⎬⎫xx <-12或x >12B.⎩⎨⎧⎭⎬⎫x -12<x <0或0<x <12C.⎩⎨⎧⎭⎬⎫xx <-12或0<x <12D.⎩⎨⎧⎭⎬⎫x -12<x <0或x >12 解析:结合性质画出f (x )的草图,如图所示.由图象可知x 与f (x )同号的区间为⎝ ⎛⎭⎪⎫-12,0和⎝ ⎛⎭⎪⎫0,12.故选B. 二、填空题(每小题5分,共15分)9.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是[-14,0].解析:若a =0,则f (x )=2x -3,显然函数在区间(-∞,4)上单调递增,符合题意;若a ≠0,则由函数在区间(-∞,4)上单调递增可得a <0,且-22a ≥4,解得-14≤a <0.综上,实数a 的取值范围是[-14,0].10.已知函数f (x )=ax 3-bx +3(其中a ,b 为常数),若f (3)=2 015,则f (-3)=-2_009.解析:设g (x )=f (x )-3,则g (x )=ax 3-bx , 显然g (x )为R 上的奇函数, 又g (3)=f (3)-3=2 015-3=2 012, 所以g (-3)=-g (3), 即f (-3)-3=-2 012, 解得f (-3)=-2 009.11.奇函数f (x )在区间[3,10]上是增函数,在区间[3,9]上的最大值为6,最小值为-2,则2f (-9)+f (-3)=-10.解析:因为函数在区间[3,10]上是增函数, 所以在区间[3,9]上单调递增.所以函数在区间[3,9]上的最小值为f (3)=-2,最大值为f (9)=6. 又因为函数f (x )为奇函数,所以f (-3)=-f (3)=2, f (-9)=-f (9)=-6.所以2f (-9)+f (-3)=2×(-6)+2=-10. 三、解答题(共45分)12.(15分)判断下列函数的奇偶性.(1)f (x )=⎩⎪⎨⎪⎧1,x 是有理数,-1,x 是无理数;(2)f (x )=x 2+|x +a |+1.解:(1)f (x )为偶函数.因为x ∈Q 时,-x ∈Q , 所以f (-x )=1=f (x ).同理,x 为无理数时,-x 也为无理数. 所以f (-x )=-1=f (x ),所以f (x )为偶函数. (2)①当a =0时,f (x )为偶函数.②当a ≠0时,因为对所有x ∈R 而言|x +a |≠|-x +a |. 所以f (x )既不是奇函数又不是偶函数.13.(15分)已知y =f (x )是奇函数,它在(0,+∞)上是增函数,且f (x )<0,试问F (x )=1f (x )在(-∞,0)上是增函数还是减函数?证明你的结论.解:F (x )在(-∞,0)上是减函数. 证明如下:任取x 1,x 2∈(-∞,0),且x 1<x 2,则有-x 1>-x 2>0. 因为y =f (x )在(0,+∞)上是增函数,且f (x )<0, 所以f (-x 2)<f (-x 1)<0,① 又因为f (x )是奇函数,所以f (-x 2)=-f (x 2),f (-x 1)=-f (x 1),② 由①②得f (x 2)>f (x 1)>0.于是F (x 1)-F (x 2)=f (x 2)-f (x 1)f (x 1)·f (x 2)>0,即F (x 1)>F (x 2),所以F (x )=1f (x )在(-∞,0)上是减函数.14.(15分)已知函数f (x )=4x +ax +b (a ,b ∈R )为奇函数. (1)若f (1)=5,求函数f (x )的解析式;(2)当a =-2时,不等式f (x )≤t 在[1,4]上恒成立,求实数t 的最小值.解:因为函数f (x )=4x +ax +b (a ,b ∈R )为奇函数, 所以f (-x )=-f (x ), 即-4x -a x +b =-4x -ax -b , 所以b =0,(1)f (1)=4+a +b =5,所以a =1. 故函数f (x )的解析式为f (x )=4x +1x .(2)a =-2,f (x )=4x -2x .因为函数y =4x ,y =-2x 在[1,4]上均单调递增, 所以函数f (x )在[1,4]上单调递增, 所以当x ∈[1,4]时,f (x )max =f (4)=312. 因为不等式f (x )≤t 在[1,4]上恒成立, 所以t ≥312,故实数t 的最小值为312.。
