当前位置:文档之家› 工程岩体分类方法及其意义的探讨

工程岩体分类方法及其意义的探讨

工程岩体分类方法及其意义的探讨
工程岩体分类方法及其意义的探讨

摘要

工程岩体分类是岩石力学研究的一个重要内容。本文对国内外较具影响力的工程岩体分类方法及相应的岩体质量指标进行了归纳介绍,并对其中个别分类方法的优缺点进行了探讨,最后指出了工程岩体分类在对可利用岩体作出判别、工程优化设计过程中的重要作用,指出了工程岩体分类的指导意义。

关键词:岩体分类;质量指标;工程优化设计

第1章诸论

工程岩体指各类岩石工程周围的岩体,这些岩石工程包括地下工程、边坡工程及与岩石有关的地面工程,即为工程建筑物地基、围岩或材料的岩体。而工程岩体分类是指通过岩体的一些简单和容易实测的指标,把地质条件和岩体力学性质参数联系起来,并借鉴已建工程设计、施工和处理等成功与失败方面的经验教训,对岩体进行归类的一种工作方法[ 1 ]。

一个工程项目在可行性研究阶段和初步设计阶段,如果缺少岩体具体而详细的强度和水文地质资料时,工程岩体分类系统就会成为一个很有用的工具。选择合适的分类系统能帮助我们更好地了解岩体的质量好坏,预测可能出现的岩体力学问题,从而为工程设计、支护衬砌、建筑选型和施工方法选择等提供参数和依据。从这个角度而言,考虑岩块强度、结构面强度等诸多因素,以工程实用为目的的岩体分类,不仅是岩石力学研究的一个重要内容,而且对实际工程具有重要意义。

从Ritter(1879)谋求将经验方法公式化用于隧洞设计,尤其是决定支护形式开始,岩体分类系统的发展已有100多年历史。其间,国外许多学者作了大量的研究工作,如早期的太沙基(Terzaghi,1946)、劳弗尔(Lauffer,1958)和迪尔(Deere,1964)等。20世纪70年代以后,随着岩体工程建设的不断发展,工程岩体分类方法的研究取得了显著的进展,如威克汉姆(Wikham,1972)等提出了RSR 分类法,宾尼奥斯基(Bieniawski,1973)提出了 RMR分类法,巴顿(Barton,1974)等提出了Q系统分类法等。随后,霍顿(1975)、宾尼奥斯基(1976)、巴顿(1976)和拉特利奇(1978)等分别对各种分类方法进行了一系列的比较研究。

我国于20 世纪70年代相继在一些行业或部门开展了工程岩体分类方法的研究,并自20 世纪70年代起国家及水利水电、铁道和交通等部门,根据各自特点提出了一些围岩分类方法及其应用的工程实例。如国家为制定《锚杆喷射混凝土支护技术规范》(GBJ86-85),(2001年修订为GBJ50086-2001)而提出的工程岩体分类;铁道部门为制定《铁路隧道设计规范》(TB10003-2001)而提出的铁路隧道围岩分类,总参工程兵(坑道工程)围岩分类等。1994年颁布了我国国家标准《工程岩体分级标准》(GB5018-94),该标准提出了分两步进行的工程岩体分级方法:首先根据岩体坚硬程度和完整性这两个指标进行初步定级,然后针对各类工程特点,并考虑其他影响因素对岩体基本质量指标进行修正,再对工程岩体进行进一步分级。该标准为我国岩体工程建设中岩体分级提供了一个统一的尺度,为我国岩体工程的设计,施工提供了可靠的基础,已经被一些行业规范所采用[ 2 ]。

本文对国内外较具影响力的工程岩体分类方法进行了归纳总结,并就这些分类方法的工程指导意义进行了进一步的探讨。

第2章国外工程岩体分类

2.1 太沙基岩体分类

应用岩体分类进行隧洞支护设计最早的文献出现在太沙基(1947)的一篇论文中。论文中对钢架支护承担的岩体荷载,在定性分类的基础上进行了估计,引起人们对控制岩体性质的那些特征的关注,特别是重力构成主驱动力的情况。太沙基的描述性分类定义清晰,他认为:

完整岩石既无节理也无微裂隙,因此,岩体若破裂,裂缝必然穿过坚硬岩块,由于爆破、剥落造成岩体的损伤,顶板可能在数小时或数天之内崩落,此即为剥落条件。完整硬岩还可能遇到岩爆,即岩板(块)从顶板或侧壁上突然剧烈地脱落下来。

层状岩石:由单个岩层组成,沿层与层之间的边界间的岩块局部紧密结合,侧壁无需支护,剥离及岩爆都可能发生。

块体及薄层岩石:由完整或几乎完整的岩块组成,各自分离,岩块间无化学结合,侧壁需支护。

破碎岩:破碎但未受化学扰动,具流动特性。如果大多数甚至全部碎块细如沙粒,则位于地下水位之下的破碎岩石具有含水砂层的性质。

挤压岩石:缓慢地朝隧洞中产生位移,无明显体积增量,先决条件是膨胀性小的云母矿物或粘土矿物微粒或次微粒含量较高。

膨胀岩石:膨胀岩石向隧洞内产生位移,主要局限于那些富含膨胀性矿物如含蒙脱石的岩石。

太沙基的这种分类方法尽管受主观的或经验的影响,但它简便易行,不需要进行复杂的地质调查或岩体物理力学测试。这种分类方法常为长隧道设计所采用,按这种分类方法所确定的支护结构上的荷载是作为岩石松动力荷载考虑的。如果围岩产生的实际压力远大于这种松动荷载,则这种方法就不适用了。

2.2劳弗尔支撑时间分类法

劳弗尔(1958)认为未支护跨度的自稳时间与洞室所在岩体的质量有关。在隧洞中,未支护跨度定义为隧洞的跨度,若在掌子面到最近的支护距离大于隧道跨度的情况下,定义为掌子面到最近的支护距离。劳弗尔提出的分类方法已被许多专家修正,形成了现在所谓新奥法的一部分。

自稳时间要概念的意义在于隧洞跨度增大将使可供安装支护的时间大大减少,如一条小跨度的导洞可以在少量支护情况下成功建造,而同样岩体条件下的大跨度隧洞,如果不立即安装牢固的支护,则可能是不稳定的。新奥法包括在各

种破坏发生前的自稳时间有限的岩石条件下进行隧洞安全施工的多种技术,这些技术包括采用顶拱小型导洞、分步开挖和采用多平硐方法形成支护环,以便进行大规模开挖。此类技术可用于开挖太沙基所说的有可能产生挤压和膨胀问题的页岩、泥岩之类的软岩,这项技术同样适用于非常破碎岩体的隧洞施工。但是,在将这些技术使用于开挖坚硬岩石时,应非常小心,因为其破坏机制不同。

在对坚硬岩石中的洞室进行设计时,假设围绕洞室的岩体的稳定性与时间无关时应该小心,因为,当结构面形成的楔形体露于洞室的顶部时,一旦岩石支护被去掉,它将会垮落,这种现象可能发生在爆破掘进中或者在随后的扩挖期间。如果要求这些楔形体保持原位或要提高其安全性,必须尽快地安装支护,最好在支护安装之前,整个楔形体前能被清除。另一方面,承受高应力的岩石中的洞室破坏常由于开挖导致应力环境的改变而产生,此时,洞室逐渐破坏,表现形式为自行剥落、片帮或者以岩爆的形式突然发生。不管大哪种情况下,支护设计均应该多多考虑应力方面的改变而不是仅仅注意开挖的自稳时间。

2.3 RQD岩石质量指标分类

岩石质量指标RQD是由迪尔等人于1964年提出的,是根据岩芯记录提供对岩体质量的定量评价,认为钻探获得的岩芯完整程度与岩体的原始裂隙、硬度、均质性等状态有关。岩石质量指标的定义是大于10cm的完整岩芯占岩芯总长度的百分比,岩芯直径至少为54.7mm,并用双层岩芯管钻进[ 3 ]。