人教A 版高一数学必修第一册全册复习训练题卷(共30题)一、选择题(共10题)1. 设函数 f (x ) 的定义城为 A ,如果对于任意的 x 1∈A ,都存在 x 2∈A ,使得 f (x 1)+f (x 2)=2m (其中 m 为常数)成立,则称函数 f (x ) 在 A 上“与常数 m 相关联”.给定函数:① y =1x ;② y =x 3;③ y =(12)x;④ y =lnx ;⑤ y =cosx +1,则在其定义域上与常数 1 相关联的所有函数是 ( ) A .①②⑤ B .①③ C .②④⑤ D .②④2. 设全集为 R ,A ={x ∣x 2−5x −6>0},B ={x ∣−2<x <12},则 ( ) A . (∁R A )∪B =R B . A ∪(∁R B )=R C . (∁R A )∪(∁R B )=RD . A ∪B =R3. 已知函数 f (x )={log 2(x +1),x ≥11,x <1,则满足 f (2x +1)<f (3x −2) 的实数 x 的取值范围是( ) A . (−∞,0] B . (3,+∞) C . [1,3) D . (0,1)4. 已知函数 f (x )={x 2+4a,x >01+log a ∣x −1∣,x ≤0(a >0,且 a ≠1)在 R 上单调递增,若关于 x 的方程 ∣f (x )∣=x +3 恰好有两个互异的实数解,则 a 的取值范围是 ( ) A . (34,1316]B . (0,34]∪{1316}C . [14,34)∪{1316}D . [14,34]∪{1316}5. 已知 cosα+cosβ=12,sinα+sinβ=√32,则 cos (α−β)= ( ) A . −12B . −√32C . 12D . 16. 已知函数 f (x )=m 2x 2−2mx −√x +1−m 区间 [0,1] 上有且只有一个零点,则正实数 m 的取值范围是 ( ) A . (0,1]∪[2√3,+∞) B . (0,√2]∪[3,+∞)C . (0,√2]∪[2√3,+∞)D . (0,1]∪[3,+∞)7. 已知函数 f (x )=sin2x ,x ∈[a,b ],则“b −a ≥π2”是“f (x ) 的值域为 [−1,1]”的 ( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8. 已知函数 f (x )={(2a −1)x +a,x ≥2log a (x −1),1<x <2 是 (1,+∞) 上的减函数,则实数 a 的取值范围是( ) A . [25,12)B . (0,25]C . (0,12)D . (0,15]9. 函数 f (x )=lnx +2x −6 的零点一定位于区间 ( ) A . (1,2) B . (2,3) C . (3,4) D . (4,5)10. 已知 a =log 0.92019,b =20190.9,c =0.92019,则 ( ) A . a <c <b B . a <b <c C . b <a <c D . b <c <a二、填空题(共10题) 11. 已知函数 f (x )=3x −13x +1,若不式 f (kx 2)+f (2x −1)<0 对任意 x ∈R 恒成立,则实数 k 的取值范围是 .12. 已知函数 f (x )=lg 1−x 1+x ,若 f (a )=b ,则 f (−a )= .13. 已知一次函数 f (x ) 满足 f [f (x )]=4x +3,且 f (x ) 在 R 上为单调递增函数,则 f (1)= .14. 已知 f (x ) 是以 2e 为周期的 R 上的奇函数,当 x ∈(0,e ),f (x )=lnx ,若在区间 [−e,3e ],关于 x 的方程 f (x )=kx 恰有 4 个不同的解,则 k 的取值范围是 .15. 已知函数 f (x )={∣x 2+5x +4∣,x ≤0,2∣x −2∣,x >0,若函数 y =f (x )−a∣x∣ 恰有 4 个零点,则实数 a 的取值范围为 .16. 用二分法求函数 y =f (x ) 在区间 [2,4] 上零点的近似解,经验证有 f (2)f (4)<0.取区间的中点 x 1=2+42=3,计算得 f (2)f (x 1)<0,则此时零点 x 0∈ (填区间).17. 函数 f (x )=2x 与 g (x )=x 2 的图象交点个数是 个.18. 若某种参考书每本 2.5 元,则购书 x 本这种参考书的费用 y 关于 x 的函数表达式为 .19.已知13≤k<1,函数f(x)=∣2x−1∣−k的零点分别为x1,x2(x1<x2),函数g(x)=∣2x−1∣−k2k+1的零点分别为x3,x4(x3<x4),则(x4−x3)+(x2−x1)的最小值为.20.已知函数f(x)=∣∣x+1x∣∣,给出下列命题:①存在实数a,使得函数y=f(x)+f(x−a)为奇函数;②对任意实数a,均存在实数m,使得函数y=f(x)+f(x−a)关于x=m对称;③若对任意非零实数a,f(x)+f(x−a)≥k都成立,则实数k的取值范围为(−∞,4];④存在实数k,使得函数y=f(x)+f(x−a)−k对任意非零实数a均存在6个零点.其中的真命题是.(写出所有真命题的序号)三、解答题(共10题)21.如图,在平面直角坐标系xOy中,点A为单位圆与x轴正半轴的交点,点P为单位圆上的一点,且∠AOP=π4,点P沿单位圆按逆时针方向旋转角θ后到点Q(a,b).(1) 当θ=π6时,求ab的值;(2) 设θ∈[π4,π2],求b−a的取值范围.22.化简:(1) 1+sin(α−2π)sin(π+α)−2cos2(−α);(2) sin(−1071∘)sin99∘+sin(−171∘)sin(−261∘).23.已知f(x)=e x−ae x是奇函数(e为自然对数的底数).(1) 求实数a的值;(2) 求函数y=e2x+e−2x−2λf(x)在[0,+∞)上的值域;(3) 令g(x)=f(x)+x,求不等式g((log2x)2)+g(2log2x−3)≥0的解集.24. 已知 α,β 为锐角,tanα=43,cos (α+β)=−√55. (1) 求 cos2α 的值; (2) 求 tan (α−β) 的值.25. 设函数 f (x )=∣x −a ∣,a ∈R .(1) 当 a =2 时,解不等式:f (x )≥6−∣2x −5∣;(2) 若关于 x 的不等式 f (x )≤4 的解集为 [−1,7],且两正数 s 和 t 满足 2s +t =a ,求证:1s+8t ≥6.26. 已知 a ≥1,函数 f (x )=sin (x +π4),g (x )=−sinxcosx −1+√2af (x ).(1) 若 f (x ) 在 [−b,b ] 上单调递增,求正数 b 的最大值; (2) 若函数 g (x ) 在 [0,3π4] 内恰有一个零点,求 a 的取值范围.27. 对于函数 f (x )=ax 2+(b +1)x +b −2,(a ≠0),若存在实数 x 0,使 f (x 0)=x 0 成立,则称x 0 为 f (x ) 的不动点.(1) 当 a =2,b =−2 时,求 f (x ) 的不动点;(2) 当 a =2 时,函数 f (x ) 在 (−2,3) 内有两个不同的不动点,求实数 b 的取值范围; (3) 若对于任意实数 b ,函数 f (x ) 恒有两个不相同的不动点,求实数 a 的取值范围.28. 用适当的方法表示下列集合:(1) 二次函数 y =x 2−4 的函数值组成的集合; (2) 反比例函数 y =2x 的自变量组成的集合; (3) 不等式 3x ≥4−2x 的解集.29. 已知定义在 R 上的奇函数 f (x ),当 x ≤0 时,f (x )=x 2+4x .(1) 求出 f (x ) 的解析式,并直接写出 f (x ) 的单调区间. (2) 求不等式 f (x )>3 的解集.30. 经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2016 年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量 p 万件与促销费用 x 万元满足 p =3−2x+1(其中 0≤x ≤a,a为正常数).已知生产该产品还需投入成本10+2p万元(不含促销费用),每一件产品的)元,假定厂家的生产能力完全能满足市场的销售需求.销售价格定为(4+20p(1) 将该产品的利润y万元表示为促销费用x万元的函数;(2) 促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值.答案一、选择题(共10题) 1. 【答案】D【解析】若在其定义域上与常数 1 相关联,则满足 f (x 1)+f (x 2)=2. ① y =1x 的定义域为 {x∣ x ≠0},由 f (x 1)+f (x 2)=2 得 1x 1+1x 2=2,即 1x 2=2−1x 1,当 x 1=12 时,2−1x 1=2−2=0,此时 1x 2=0 无解,不满足条件;② y =x 3 的定义域为 R ,由 f (x 1)+f (x 2)=2 得 (x 1)3+(x 2)3=2,即 x 2=√2−x 133唯一,满足条件;③ y =(12)x 定义域为 R ,由 f (x 1)+f (x 2)=2 得 (12)x 1+(12)x 2=2,即 (12)x 2=2−(12)x 1,当 x 1=−2 时,(12)x 2=2−(12)x 1=2−4=−2,无解,不满足条件;④ y =lnx 定义域为 {x∣ x >0},由 f (x 1)+f (x 2)=2 得 lnx 1+lnx 2=2,得 lnx 1x 2=2, 即 x 1x 2=e 2,x 2=e 2x 1,满足唯一性,满足条件;⑤ y =cosx +1 的定义域为 R ,由 f (x 1)+f (x 2)=2 得 cosx 1+cosx 2=2,得 cosx 2=2−cosx 1,当 x 1=π3 时,cosx 2=2−cosx 1=2−0=2,无解,不满足条件. 