(2-1)

根据RQD值的大小,将岩体质量划分为5类。

表2-1 基于RQD的岩体分类

RQD<2525~5050~7575~90>90岩石质量描述很差差一般好很好等级I II III IV V

Palmstrom(1982)提出,在没有岩芯资料但在地表露头或探硐中可以看到不连续面时,岩石质量指标的值也可以通过单位体积内节理数(不连续面)来估计,对于不含粘土的岩体的换算关系为

(2-2)式中——每立方米中的总节理数,又称为体积节理数。

岩石质量指标是一个与方向有关的参数,其值的变化可能很大,取决于钻孔的方向,使用体积节理数概念在减少该参数的方向性影响方面非常有用。

岩石质量指标试图反映现场的岩体质量,用金钢石钻具钻取岩芯时,必须小心以保证由操作或钻进产生的破裂在确定岩石质量指标时能被鉴定出来。当将

Palmstrom方程用于根据露头测绘估计时,不应包括爆破产生的破裂面[ 4 ]。

2.4 RSR岩体结构等级分类法

威克姆(1972)曾提出了一种比较全面的岩体分法的方法,该方法充分考虑了岩体结构特性和状况,并给出具体参数的定量指标RSR,岩石的等级则是由RSR 的定量指标来划分:

RSR=A+B+C

式中 A——表征岩体种类和地质构造特征的参数

B——表征沿掘进方向的节理类型的参数

C——表征地下水对节理状况影响的参数

对某一地质剖面而言,RSR值是参数A、B和C的总和,它反映了岩体结构的质量。

参数A是一种评价隧道轴线所穿过的岩体的结构状况的参数,它与隧道的开挖尺寸无关,也与其施工措施和支护手段无关,在工程建设前期,需要进行规范化的地质勘察获取有关的地质构造特征的资料,用来确定该参数A的取值。

参数B是与节理类型(走向、倾角和节理间距)和掘进方向有关的参数,一般地质调查或地质图给出岩层的走向和倾角。据此,可得到岩层的有关节理类型参数的近似值。相应的隧道掘进方向是由工程规划所确定。通常可使用地质资料提供的岩层的节理特征并预先选用几种工程布置(隧道走向)取得节理间距估算的平均值,如节理密度或岩体块度分析,岩心分析或RQD(岩石质量指标)等地质资料,并结合考虑岩层产状和掘进方向的影响。

参数C是一项影响支护量级的地下水流动估计参数,它考虑如下因素:(1)岩体结构性所有质量,即A+B之和表示的数值;(2)节理面的状况;(3)地下水的渗出量。在预测地层的水文地质条件时,分析地下水流动情况应结合抽水试验、当地水井情况、地下水位、地表水文、地形和降雨量等因素综合考虑。评价节理面的状况特征,应考虑地表情况、地质历史、钻孔岩芯取样等方面的情况综合分析。对于某一地质剖面而言,RSR值是参数A、B、C的总和,此值范围一般在25~100之间,反映了岩体结构的质量,隧道穿过的每一特别地层的结构特性都应予以分别分析与评价,从而得到相应的RSR值。

根据所得的岩体的RSR值,可由下式估算岩体荷载:

(2-3)式中 Wr——岩体荷载

D——开挖直径

RSR——岩体结构等级

一旦得到了Wr的值,便可应用荷载——结构法进行地下结构的设计。

2.5 RMR岩体力学等级分类法

岩体力学等级是宾尼奥斯基(1973)提出的一种岩体分类方法,该分类法考虑了岩石抗压强度、岩体质量指标、节理间距及节理状况地下水等五种因素,根据个参数,建立了岩体质量评分标准从而进行岩体分类。

岩体力学等级的确定方法分两步进行:第一步对某一特定岩体,先按岩石抗压强度、岩体质量指标、节理间距及节理状况地下水等五种因素逐一评定,并按规定的评分标准评出分数,然后再把五个单因素的分数累加起来,得到岩体分类指标RMR的初值;第二步,根据节理裂产状变化对第一步得到的初值加以修正。修正的目的,在于进一步强调节理裂隙对岩体稳定产生的不利影响,修正评分的取值办法如表2-2所示,经修正后的岩体总评分实质上就是岩体质量综合评价指标。

表2-2 按节理方向的修正评分值

节理走向和倾向非常有利有利一般不利非常不利隧洞0-2-5-10-12

地基0-2-7-15-25

边坡0-5-25-50-60

以此为划分岩体工程分类的依据,将岩体进行分类。

表2-3 按总评分确定的岩体类别

评分值100~8180~6160~4140~21<20

分类级I II III IV V

质量描述很好的好的中等的差的很差的

宾尼奥斯基在评价岩体质量时,十分重视岩体中结构面的因素,对节理的状态赋值最高,其次是岩石质量指标和节理间距。除此之外,他还根据节理走向和倾向对工程位置的岩体稳定性影响大小,又赋予修正,同此可见这种分类方法

十分重视岩体节理,裂隙对其工程质量的影响。

2.6 岩体掘进质量指标——Q系统

在对大量的地下工程开挖实例进行分析研究的基础上,挪威岩土工程技术研究所的巴顿等人(1974)提出了一种隧道质量指标方法用以确定岩体特征和相应的隧洞支护方案,Q指标的数值以对数形式从0.001到最大值1000,Q指标值可由下式算出:

(2-4)

式中RQD——岩石质量指标

Jn——节理组数

Jr——节理粗糙度数值

Ja——节理蚀变程度

Jw——节理水折减系数

SRF——应力折减系数

该计算公式各部分的意义如下:

第一个商数(RQD/Jn)代表了岩体结构,是岩石块度的大致估计。若用厘米单位得出商而言,200~0.5cm的极端值稍显粗糙,但仍不失为一个符合实际的近似值,可能最大的块体是这种规模的数倍,而最小的块体比这种规模的一半还小(粘土颗粒除外)。

第二个商数(Jr/Ja)代表的是节理壁或充填物的粗糙度和磨擦性质。此商数对粗糙的未蚀变的直接接触的节理的权重有利。在受剪切作用时,这此节理将膨胀,将有可能接近于其峰值强度,因此,对隧洞围岩的稳定有利。

当节理中夹有粘土和其他充填物时,强度会明显降低。尽管出现小的剪切位移,但节理壁的接触是使开挖免于最终破坏的一个重要因素。

节理面不闭合对隧洞围岩的稳定性极其不利,内摩擦角小于大多数粘土矿土的残余强度值,并且可能会更低一些。因为在剪切过程中,这些粘土带或充填物可能会固结,至少在出现正常固结、软化或膨胀时情况会如此。类似蒙脱石的膨胀压力等因素此处也应考虑。

第三个商数(Jw/SRF)含有两个压力参数。SRF是如下因素的表示:(1)剪切区及含粘土矿物岩类中的松弛荷载;(2)硬岩中的应力;(3)塑性软弱岩类的挤压荷载。可将其认为是一个总应力参数,参数Jw是水压力值,节理水的存在减小了有效法向应力,它对节理的抗剪强度具有负作用,此外,对有粘土填充的节理,水的作用有可能使粘土软化和产生冲蚀作用[ 5 ]。经验表明,不可能用

块体有效应力的形式将这两个参数合二为一。因为,尽管抗剪强度值较高,但是,一个高的有效法向应力可能会比一个低的有效法向应力更能放大不稳定条件。

毫无疑问,若在分类系统中再附加一些其他参数,可以提高分类系统的准确性。其中之一就是节理方向。虽然很多实例已经考虑了包括与开挖轴线相关的岩体结构面方向的必要资料,但是,它还没有像预想的那样成为十分重要的常用参数,产生这种现象的部分原因是不少类型的开挖方向在正常情况是可以通过调整施工方法来避免主要节理不利方向的最大影响,然而,这种做法在隧洞工程中并不可行,有超过一半的实例说明了这一点。参数Jn、Jr、Ja所起作用要大于方向性。因为,节理组数块体位移的自由度,摩擦性能和膨胀特性的变化所带来的影响要大于不利方向节理造成的下滑重力所占的比重,若把节理方向也包括在分类系统中则很可能失去其应用的普遍性及其本质上简单实用的特点。