故满足条件的函数是②④.【知识点】余弦函数的性质、对数函数及其性质、幂函数及其性质、指数函数及其性质2. 【答案】D【知识点】交、并、补集运算3. 【答案】B【解析】法一:由 f (x )={log 2(x +1),x ≥11,x <1可得当 x <1 时,f (x )=1;当 x ≥1 时,函数 f (x ) 在 [1,+∞) 上单调递增,且 f (1)=log 22=1, 要使得 f (2x +1)<f (3x −2),则 {2x +1<3x −2,3x −2>1, 解得 x >3,即不等式 f (2x +1)<f (3x −2) 的解集为 (3,+∞). 法二:当 x ≥1 时,函数 f (x ) 在 [1,+∞) 上单调递增,且 f (x )≥f (1)=1, 要使 f (2x +1)<f (3x −2) 成立,需 {2x +1≥1,2x +1<3x −2 或 {2x +1<1,3x −2>1,解得 x >3.【知识点】函数的单调性4. 【答案】D【解析】由函数的解析式可知函数在区间(0,+∞)上单调递增,当x≤0时,函数y=∣x−1∣单调递减,由复合函数的单调性法则可知:0<a<1,且函数在x=0处满足:02+4a≥1+log a∣0−1∣,解得:a≥14,故14≤a<1,方程∣f(x)∣=x+3恰有两个不相等的实数解,则函数∣f(x)∣与函数y=x+3的图象有且仅有两个不同的交点,绘制函数∣f(x)∣的图象如图中虚线所示,令1+log a∣x−1∣=0可得:x=1±1a,由14≤a<1可知1+1a>1,1−1a≥−3,则直线y=x+3与函数∣f(x)∣的图象在区间(−∞,0]上存在唯一的交点,原问题转化为函数y=x+3与二次函数y=x2+4a(14≤a<1)在区间(0,+∞)上存在唯一的交点,很明显当4a≤3,即a≤34时满足题意,当直线与二次函数相切时,设切点坐标为(x0,x02+4a),亦即(x0,x0+3),由函数的解析式可得:yʹ=2x,故2x0=1,x0=12,则x0+3=72,故切点坐标(12,72),从而x02+4a=72,即14+4a=72,a=1316.据此可得:a的取值范围是[14,34]∪{1316}.【知识点】函数的零点分布5. 【答案】A【解析】由 cosα+cosβ=12,sinα+sinβ=√32, 两边平方相加得,(cosα+cosβ)2+(sinα+sinβ)2=(12)2+(√32)2=1,所以 2+2cosαcosβ+2sinαsinβ=1, 即 2(cosαcosβ+sinαsinβ)=−1, 所以 cos (α−β)=−12. 故选A .【知识点】两角和与差的余弦6. 【答案】D【解析】由 f (x )=m 2x 2−2mx −√x +1−m =0, 得 m 2x 2−2mx +1=√x +m ,令 g (x )=m 2x 2−2mx +1=(mx −1)2,ℎ(x )=√x +m ,问题等价于函数 g (x )=(mx −1)2 和 ℎ(x )=√x +m 的图象在区间 [0,1] 上有且只有一个交点. 又函数 g (x )=(mx −1)2 的图象为经过点 (0,1),对称轴为 x =1m 的抛物线,函数 ℎ(x )=√x +m 在区间 [0,1] 上单调递增,且图象经过点 (0,m ) 和 (1,1+m ). ①当 0<m ≤1 时,1m ≥1,所以函数 g (x )=(mx −1)2 在区间 [0,1] 上单调递减, 又当 0<m ≤1 时,g (1)=(m −1)2<1,ℎ(1)=1+m >1, 所以 g (1)<ℎ(1),所以函数 g (x )=(mx −1)2 和 ℎ(x )=√x +m 的图象在区间 [0,1] 上有且只有一个交点. ②当 m >1 时,0<1m<1,在同一坐标系内做出两个函数的图象,如图所示. 由图形可得,要使两个函数的图象有且只有一个交点, 则需满足当 m >1 时,g (1)≥ℎ(1), 即 {m >1,m 2−3m ≥0,解得 m ≥3.综上,正实数 m 的取值范围是 (0,1]∪[3,+∞).【知识点】函数的零点分布7. 【答案】B【解析】 f (x ) 的最小正周期 T =2π2=π,所以当 x ∈[a,b ] 时,f (x )∈[−1,1],则 b −a ≥π2 恒成立, 而当 a =0,b =π2时,a −b ≥π2,此时 f (x )∈[0,1],故“b −a ≥π2”是“f (x ) 的值域为 [−1,1]”的必要而不充分条件.故B 选项符合题意.【知识点】Asin(ωx+ψ)形式函数的性质8. 【答案】B【解析】因为函数 f (x )={(2a −1)x +a,x ≥2log a (x −1),1<x <2 是 (1,+∞) 上的减函数,所以 {2a −1<0,0<a <1,log a 1≥2(2a −1)+a,即 {a <12,0<a <1,a ≤25,解得 0<a ≤25.【知识点】函数的单调性9. 【答案】B【知识点】零点的存在性定理10. 【答案】A【解析】因为 a <0,b >1,0<c <1, 所以 a <c <b .【知识点】对数函数及其性质、指数函数及其性质二、填空题(共10题) 11. 【答案】 (−∞,−1)【解析】易证 f (x )=3x −13x +1 为奇函数,所以 f (kx 2)+f (2x −1)<0⇒f (kx 2)<f (1−2x ). 因为 f (x )=3x −13x +1=1−23x +1,所以 f (x ) 在 R 上单调递增,所以 f (kx 2)<f (1−2x )⇒kx 2<1−2x ⇒kx 2+2x −1<0 在 R 上恒成立, 所以 {k <0,Δ=4+4k <0, 解得 k <−1,所以实数 k 的取值范围是 (−∞,−1).【知识点】函数的奇偶性、函数的单调性12. 【答案】 −b【解析】由 1−x1+x >0,得 {1−x >0,1+x >0, 或 {1−x <0,1+x <0,所以 −1<x <1.故 f (x ) 的定义域为 (−1,1),而 f (−x )=lg 1+x1−x =lg (1−x 1+x )−1=−lg 1−x1+x =−f (x ),所以 f (x ) 为奇函数,所以 f (−a )=−f (a )=−b . 【知识点】对数函数及其性质13. 【答案】 3【解析】根据题意,函数 f (x ) 是一次函数,设 f (x )=ax 十b ,则 f [f (x )]=a (ax +b )+b =a 2x +ab +b =4x +3,则有 {a 2=4,ab +b =3.解得:{a =2,b =1, 或 {a =−2,b =−3.又由 f (x ) 在 R 上为单调递增函数,则 f (x )=2x +1, 故 f (1)=2+1=3. 【知识点】函数的单调性14. 【答案】 (−∞,−1e]∪[13e ,1e)【知识点】函数的零点分布15. 【答案】(1,2)【解析】考查函数 y =f (x ) 图象与 y =a ∣x ∣ 图象的交点的情况,根据图象,得 a >0. 当 a =2 时,函数 y =f (x ) 与 y =a ∣x ∣ 图象有 3 个交点; 当 y =a ∣x ∣(x ≤0) 图象与 y =∣x 2+5x +4∣ 图象相切时,在整个定义域内,函数 y =f (x ) 图象与 y =a ∣x ∣ 图象有 5 个交点, 此时,由 {y =−ax,y =−x 2−5x −4, 得 x 2+(5−a )x +4=0.由 Δ=0,解得 a =1 或 a =9(舍去).故当 1<a <2 时,函数 y =f (x ) 与 y =a ∣x ∣ 图象有 4 个交点.【知识点】函数零点的概念与意义、函数图象16. 【答案】 (2,3)【解析】因为 x 1=3,且 f (2)⋅f (3)<0,所以 x 0∈(2,3). 【知识点】零点的存在性定理17. 【答案】 3【知识点】函数的零点分布18. 【答案】 y =2.5x ,x ∈N ∗【知识点】函数的解析式的概念与求法19. 【答案】log23【解析】f(x)=∣2x−1∣−k=0⇒2x1=1−k,2x2=1+k⇒x1=log2(1−k),x2=log2(1+k),g(x)=∣2x−1∣−k2k+1=0⇒2x3=k+12k+1,2x4=3k+12k+1⇒x3=log2k+12k+1,x4=log23k+12k+1,由(1)(2)得(x4−x3)+(x2−x1)=log23k+11−k =log2(41−k−3),因为13≤k<1,故(x4−x3)+(x2−x1)≥log23.【知识点】函数的零点分布20. 【答案】②③④【知识点】函数的零点分布三、解答题(共10题)21. 【答案】(1) 由三角函数的定义,可得P(cosπ4,sinπ4),Q(cos(π4+θ),sin(π4+θ)).当θ=π6时,Q(cos5π12,sin5π12),即a=cos5π12,b=sin5π12,所以ab=cos5π12sin5π12=12×2×cos5π12sin5π12=12×sin5π6=14.(2) 因为Q(cos(π4+θ),sin(π4+θ)),所以a=cos(π4+θ),b=sin(π4+θ),由三角恒等变换的公式,化简可得:b−a=sin(π4+θ)−cos(π4+θ)=√2[sin(π4+θ)cosπ4−cos(π4+θ)sinπ4]=√2sinθ,因为θ∈[π4,π2],所以1≤√2sinθ≤√2.即b−a的取值范围为[1,√2].【知识点】任意角的三角函数定义、Asin(ωx+ψ)形式函数的性质22. 