此外,为了将Q值与对于地下洞室开挖的稳定性和支护要求联系起来,巴顿等人(1974)定义了另一个参数,称为开挖的等效尺度De值。这一参数由洞室的跨度、直径或壁面高度除以开挖支护比ESR得到。而ESR与洞室的使用目的、维护洞室稳定所要求安装的支护系统的安全程度有关,巴顿等人建议采用表2-4所示的ESR值。

表2-4 ESR值的选取

开挖类型ESR

A.临时采矿巷道3~5

1.6

B.永久采矿巷道、水电输水隧洞(不包括高压管道)、平硐、竖井和大型开挖

工程的导洞

C.蓄水室、水处理厂、非等级公路和铁路隧洞、调压室、交通隧洞 1.3

D.电站、大的公路和铁路隧洞、防空洞、进出口段 1.0

E.地下核电站、火车站、体育与公共设施、工厂0.8

Loset(1992)建议,对于Q值介于之间的岩体,由于岩体原有环境的开挖,爆破破坏会产生新的节理,会使围岩的Q值降低。因此应当降低爆破破坏区域的RQD值。

巴顿等人(1980)就锚杆长度、最大不支护跨度和顶拱支护压力等支护方面提出了另外一些资料,以补充他在1974年的论文中所推荐的支护建议。

锚杆长度L可通过开挖跨度B和开挖支护比ESR进行估算:

(2-5)最大不支护跨度从下式估算:

最大不支护跨度=2ESR0.4(2-6)基于寻已有实例的分析,巴顿等人(1993)建议,Q值与顶拱支护压力P

roof 的关系可用下式估计:

(2-7)2.6 RMI指标工程岩体分类

1996年,挪威学者Palmstrom在对RMR岩体分类方法与Q系统岩体分类方法评述的基础上,通过对大量现场岩体试验的分析与反分析,提出了一种新的岩体分类指标RMI。该指标以结构面参数为变量,通过对岩石单轴抗压强度的折减,来反映岩体的强度特性[ 6 ]。其表达式为:

(2-8)

式中:——岩块单轴抗压强度,由直径为50mm的岩石试件在实验室测得;

JP——结构面参数,反映被结构面切割而成的块体体积、结构面摩擦特性和规模对岩块强度的弱化效应。其值变化在0~1之间,对完整岩块

取1,对破碎岩体取0。

JP可由以下诸式计算:

(2-9)

(2-10)

(2-11)

式中:——被切割面切割成的块体的体积;

——结构面条件系数;

——结构面尺寸与连续性系数;

、——分别为构造面粗糙系数和蚀变影响系数,这与Q系统相同。

根据对现场岩体的结构面条件、密度、间距的研究后,可根据相关规定计算选取各指标的取值,将各参数代入式(2-8)~(2-11)即可得到RMI值,再按表2-5进行分类。

表2-5 基于RMI指标的工程岩体分类

RMI指标描述RMI值岩体强度描述极低<0.001极软弱

很低0.001~0.01很软弱

低0.01~0.1软弱

中等0.1~1中等

高1~10坚硬

很高10~100很坚硬

极高>100极坚硬

该指标虽然是在RMR岩体分类方法与Q系统岩体分类方法的基础上建立的,但与后两者相关,它的不同在于:第一,引入结构面系数JP,通过对岩块单轴

抗压强度的折减,将估算的岩体强度作为分类依据;第二,以块体体积代替岩芯回采率RQD,以反映结构面密度与间距的影响;第三,块体体积的引入,反

映岩体受结构面切割而成岩块的结构效应,并将其隐含反映在结构面系数JP中或直接表现在岩块强度上。

第3章国内工程岩体分类

我国从20世纪70年代起,一些行业或部门根据各自特点相继提出了一些岩体分类方法及经验设计方法。比如,我国国家标准《锚杆喷射混凝土支护技术规范》(GBJ86-85),(2001年修订为GBJ50086-2001)提出了围岩的分类;铁道部门制定的《铁路隧道设计规范》(TB10003-2001)提出了围岩分类和岩石荷载计算公式。1994年颁布了我国国家标准《工程岩体分级标准》(GB5018-94),该标准适用于各行各业,将围岩分级方法统一起来,以便于各行各业间相关资料的可比性、通用性。自20世纪70年代以来,我国基本建设步伐加快,各种类型的岩体工程,特别是地下岩体工程建设的发展进上步推动了我国岩体工程分类方法和工程经验设计的进展。

3.1 《铁路工程技术规范》中建议的分类法

我国铁道系统根据本行业的工程特点,提出了适用于铁道系统的隧道围岩分类法及其相应的支护设计参数。根据围岩分类,可计算围岩压力:

(3-1)式中 q——均匀分布的垂直压力

S——围岩类别

——围岩容重

式中w=1+i(L

m -5),为跨度影响系数,其中L

m

为毛洞跨度,系以L

m

=5m的

围岩垂直均布压力为准,w随L

m 而变。当L

m

<5m时,取i=0.2,L

m

>5m时,i=0.1。

该计算方法适用于矿山法施工的深埋隧道,围岩的水平压力e可按表3-1经验公式取值。

表3-1 围岩水平压力e

围岩类别I II III IV V

水平均布压力e(1/2~1)q(1/3~1/2)q(1/6~1/3)q(0~1/6)q0

3.1 BQ岩体分类法

1995年国家颁发了统一实行的《工程岩体分级标准》(GB5018-94),该分级标准考虑了岩体结构特征、岩体的完整性、岩石强度、初始地应力及地下水等因素,分两步进行岩体分级工作,第一步根据岩体完整性及结构特性等,获得岩体的基本质量BQ指标,由BQ指标可进行岩体基本质量的分级和评价;第二步,考虑岩体初始应力及隧道轴线与岩体结构面的组合关系,对基本指标BQ予以修正,得出岩体质量指标修正值,据可得出岩体工程分级。

岩体基本质量指标BQ按下式计算:

(3-2)

式中 BQ——岩石基本质量指标

——岩石单轴饱和抗压强度,一般应取实测值

——岩体完整性指数,岩体弹性纵波速度与岩石弹性纵波速度之比的平

方,

常采用实测值。当无条件取得实测值时,也可用岩体体积节理数Jv按表3-2确定对应的值。

表3-2 Jv与对照表

Jv(条/m3)<33~1010~2020~35>35

>0.750.75~0.550.55~0.350.35~0.15<0.15

岩体体积节理数Jv是指单位岩体体积内的节理(结构面)数目,即:

(3-3)

式中——第n组节理每米长测线上的系数

——每立方米岩体非成组节理系数

该岩体分类法还引入了三个因素,即地下水,主要软弱结构面与隧道轴线的组合关系和初始地应力现象作为对BQ指标的修正因素,岩体基本质量指标修正值可按下式计算:

(3-4)

式中——岩体基本质量指标修正值

BQ——岩体基本质量指标

——地下水影响修正系数

——主要软弱结构面产生影响修正系数

——初始应力状态影响修正系数

取得岩体基本值是指标BQ或岩体工程值后,即可根据BQ(或)指标按表3-3对岩体进行分级。

应该注意的是,本岩体分类标准作为通用的基础标准,难于将所有各种影响因素都考虑进去,更难于全面照顾各行业的特殊需要。因此,在实行本岩体分类标准时,往往结合有关行业的分类标准,采用几种分级方法进行对比,综合分析,确定适合的岩体级别。