【答案】(1) −cos2a.(2) 0.【知识点】诱导公式23. 【答案】(1) 因为f(x)的定义域为R,f(x)为奇函数,所以f(0)=0,故1−a=0,即a=1.经检验,满足题意.(2) 设e x−1e x =t(t≥0),则e2x+1e2x=t2+2,设y=ℎ(t)=t2−2λt+2=(t−λ)2+2−λ2,t∈[0,+∞).①当λ≤0时,ℎ(t)≥ℎ(0),所以函数的值域为[2,+∞);②当λ>0时,ℎ(t)≥ℎ(λ),所以函数的值域为[2−λ2,+∞).(3) 因为g(x)的定义域为R,f(x)为奇函数,所以g(−x)=f(−x)+(−x)=−f(x)−x=−(f(x)+x)=−g(x),故g(x)为奇函数.任取x1,x2,且x1<x2,则g(x1)−g(x2)=(e x1−e x2)−(1e x1−1e x2)+(x1−x2)=(e x1−e x2)(1+1e x1+x2)+(x1−x2),因为x1<x2,所以(e x1−e x2)(1+1e x1+x2)<0,x1−x2<0,所以g(x1)−g(x2)<0,所以g(x1)<g(x2),故g(x)在R上单调递增.由g((log2x)2)+g(2log2x−3)≥0,得g((log2x)2)≥−g(2log2x−3),即g((log2x)2)≥g(−2log2x+3),所以(log2x)2≥−2log2x+3,所以(log2x)2+2log2x−3≥0,解得log2x≥1或log2x≤−3,故x≥2或0<x≤18.故原不等式的解集为(0,18]∪[2,+∞).【知识点】对数函数及其性质、函数的单调性、函数的奇偶性24. 【答案】(1) 因为 tanα=43,tanα=sinαcosα, 所以 sinα=43cosα,因为 sin 2α+cos 2α=1,所以 cos 2α=925, 因此,cos2α=2cos 2α−1=−725.(2) 因为 α,β 为锐角,所以 α+β∈(0,π), 因为 cos (α+β)=−√55, 所以 sin (α+β)=√1−cos 2(α+β)=2√55.因此 tan (α+β)=−2, 因为 tanα=43,所以 tan2α=2tanα1−tan 2α=−247,因此tan (α−β)=tan [2α−(α+β)]=tan2α−tan (α+β)1+tan2αtan (α+β)=−211.【知识点】两角和与差的正切、二倍角公式25. 【答案】(1) 当 a =2 时,不等式:f (x )≥6−∣2x −5∣,可化为 ∣x −2∣+∣2x −5∣≥6. ① x ≥2.5 时,不等式可化为 x −2+2x −5≥6,所以 x ≥133;② 2≤x <2.5,不等式可化为 x −2+5−2x ≥6,所以 x ∈∅; ③ x <2,不等式可化为 2−x +5−2x ≥6,所以 x ≤13,综上所述,不等式的解集为 (−∞,13]∪[133,+∞).(2) 不等式 f (x )≤4 的解集为 [a −4,a +4]=[−1,7], 所以 a =3,所以 1s +8t =13(1s +8t )(2s +t )=13(10+ts +16s t)≥6,当且仅当 s =12,t =2 时取等号.【知识点】绝对值不等式的求解、均值不等式的应用26. 【答案】(1) 由2kπ−π2≤x+π4≤2kπ+π2,k∈Z,得2kπ−3π4≤x≤2kπ+π4,k∈Z.因为f(x)在[−b,b]上单调递增,令k=0,得−3π4≤x≤π4是f(x)的一个单调递增区间,所以{b≤π4,−b≥−3π4,解得b≤π4,可得正数b的最大值为π4.(2) g(x)=−sinxcosx+√2af(x)−1=−sinxcosx+a(sinx+cosx)−1,设t=sinx+cosx+√2sin(x+π4),当x∈[0,3π4]时,t∈[0,√2].它的图形如图所示.又sinxcosx=12(t2−1),则−sinxcosx+a(sinx+cosx)−1=12t2+at−12,t∈[0,√2],令ℎ(t)=−12t2+at−12,则函数g(x)在[0,3π4]内恰有一个零点,转化为ℎ(t)=−12t2+at−12在[0,√2]内恰有一个零点.①当t=0时,ℎ(t)无零点.②当t=√2时,由√2a−32=0,得a=3√24,把a=3√24代入−12t2+at−12=0中,得−12t2+3√24t−12=0,解得t1=√2,t2=√22,不符合题意.③当0<t<√2时,若Δ=a2−1=0,得a=1,此时t=1,由t=√2sin(x+π4)的图象可知不符合题意;若Δ=a2−1>0,即a>1,设−12t2+at−12=0的两根分别为t1,t2,由t1t2=1,且抛物线的对称轴为t=a≥1,要使ℎ(t)=−12t2+at−12在[0,√2]内恰有一个零点,则两同时为正,且一个根在(0,1)内,另一个根在(√2,+∞)内,所以{ℎ(1)>0,ℎ(√2)>0,解得a>3√24.