表3-3 岩体基本质量分级

基本质量级别岩体基本质量的定性特征岩体基本质量指标BQ或岩

体工程质量指标

I岩硬岩,岩体完整>550 II坚硬岩,岩体较完整;软坚硬岩,岩体完整550~451 III坚硬岩,岩体较破碎;较坚硬岩或软硬岩互层,450~351

第4章工程岩体分类的指导意义

工程岩体分类,根据用途的不同,可分为两大类:第一类是针对性较少的、原则的、大致的通用分类,这种分类可供各学科领域,各国民经济部门笼统的使用;第二类则是针对某一学科领域,某一具体工程或某一工程的具体部位的特殊要求,甚至专为某工程目的服务的专用分类。

而对于第二类,由于各行业的工程项目在规模、使用环境、使用寿命和稳定性的要求方面有很大差异。因此,在对工程岩体分类时,需要考虑的因素就会不

同。比如水工建筑基岩通常要考虑岩体的渗透性能,而深埋地下洞室和人工高边坡则必须注意初始应力场的影响,采矿业则更关心岩石的可钻性和可爆性。

这说明影响工程岩体分类的因素是多种多样的,我们很难找出一种尽可能准确又有较大的应用范围的分类方法。正因如此,随着岩石力学等相关领域的发展,工程岩体的分类方法趋于多样化。又由于长期的地质作用,岩体本身存在复杂性,主要表现在它的不均匀性和各向异性,所以任何一种工程岩体的分类方法都存在有待完善改进的地方。

但尽管如此,还是有许多的学者致力于工程岩体的研究工作。尤其是随着国内外一系列大中型水利水电工程的开发建设, 施工过程中所存在的大量工程地质问题使人们逐渐认识到工程区岩体质量分类的实用性和重要性。

众所周知,面对与岩体相联系的工程项目,在项目的可行性研究阶段和初步设计阶段为了在经济性和安全性作出合理选择,有赖于对岩体的稳定性评价。而岩体的稳定性评价方法三致分为分析计算法、模拟试验法和岩体分类法。而前两者过程周期长、耗资大,其不足之处是显而易见的。

相比之下,工程岩体分类法不需要详尽的岩体力学测试资料(尤其是现场大型测试),可以节省大量的时间和投资,快速作出评价。并且由于考虑了岩块强度、结构面强度等诸多因素,所以合理并且准确的岩体分类法不仅能对工程区岩体结构模式及其强度特性作出评价,帮助我们更及时地了解岩体的质量好坏,预测可能出现的岩体力学问题,而且还能对可利用岩体作出判别、工程优化设计、确定合理建基面,从而为后续的工程设计、支护衬砌、建筑选型和施工方法选择等提供参数和依据。这就是工程岩体分类的指导意义所在。

参考文献

.沈明荣. 岩体力学[M] . 上海:同济大学出版社,1999

.唐胜传,黄润秋.岩体质量分类[ J] .西南工学院学报.2001.16( 4):1- 2..陈伊清.岩石质量指标RQD 的应用问题[ J] .水利科技,2002,( 1):1- 2.

.杜时贵,许四法,杨树峰等.岩石质量指标RQD与工程岩体分类[ J] .工

程地质学报,2000,( 6):1- 2.

.陈昌彦,王贵荣.各类岩体质量评介方法的相关性探讨[ J] .岩石力学与工程学报,2002,21( 12):2- 5.

.宋建波,张倬元,刘汉超.应用RMI指标进行工程岩体分类的方法[ J] .矿业研究与开发,2002,22( 1):1- 2.

常见的岩石种类有哪些

常见的岩石种类有哪些? 虽然岩石的面貌是千变万化的,但是从它们形成的环境,也就是从成因上来划分,可以把岩石分为三大类:沉积岩、岩浆岩和变质岩。 1、沉积岩 沉积岩是在地表或近地表不太深的地方形成的一种岩石类型。它是由风化产物、火山物质、有机物质等碎屑物质在常温常压下经过搬运、沉积和石化作用,最后形成的岩石。 沉积岩的物质来源主要有几个渠道,风化作用是一个主要渠道,它包括机械风化、化学风化和生物风化。机械风化是以崩解的方式把已经形成的岩石破碎成大小不同的碎屑;化学风化是由于水、氧气、二氧化碳引起的化学作用使岩石分解形成碎屑;细菌、真菌、藻类等生物风化作用也能分解岩石。此外,火山爆发喷射出大量的火山物质也是沉积物质的来源之一;植物和动物有机质在沉积岩中也占有一定比例。 不论那种方式形成的碎屑物质都要经历搬运过程,然后在合适的环境中沉积下来,经过漫长的压实作用,石化成坚硬的沉积岩。 2、岩浆岩 岩浆岩也叫火成岩,是在地壳深处或在上地幔中形成的岩浆,在侵入到地壳上部或者喷出到地表冷却固结并经过结晶作用而形成的岩石。因为它生成的条件与沉积岩差别很大,因此,它的特点也与沉积岩明显不同。在野外观察,沉积岩常具有成层构造,层状构造是沉积岩所独有的特征。而在岩浆岩发育的地区则常常见到节理,而基本上看不到层理;在矿物组合上,在岩浆岩中出现的矿物,如橄榄石、辉石、角闪石等矿物是在高温高压条件下结晶形成的,在常温常压条件下不容易保存. 3、变质岩

在地壳形成和发展过程中,早先形成的岩石,包括沉积岩、岩浆岩,由于后来地质环境和物理化学条件的变化,在固态情况下发生了矿物组成调整、结构构造改变甚至化学成分的变化,而形成一种新的岩石,这种岩石被称为变质岩。变质岩是大陆地壳中最主要的岩石类型之一。 在变质岩的概念中,有两点必须强调,这是变质岩区别于沉 ①火成岩也称岩浆岩。来自地球内部的熔融物质,在不同地质条件下冷凝固结而成的岩石。当熔浆由火山通道喷溢出地表凝固形成的岩石,称喷出岩或称火山岩。常见的火山岩有玄武岩、安山岩和流纹岩等。当熔岩上升未达地表而在地壳一定深度凝结而形成的岩石称侵入岩,按侵入部位不同又分为深成岩和浅成岩。花岗岩、辉长岩、闪长岩是典型的深成岩。花岗斑岩、辉长玢岩和闪长玢岩是常见的浅成岩。根据化学组分又可将火成岩分为超基性岩(SiO2 ,小于45%)、基性岩(SiO2 ,45%~52%)、中性岩(SiO2 ,52%~65%)、酸性岩(SiO 2 ,大于65%)和碱性岩(含有特殊碱性矿物,SiO 2 ,52%~66%)。火成岩占地壳体积的%。 ②沉积岩。在地表常温、常压条件下,由风化物质、火山碎屑、有机物及少量宇宙物质经搬运、沉积和成岩作用形成的层状岩石。按成因可分为碎屑岩、粘土岩和化学岩(包括生物化学岩)。常见的沉积岩有砂岩、凝灰质砂岩、砾岩、粘土岩、页岩、石灰岩、白云岩、硅质岩、铁质岩、磷质岩等。沉积岩占地壳体积的%,但在地壳表层分布则甚广,约占陆地面积的75%,而海底几乎全部为沉积物所覆盖。沉积岩有两个突出特征:一是具有层次,称为层理构造。层与层的界面叫层面,通常下面的岩层比上面的岩层年龄古老。二是许多沉积岩中有“石质化”的古代生物的遗体或生存、活动的痕迹-----化石,它是判定地质年龄和研究古地理环境的珍贵资料,被称作是纪录地球历史的“书页”和“文字"。 ③变质岩。原有岩石经变质作用而形成的岩石。根据变质作用类型的不同,可将变质岩分为5类:动力变质岩、接触变质岩、区域变质岩、混合岩和交代变质岩。常见的变质岩有糜棱岩、碎裂岩、角岩、板岩、千枚岩、片岩、片麻岩、大理岩、石英岩、角闪岩、片粒岩、榴辉岩、混合岩等。变质岩占地壳体积的%。