综上,a的取值范围为(3√24,+∞).【知识点】Asin(ωx+ψ)形式函数的性质27. 【答案】(1) 当a=2,b=−2时,f(x)=2x2−x−4,所以由 f (x )=x 得 x 2−x −2=0,所以 x =−1 或 x =2, 所以 f (x ) 的不动点为 −1,2.(2) 当 a =3 时,f (x )=2x 2+(b +1)x +b −2, 由题意得 f (x )=x 在 (−2,3) 内有两个不同的不动点,即方程 2x 2+bx +b −2=0 在 (−2,3) 内的两个不相等的实数根, 设 g (x )=2x 2+bx +b −2,所以只须满足 {g (−2)=8−2b +b −2>0,g (3)=18+3b +b −2>0,−2<−b4<3,b 2−8(b −2)>0, 所以 {b <6,b >−4,−12<b <8,b ≠4, 所以 −4<b <4 或 4<b <6.(3) 由题意得:对于任意实数 b ,方程 ax 2+bx +b −2=0 总有两个不相等的实数解, 所以 {a ≠0,Δ=b 2−4a (b −2)>0,所以 b 2−4ab +8a >0 对 b ∈R 恒成立, 所以 16a 2−32a <0,所以 0<a <2.【知识点】函数的零点分布28. 【答案】(1) {y∣ y ≥−4}. (2) {x∣ x ≠0}. (3) {x∣ x ≥45}.【知识点】集合的表示方法29. 【答案】(1) 当 x >0 时,−x <0,f (−x )=(−x )2+4(−x )=x 2−4x , 因为 f (x ) 是定义在 R 上的奇函数, 所以 f (x )=−f (x )=−x 2+4x , 所以 f (x )={x 2+4x,x ≤0−x 2+4x,x >0,f (x ) 的单调减区间为 (−∞,−2) 和 (2,+∞),单调增区间为 (−2,2).(2) 当 x ≤0 时,x 2+4x >3,即 x 2+4x −3>0, 即 x <−2−2√7 或 x >−2+2√7, 因为 x ≤0,所以 x <−2−2√7, 当 x >0 时,−x 2+4x >3,即 x 2−4x +3<0,即 (x −1)(x −3)<0,解得 1<x <3.综上,不等式f(x)>3的解集为(−∞,−2−2√7)∪(1,3).【知识点】函数的奇偶性、函数不等式的解法30. 【答案】(1) 由题意知,t=(4+20p)p−x−(10+2p),将p=3−2x+1代入化简得:y=16−4x+1−x(0≤x≤a).(2) y=17−(4x+1+x+1)≤17−2√4x+1×(x+1)=13,当且仅当4x+1=x+1,即x=1时,上式取等号,当a≥1时,促销费用投入1万元,厂家的利润最大;当a<1时,y=17−(4x+1+x+1)在[0,a]上单调递增,所以x=a时,函数有最大值,即促销费用投入a万元时,厂家的利润最大.综上,当a≥1时,促销费用投入1万元,厂家的利润最大;当a<1时,促销费用投入a万元时,厂家的利润最大.【知识点】均值不等式的实际应用问题、建立函数表达式模型。
上蔡一高2022-2022学年优班专用试题高一数学 周练一命题时间:2022年09月06日考试时间:90分钟 试卷满分:150分本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分 第Ⅰ卷 一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、如图中阴影部分所表示的集合是( ) A .()U B C A C B .()()AB B CC .()()A B C B D .()U BC A C ⎡⎤⎣⎦2、设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则( )A .N M =B .C .D .M N φ=3、已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则的值是( )A .B .或32C .,32或 D .4、判断下列各组中的两个函数是同一函数的为( )⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷343()f x x x =-3()1F x x x =-⑸21)52()(-=x x f ,52)(2-=x x f 。
A .⑴、⑵B .⑵、⑶C .⑷D .⑶、⑸5、设集合{}1,2,3, (10)A =集合的所有非空子集元素的和为( )。