岩石的工程分类

第五节岩体的工程分类 二、岩体的工程分类 1、岩体质量分级(《工程岩体分级标准》GB50218-94) 分级指标: 岩体基本质量指标BQ BQ=90+3σcw +250 Kv 当σcw>90Kv+30时,令σcw=90Kv+30 当Kv>0.04σcw+0.4时,令Kv=0.04σcw+0.4 Jv与Kv对照表 Jv(条/m3) <3 3~10 10~20 20~35 >35 Kv >0.75 0.75~0.55 0.55~0.35

0.35~0.15 <0.15 分级方法: (1)按岩体基本质量指标BQ进行初步分级; (2)根据天然应力、地下水和结构面方位等对BQ进行修正;(3)按修正后的[BQ]进行详细分级。 岩体质量分级 基本质量级别 岩体质量的定性特征 岩体基本质量指标(BQ) Ⅰ 坚硬岩,岩体完整 >550 Ⅱ

坚硬岩,岩体较完整;较坚硬岩,岩体完整 550~451 Ⅲ 坚硬岩,岩体较破碎;较坚硬岩或软、硬岩互层,岩体较完整;较软岩,岩体完整 450~351 Ⅳ 坚硬岩,岩体破碎;较坚硬岩,岩体较破碎破碎;较软岩或软硬岩互层,且以软岩为主,岩体较完整较破碎;软岩,岩体完整较完整 350~251 Ⅴ 较软岩,岩体破碎;软岩,岩体较破碎破碎;全部极软岩及全部极破碎岩 <250

岩石坚硬程度按下表划分。 岩石坚硬程度划分表 岩石饱和单轴抗压强度 σcw(MPa) >60 60~30 30~15 15~5 <5 坚硬程度 坚硬岩 较坚硬岩 较软岩 软岩 极软岩

第1章 岩石的物理性质及工程分类

第1章岩石的物理性质及工程分类 学习指导:为了正确掌握岩土体的变形和破坏规律,对岩土体的稳定性做出合乎实际的分析和评价,首先需要对岩土体的物理性质、水理性质及工程分类等有清晰的认识。本章的学习任务就是要大家掌握这方面的内容。 重点:要求掌握岩土的物理性质指标的含义;对密度、比重及含水率三个实测指标要理解,对各指标的计算方法及指标之间的换算要搞清楚;掌握无粘性土及粘性土的状态指标及应用;理解土的三相组成;了解岩土的工程分类。 1.1 岩土体的特性 岩土体是地壳的物质组成。岩体是地壳表层圈层,经建造和改造而形成的具一定组分和结构的地质体。 1.1.2岩(石)体的特性 岩石是由矿物的组成的,按成因岩石可划分为岩浆岩、沉积岩和变质岩。成因类型不一样,差别也很大,因此,工程性质极为多样。 1)岩浆岩的性质 岩浆岩具有较高的力学强度,可作为各种建筑物良好的地基及天然建筑石料。但各类岩石的工程性质差异很大,如:深成岩具结晶联结,晶粒粗大均匀,孔隙率小、裂隙较不发育,岩块大、整体稳定性好,但值得注意的是这类岩石往往由多种矿物结晶组成,抗风化能力较差,特别是含铁镁质较多的基性岩,则更易风化破碎,故应注意对其风化程度和深度的调查研究。 浅成岩中细晶质和隐晶质结构的岩石透水性小、抗风化性能较深成岩强,但斑状结构岩石的透水性和力学强度变化较大,特别是脉岩类,岩体小,且穿插于不同的岩石中,易蚀变风化,使强度降低、透水性增大。 喷出岩常具有气孔构造、流纹构造和原生裂隙,透水性较大。此外,喷出岩多呈岩流状产出,岩体厚度小,岩相变化大,对地基的均一性和整体稳定性影响较大。 2)沉积岩的性质 碎屑岩的工程地质性质一般较好,但其胶结物的成分和胶结类型影响显著,如硅质基底式胶结的岩石比泥质接触式胶结的岩石强度高、孔隙率小、透水性低等。此外,碎屑的成分、粒度、级配对工程性质也有一定的影响,如石英质的砂岩和砾岩比长石质的砂岩为好。 粘土岩和页岩的性质相近,抗压强度和抗剪强度低,受力后变形量大,浸水后易软化和泥化。若含蒙脱石成分,还具有较大的膨胀性。这两种岩石对水工建筑物地基和建筑场地边坡的稳定都极为不利,但其透水性小,可作为隔水层和防渗层。 化学岩和生物化学岩抗水性弱,常具不同程度的可溶性。硅质成分化学岩的强度较高,但性脆易裂,整体性差。碳酸盐类岩石如石灰岩、白云岩等具中等强度,一般能满足水工设计要求,但存在于其中的各种不同形态的喀斯特,往往成为集中渗漏的通道。易溶的石膏、岩盐等化学岩,往往以夹层或透镜体存在于其他沉积岩中,质软,浸水易溶解,常常导致地基和边坡的失稳。 上述各类沉积岩都具有成层分布的规律,存在各向异性特征,因此,在水工建设中尚需特别重视对其

工程岩体分级标准

工程岩体分级标准(中) 2010-04-15 | 来源:中国地质环境信息网 | 【大中小】【打印】【关闭】 附录F 本标准用词说明 F.0.1 为便于执行本标准条文时区别对待,对要求严格程度不同的用词说明如下: (1)表示很严格,非这样做不可的: 正面词采用“必须”; 反面词采用“严禁”。 (2)表示严格,在正常情况下均应这样做的: 正面词采用“应”; 反面词采用“不应”或“不得”。 (3)表示允许稍有选择,在条件许可时首先应这样做的: 正面词采用“宜”或“可”: 反面词采用“不宜”。 F.0.2 条文中指定应按其它有关标准、规范执行时,写法为“应符合…的规定”,或“应按……执行”。 附加说明 本标准主编单位、参加单位和主要起草人名单 主编单位:水利部长江水利委员会长江科学院 参加单位:东北大学 总参工程兵第四设计研究院 铁道部科学研究院西南分院 建设部综合勘察研究院 主要起草人:于石春、邢念信、李云林、李兆权、苏贻冰 张可诚、林韵梅、柳赋铮、徐复安、董学晟 中华人民共和国国家标准 工程岩体分级标准 GB 50218-94 条文说明 制订说明 本标准是根据国家计委计标发〔1986〕28号文和计标函〔1987〕39号文的要求,水利部负责上编,具体由水利部长江水利委员会长科学院会同东北大学、总参工程兵第四设计研究院、铁道部科学研究院西南分院、建设部综合勘察研究院共同编制

而成,经建设部1994年11月5日以建标〔1994〕673号文批准,并会同国家技术监督局联合发布。 在本标准的编制过程中,标准编制组进行了广泛的调查研究,认真总结我国各有关行业在岩石工程建设和工程岩体分级(类)方面,以及岩石力学试验研究方面的实践经验,同时参考了国外先进的工程岩体分级(类)方法,并广泛征求了全国有关单位的意见。最后由我部会同有关部门审查定稿。 鉴于本标准系初次编制,在执行过程中,希望各单位结合工程实践和科学研究,认真总结经验,注意积累资料,如发现需要修改和补充之处,请将意见和有关资料寄交水利部长江水利委员会长江科学院(湖北省武汉市黄浦路23号,邮编430010),并抄送水利部科教司,以供今后修订时参考。 目次 1 总则 1.0.1 随着国家现代化建设事业的发展,水利水电、铁道、交通、矿山、工业与民用建筑、国防等工程中,各种类型、不同用途的岩石工程日益增多。在工程建设的各阶段(规划、勘察、设计和施工)中,正确地对岩体的质量和稳定性作出评价,具有十分重要的意义。质量高、稳定性好的岩体,不需要或只需要很少的加固支护措施,并且施工安全、简便;质量差、稳定性不好的岩体,需要复杂、昂贵的加固支护等处理措施,常常在施工中带来预想不到的复杂情况。正确、及时地对工程建设涉及到的岩体稳定性作出评价,是经济合理地进行岩体开挖和加固支护设计、快速安全施工,以及建筑物安全运行必不可少的条件。 对工程岩体稳定性作分析判断的数值计算和物理模型试验,要求事先进行相当详尽的地质勘察和岩石力学试验研究,花费人力和财力很多。地质条件复杂时,前期工作往往拉得很长,这种方法一般用于大型或重要的工程。 针对不同类型岩石工程的特点,根据影响岩体稳定性的各种地质条件和岩石物理力学特性,将工程岩体分成稳定程度不同的若干级别(一般称之为岩石分类或工程岩体分类,本标准称工程岩体分级),以此为标尺作为评价岩体稳定的依据,是岩体稳定性评价的一种简易快速的方法。这是由于岩体分级方法是建立在以往工程实践经验和大量岩石力学试验基础上的,只需进行少量简易的地质勘察和岩石力学试验就能据以确定岩体级别,作出岩体稳定性评价,给出相应的物理力学参数,为加固措施提供参考数据,从而可以在大量减少勘察、试验工作量,缩短前期工作时间的情况下,获得这些岩石工程建设的勘察、设计和施工不可少的基本依据,并可在进一步总结实际运用经验的基础上,为制定各种岩石工程施工定额提供依据。 本标准所说的稳定性,是指在工程服务期间,工程岩体不发生破坏或有碍使用的大变形。 自本世纪50—60年代以来,在国外提出许多工程岩体的分级方祛,其中有些在我国有广泛的影响,得到了不同程度的应用。在国内,自70年代以来,有关部门也在各自工程经验的基础上制定了一些岩体分级方法,在本部门或本行业推行应用。然而,这些分级方法的原则、标准和测试方法都不尽相同,彼此缺乏可比性、一致

工程岩体分类方法及其意义的探讨

摘要 工程岩体分类是岩石力学研究的一个重要内容。本文对国内外较具影响力的工程岩体分类方法及相应的岩体质量指标进行了归纳介绍,并对其中个别分类方法的优缺点进行了探讨,最后指出了工程岩体分类在对可利用岩体作出判别、工程优化设计过程中的重要作用,指出了工程岩体分类的指导意义。 关键词:岩体分类;质量指标;工程优化设计

第1章诸论 工程岩体指各类岩石工程周围的岩体,这些岩石工程包括地下工程、边坡工程及与岩石有关的地面工程,即为工程建筑物地基、围岩或材料的岩体。而工程岩体分类是指通过岩体的一些简单和容易实测的指标,把地质条件和岩体力学性质参数联系起来,并借鉴已建工程设计、施工和处理等成功与失败方面的经验教训,对岩体进行归类的一种工作方法[ 1 ]。 一个工程项目在可行性研究阶段和初步设计阶段,如果缺少岩体具体而详细的强度和水文地质资料时,工程岩体分类系统就会成为一个很有用的工具。选择合适的分类系统能帮助我们更好地了解岩体的质量好坏,预测可能出现的岩体力学问题,从而为工程设计、支护衬砌、建筑选型和施工方法选择等提供参数和依据。从这个角度而言,考虑岩块强度、结构面强度等诸多因素,以工程实用为目的的岩体分类,不仅是岩石力学研究的一个重要内容,而且对实际工程具有重要意义。 从Ritter(1879)谋求将经验方法公式化用于隧洞设计,尤其是决定支护形式开始,岩体分类系统的发展已有100多年历史。其间,国外许多学者作了大量的研究工作,如早期的太沙基(Terzaghi,1946)、劳弗尔(Lauffer,1958)和迪尔(Deere,1964)等。20世纪70年代以后,随着岩体工程建设的不断发展,工程岩体分类方法的研究取得了显著的进展,如威克汉姆(Wikham,1972)等提出了RSR分类法,宾尼奥斯基(Bieniawski,1973)提出了RMR分类法,巴顿(Barton,1974)等提出了Q系统分类法等。随后,霍顿(1975)、宾尼奥斯基(1976)、巴顿(1976)和拉特利奇(1978)等分别对各种分类方法进行了一系列的比较研究。 我国于20 世纪70年代相继在一些行业或部门开展了工程岩体分类方法的研究,并自20 世纪70年代起国家及水利水电、铁道和交通等部门,根据各自特点提出了一些围岩分类方法及其应用的工程实例。如国家为制定《锚杆喷射混凝土支护技术规范》(GBJ86-85),(2001年修订为GBJ50086-2001)而提出的工程岩体分类;铁道部门为制定《铁路隧道设计规范》(TB10003-2001)而提出的铁路隧道围岩分类,总参工程兵(坑道工程)围岩分类等。1994年颁布了我国国家标准《工程岩体分级标准》(GB5018-94),该标准提出了分两步进行的工程岩体分级方法:首先根据岩体坚硬程度和完整性这两个指标进行初步定级,然后针对各类工程特点,并考虑其他影响因素对岩体基本质量指标进行修正,再对工程岩体进行进一步分级。该标准为我国岩体工程建设中岩体分级提供了一个统一的尺度,为我国岩体工程的设计,施工提供了可靠的基础,已经被一些行业规范所采用[ 2 ]。

岩石级别 分类

岩石级别坚固程度代表性岩石 Ⅰ 最坚固最坚固、致密、有韧性的石英岩、玄武岩和其他各种特别坚固的岩石。(f=20) Ⅱ 很坚固很坚固的花岗岩、石英斑岩、硅质片岩,较坚固的石英岩,最坚固的砂岩和石灰岩.(f=15) Ⅲ坚固致密的花岗岩,很坚固的砂岩和石灰岩,石英矿脉,坚固的砾岩,很坚固的铁矿石.(f=10) Ⅲa 坚固坚固的砂岩、石灰岩、大理岩、白云岩、黄铁矿,不坚固的花岗岩。(f=8) Ⅳ比较坚固一般的砂岩、铁矿石(f=6) Ⅳa 比较坚固砂质页岩,页岩质砂岩。(f=5) Ⅴ中等坚固坚固的泥质页岩,不坚固的砂岩和石灰岩,软砾石。(f=4) Ⅴa 中等坚固各种不坚固的页岩,致密的泥灰岩.(f=3) Ⅵ比较软软弱页岩,很软的石灰岩,白垩,盐岩,石膏,无烟煤,破碎的砂岩和石质土壤.(f=2)

Ⅵa 比较软碎石质土壤,破碎的页岩,粘结成块的砾石、碎石,坚固的煤,硬化的粘土。(f=1.5) Ⅶ软软致密粘土,较软的烟煤,坚固的冲击土层,粘土质土壤。(f=1) Ⅶa 软软砂质粘土、砾石,黄土。(f=0.8) Ⅷ土状腐殖土,泥煤,软砂质土壤,湿砂。(f=0.6) Ⅸ松散状砂,山砾堆积,细砾石,松土,开采下来的煤(f=0.5) Ⅹ流沙状流沙,沼泽土壤,含水黄土及其他含水土壤. (f=0.3) A表示矿岩的坚固性的量化指标. 人们在长期的实践中认识到,有些岩石不容易破坏,有一些则难于破碎。难于破碎的岩石一般也难于凿岩,难于爆破,则它们的硬度也比较大,概括的说就是比较坚固。因此,人们就用岩石的坚固性这个概念来表示岩石在破碎时的难易程度。 坚固性的大小用坚固性系数来表示又叫硬度系数,也叫普氏硬度系数f 值)。 坚固性系数f=R/100 (R单位kg/cm2) 式中R——为岩石标准试样的单向极限抗压强度值。 通常用