A .28100B .28160C .28260D . 283006、已知集合{}2|10,A x x A R =++==∅若,则实数的取值范围是( )A .4<mB .4>mC .40<≤mD .40≤≤m7、已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且,,a N x A y B +∈∈∈使中元素31y x =+和中的元素对应,则的值分别为( ) A . B . C . D .8、设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则的值为( ) A . B . C . D .9、函数)23(,32)(-≠+=x x cx x f 满足,)]([x x f f =则常数等于( )A .B .C .33-或D .35-或10、若函数234y x x =--的定义域为[0,]m ,值域为25[4]4--,,则的取值范围是( )A.B.3 []2,4C.3[3]2,D.3[2+∞,)11、函数xxxy+=的图象是()12、若函数2()f x x=,则对任意实数,下列不等式总成立的是()A.12()2x xf+≤12()()2f x f x+B.12()2x xf+<12()()2f x f x+C.12()2x xf+≥12()()2f x f x+D.12()2x xf+>12()()2f x f x+二、填空题:(本大题共4小题,每小题5分,共20分.把答案填在题中横线上.)13、设全集{}(,),U x y x y R=∈,集合2(,)12yM x yx⎧+⎫==⎨⎬-⎩⎭,{}(,)4N x y y x=≠-, 那么()()U UC M C N等于________________。
2010-2011学年高一数学“每周一练”系列试题(38)
一、选择题:(本大题共5小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)
1.已知函数()⎩⎨⎧<-≥+=0
,40,42
2x x x x x x x f ,若)2()(2
m f m f -<,则实数m 的取值范围是( ) A .()),2(1,+∞⋃-∞- B .()2,1- C .()1,2- D .()()+∞⋃-∞-,12,
2.给定下列四个命题:
①若一个平面内的两条直线与另一个平面都平行,那么这两个平面互相平行。
②若一个平面经过另一个平面的垂线,那么这两个平面互相垂直。
③垂直于同一条直线的两条直线相互平行。
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直。
其中正确的是
A .①和 ②
B .②和③
C .③和④
D .②和④
3.给定下列几个命题:①若直线α⊂b //b,a ,则α //a .②若直线αα⊂⊥b a ,,则b a ⊥. ③若直线
α⊥a ,直线β⊥a ,则βα //.④ 若直线b a ⊥,c b ⊥,则//c a . 其中正确的个数是 ( ) A. 0个 B.1个 C.2个 D.3个
4. 设()()2,3,3,2B A -,若直线02=++y ax 与线段AB 有交点,则a 的取值范围是 ( )
A .⎪⎭
⎫⎢⎣⎡+∞⎥⎦⎤ ⎝⎛-
∞-,2534, B .⎥⎦
⎤
⎢⎣⎡-
25,34 C .⎥⎦
⎤
⎢⎣⎡-
34,25 D .⎪⎭
⎫⎢⎣
⎡+∞⋃⎥⎦
⎤ ⎝
⎛-∞-,3
425,
5. ABC ∆顶点()()()m C B A ,2,1,1,1,5-,若ABC ∆为直角三角形,则实数m 的值为 ( )
A .-7或3
B .3或2或 -2
C .-7或2或-2
D . -7或3或2或-2
二、解答题:解答时应写出文字说明,证明过程或演算步骤。
6.(本小题满分14分)
如图,已知矩形ABCD 中,6,10==BC AB ,将矩形沿对角线BD 把ABD ∆折起,使A 移到1A 点,
A
B
C
D
O
1A
且1A 在平面BCD 上的射影O 恰好在CD 上。
求证:(1)D A BC 1⊥
(2)求证:平面⊥BC A 1平面BD A 1(3)求三棱锥BCD A -1的体积。
参考答案
1—5CDCAD
6.证明:(1)因为1A 在平面BCD 上的射影O 恰好在CD 上 BCD BC BCD,1平面又平面⊂⊥∴O A O A BC 1⊥∴
又O CO O A CO BC =⊥ 1,,CD A 1平面⊥∴BC
又
CD A 11平面⊂D A ,D A BC 1⊥∴
(2)B A D A 11⊥∴是矩形,
ABCD ,由(1)知B BC B A BC D A =⋂⊥11,
BD A D A BC,A 1111平面又平面⊂⊥∴D A ∴平面⊥BC A 1平面BD A 1
(3)486)862
1
(3111=⨯⨯⨯⨯==--BC A D BCD A V V
A
B
C
D
O
1A。