岩石种类

岩石的种类 一火成岩-岩浆岩 来自地球内部的熔融物质,在不同地质条件下冷凝固结而成的岩石。当熔浆由火山通道喷溢出地表凝固形成的岩石,称喷出岩或称火山岩。常见的火山岩有玄武岩、安山岩和流纹岩等。当熔岩上升未达地表而在地壳一定深度凝结而形成的岩石称侵入岩,按侵入部位不同又分为深成岩和浅成岩。花岗岩、辉长岩、闪长岩是典型的深成岩。花岗斑岩、辉长玢岩和闪长玢岩是常见的浅成岩。根据化学组分又可将火成岩分为超基性岩(SiO2 ,小于45%)、基性岩(SiO2 ,45%~52%)、中性岩(SiO2 ,52%~65%)、酸性岩(SiO 2 ,大于65%)和碱性岩(含有特殊碱性矿物,SiO 2 ,52%~66%)。火成岩占地壳体积的64.7%。 常见的岩浆岩: 1.花岗岩是分布最广的深成侵入岩。主要矿物成分是石英、长石和黑云母,颜色较浅,以灰白色和肉红色最为常见,具有等粒状和块状构造。花岗岩既美观抗压强度又高,是优质建筑材料。 2.橄榄岩侵入岩的一种。主要矿物成分是橄榄石及辉石,深绿色或绿黑色,比重大,粒状结构。是铂及铬矿的惟一母岩,镍、金刚石、石棉、菱铁矿、滑石等也同这类岩石有关。

3.玄武岩一种分布最广的喷出岩。矿物成分以斜长石、辉石为主,黑色或灰黑色,具有气孔构造和杏仁状构造,玄武岩本身可用作优良耐磨的铸石原料。 二沉积岩 在地表常温、常压条件下,由风化物质、火山碎屑、有机物及少量宇宙物质经搬运、沉积和成岩作用形成的层状岩石。按成因可分为碎屑岩、粘土岩和化学岩(包括生物化学岩)。常见的沉积岩有砂岩、凝灰质砂岩、砾岩、粘土岩、页岩、石灰岩、白云岩、硅质岩、铁质岩、磷质岩等。沉积岩占地壳体积的7.9%,但在地壳表层分布则甚广,约占陆地面积的75%,而海底几乎全部为沉积物所覆盖。沉积岩有两个突出特征:一是具有层次,称为层理构造。层与层的界面叫层面,通常下面的岩层比上面的岩层年龄古老。二是许多沉积岩中有“石质化”的古代生物的遗体或生存、活动的痕迹---化石,它是判定地质年龄和研究古地理环境的珍贵资料。 常见的沉积岩: 1.砾岩一种颗粒直径大于2毫米的卵石、砾石等岩石和矿物胶结而成的岩石,多呈厚层块状,层理不明显,其中砾石的排列有一定的规律性。 2.砂岩颗粒直径为0.1~2毫米的砂粒胶结而成的岩石。分布很广,

(建筑工程管理)爆破工程地质(岩石工程分类与力学性质)

(建筑工程管理)爆破工程地质(岩石工程分类与力学 性质)

爆破工程地质(岩石工程分类和力学性质) 发布时间:2010-01-2210:39 116岩石物理力学性质physical-mechanicalproperty0frock 岩石对物理条件及力作用的反应,包括岩石物理和岩石力学性质。在力学特性中仍包括渗流特性,机械特性(硬度、弹性、压缩及拉伸性、可钻性、剪切性、塑性等)。 117岩石物理性质petrophysicalpropertiesofrock 岩石物理性质主要有:岩石的密度、岩石的空隙性、岩石的波阻抗、岩石的风化程度等各种特性参数和物理量。 118岩石工程分类engineeringclassificationofrocks 从岩石工程的角度据岩石强度、裂隙率、风化程度和其它特征指标将其划分成各种类别赢等级,如完整岩石、新鲜岩石、风化岩石、蚀变岩石、块状岩体、层状岩体、软弱夹层等。119岩体工程分类法engineeringclassificationofrockmass 把工程岩体质量的好坏分成有限和有序类别的方法。作为评价岩体工程稳定性,进行工程设计和施工管理的基础的工程岩体分类,壹般包含三个方面的工作:1)依据研究对象确定分类因素,构成分级指标作为分级的判据;2)合理选择用分级指标组成的分级模型,得到划分档次的标准;3)根据工程需要确定分级数目。分类的结果要经过实践检验。 120岩石质量分类rockmassclassification 依据岩石材料的物理性质(非均匀性、各向异性和渗透性)、机械性质或对采掘作业的阻力(如可爆性或可挖性)将岩石进行分类的方法。Barton1974年制定的QC(品质)系统和Bieniawski1973年建立的RMR(岩石质量测定)系统可建议用于爆破目的的岩石质量分类。121岩体RQD指标rockqualitydesignation 岩心中长度等于或大于10cm的岩心的累计长度占钻孔进尺总长度的百分比。它反映岩体被各种结构面切割的程度。RQD值规定用直径为54mm金刚石钻头、双层岩心管钻进获得。此指标为美国迪尔(D.V.Deere)于1964年首先提出,且用于岩体分级,也称岩石质量指标。 122岩体RMR指标rockmassratingsystem 波兰人宾尼奥斯基(Z.T.Bieniawski)于1973—1975年提出的地质力学分级法,且用计分法表示岩体质量好坏。 123岩体Q指标theQ-systemofrockstrength 1974年挪威学者巴顿(N.Barton)提出岩体质量指标Q分类法,由RQD、节理组数(?n)、节理面粗糙度(?k)、节理蚀变程度(?a)、裂隙水影响因素(?w)以及地应力影响因素(SRF)等6项指标组成Q值计算式,Q值愈大,表示岩体质量愈好。 124岩石非连续性discontinuityofrock 指岩石内的缺陷影响应力和声波传播的性质。岩石的缺陷是指岩石的孔隙、节理、裂隙和层面等。岩石的非连续性对其物理力学性质及渗透性影响很大。 125岩石非均匀性nonhomogeneityofrock 指岩石成分、结构和构造在各不同方向上的不均匀分布。 126岩石断裂韧性fracturetughnessofrock 指岩石抵抗裂纹扩展的能力。在平面裂纹应力分析中,裂纹面分为三种基本位移模式(张开型、错动型、撕开型)。张开型裂纹最适合于脆性固体中裂纹传播。

我国工程岩体分类标准

我 国 工 程 岩 体 分 级 特 点 四川交通职业技术学院 班级:DS10-2 姓名:曹伟 学号:

摘要:在对国内外岩体分级方法深入研究的基础上,对岩体分级乃法中所考虑的岩体分级因素及对各因素的处理方法进行了系统的归纳和总结。从岩体分级方法的现状来看,虽然目前尚无统一的岩体分级标准,但在岩体分级中应根据岩石的强度、岩体的完整性、地下水条件、地应力状况等多方面因素,进行岩体综合分级上达成了共识,并且国内规范中的岩体分级标准有趋于统一和向国际标准接轨的趋势。 关键词:岩体分级;分级因素;规范。 随着科学技术的不断进步和土地资源的日益减少,水利水电、铁道、交通、矿山、工业与民用建筑、国防等工程中,各种类型、不同用途的岩体工程逐渐增多。质量高、稳定性好的岩体,不需要或只需要很少的加固支护措施,就可以保证工程施工和使用的安全;质量差、稳定性不好的岩体,常常会给工程的施工和使用带来诸多的安全隐患,甚至会在工程的施工和使用过程中出现地质灾害,需要采取复杂加固措施来保证工程施工和使用的安全,从而大大增加工程建设的成本。因此,在工程建设中,准确而及时地进行工程岩体的稳定性判断,对于保证工程施工和使用的安全具有十分重要的意义。合理的工程岩体分级是工程岩体稳定性判断的基础。 自上世纪50~60年代开始,工程岩体分级问题引起了国外岩土工程界的广泛关注。国外学者提出了许多工程岩体分级方法,并在工程中得到了不同程度的应用。自上世纪70年代以后,国内的岩土工程界也开始了工程岩体分级方法的研究,并在学习和消化国外研究成果,总结工程经验的基础上,提出了一些工程岩体分级方法,制定了相应的工程岩体分级标准,为我国经济建设的快速和健康发展作出了很大的贡献。自上世纪90年代以来,又对国内外的研究成果及工程经验进行了系统的总结,制定了一些工程岩体分级的国家规范,对许多行业标准也进行了修订。我国现行的与工程岩体分级相关的规范和标准见表1。本文中如不作说明,则所述规范和标准的代码均与表1相同。 表1:

关于工程岩体分级方法的综述

关于工程岩体分级方法的综述 摘要:综合分析我国现行的工程岩体分级特征,重点介绍岩体分级标准在根据岩石的强度、岩体的完整性、地下水条件、初应力状况等多方面因素下进行岩体分级,从而指导实地工程建设,并讨论与Q分类法和RMR分类法的关系,在发展中他们有趋于统一和向国际标准接轨的趋势。 关键字:工程岩体分级;国标;岩体基本质量 1.1 岩体分级的重要性 随着科学技术的不断进步和土地资源的日益减少,水利水电、铁道、交通、矿山、工业与民用建筑等各种类型、不同用途的岩体工程逐渐增多。质量高、稳定性好的岩体,不需要或只需要很少的加固支护措施,就可以保证工程施工和使用的安全;质量差、稳定性不好的岩体,常常会给工程的施工和使用带来诸多的安全隐患,甚至会在工程的施工和使用过程中出现地质灾害,需要采取复杂加固措施来保证工程施工和使用的安全[8]。因此,在工程建设中,准确而及时地进行工程岩体的稳定性判断,对于保证工程施工和使用的安全具有十分重要的意义。 1.2经过岩土工程界半个世纪的努力,目前岩体分级指标已形成了国标体系。 自上世纪50~60年代开始,工程岩体分级问题引起了国外岩土工程界的广泛关注。国外学者提出了许多工程岩体分级方法,并在工

程中得到了不同程度的应用。自上世纪70年代以后,国内的岩土工程界也开始了工程岩体分级方法的研究,以谷德振、黄鼎成[6]等为代表,在学习和消化国外研究成果,总结工程经验的基础上,提出了一些工程岩体分级方法,制定了相应的工程岩体分级行业标准,为我国经济建设的快速和健康发展作出了很大的贡献。自上世纪90年代以来,对国内外的研究成果及工程经验进行了系统的总结,形成了现在《工程岩体分级标准》 它是由水利部、建设部、铁道部等部门组织有关单位共同起草制定的适用于各种岩体工程的统一分级方法。属于国家最高层次的基础标准,适用于各行业、各种类型岩石工程的岩体分级,是制定各行各业岩体分级标准的基本依据。 1.3 岩体分级标准多属于综合分级,考虑岩石的强度、岩体的完整性、地下水条件、初应力状况等多方面因素。 岩体分级标准是一种多因素多指标、定性与定量相结合的分级方法,它分两步对工程岩体定级,即:先对岩体的基本质量划分级别,根据岩体固有并独立于工程类型的地质属性—岩石坚硬程度和岩体完整程度两个基本因素确定岩体基本质量的定性特征和定量指标,进而综合确定岩体质量级别,按照其稳定性分为5级,Ⅰ>Ⅱ>Ⅲ>>Ⅳ>Ⅴ;再针对岩体的具体条件做出修正,根据各类工程特点,考虑影响工程岩体基本质量的其他重要因素,利用地下水条件、岩体主要软弱结构面产状和初应力状态对岩体基本质量的影响等修正系数,对岩体基本质量(BQ值)进行修正,再确定具体工程岩体级别。

岩土的工程分类及工程性质

岩土的工程分类及工程性质 【教材解读】 一、岩土的工程分类 1.根据《土的工程分类标准》(GB/T50145-2007)规定,土的基本分类按其不同粒组的相对含量,可划分为巨粒类土、粗粒类土、细粒类土。 2.根据《岩土工程勘察规范》(GB50021-2001)规定,岩石坚硬程度分类为:坚硬岩、较硬岩、较软岩、软岩、极软岩。 根据地质成因,土可划分为残积土、坡积土、洪积土、冲击土、淤积土、冰积土和风积土等。 根据粒径和塑性指数,土可划分为碎石土、砂土、粉土、黏性土。 碎石土:粒径大于2mm的颗粒质量超过总质量50%的土。碎石土又分为:漂石、块石、卵石、碎石、圆砾、角砾。 砂土:粒径大于2mm的颗粒质量不超过总质量50%,粒径大于0.075mm的颗粒质量超过总质量50%的土。砂土又分为:砾砂、粗砂、中砂、细砂、粉砂。 粉土:粒径大于0.075mm的颗粒质量不超过总质量50%,且塑性指数等于或小于10的土。 黏性土:塑性指数大于10的土。黏性土又分为:粉质黏土和黏土。 3.根据《建筑地基基础设计规范》(GB50007-2011)的分类方法,作为建筑地基的岩土,可分为岩石、碎石土、砂土、粉土、黏性土和人工填土。 4.根据土方开挖难易程度不同,可将土石分为八类,以便选择施工方法和确定劳动量,为计算劳动量、机具及工程费用提供依据。 (1)一类土:松软土。 主要包括砂土、粉土、冲积砂土层、疏松的种植土、淤泥(泥炭)等。坚实系数为0.5~0.6,采用锹、锄头挖掘,少许用脚蹬。 (2)二类土:普通土。

主要包括粉质黏土,潮湿的黄土,夹有碎石、卵石的砂,粉土混卵(碎)石,种植土、填土等。坚实系数为0.6~O.8,用锹、锄头挖掘,少许用镐翻松。 (3)三类土:坚土。 主要包括软及中等密实黏土,重粉质黏土、砾石土,干黄土、含有碎石卵石的黄土、粉质黏土,压实的填土等。坚实系数为0.8~1.0,主要用镐,少许用锹、锄头挖掘,部分用撬棍。 (4)四类土:砂砾坚土。 主要包括坚硬密实的黏性土或黄土,含碎石、卵石的中等密实的黏性土或黄土,粗卵石,天然级配砂石,软泥灰岩等。坚实系数为1.0~1.5,整个先用镐、撬棍,后用锹挖掘,部分使用楔子及大锤。 (5)五类土:软石。 主要包括硬质黏土,中密的页岩、泥灰岩、白垩土,胶结不紧的砾岩,软石灰及贝壳石灰石等。坚实系数为1.5~4.0,用镐或撬棍、大锤挖掘,部分使用爆破方法。 (6)六类土:次坚石。 主要包括泥岩、砂岩、砾岩,坚实的页岩、泥灰岩,密实的石灰岩,风化花岗岩、片麻岩及正长岩等。坚实系数为4.0~10.0,用爆破方法开挖,部分用风镐。 (7)七类土:坚石。 主要包括大理石,辉绿岩,玢岩,粗、中粒花岗岩,坚实的白云石、砂岩、砾岩、片麻岩、石灰岩,微风化安山岩,玄武岩等。坚实系数为10.0~18.0,用爆破方法开挖。 (8)八类土:特坚石。 主要包括安山岩,玄武岩,花岗片麻岩,坚实的细粒花岗岩、闪长岩、石英岩、辉长岩、辉绿岩、玢岩、角闪岩等。坚实系数为18.0~25.0以上,用爆破方法开挖。 二、岩土的工程性能 (1)内摩擦角。 (2)土抗剪强度。

工程岩体分类的指导意义

工程岩体分类的指导意义 工程岩体分类根据用途的不同可分为两大类第一类是针对性较少的、原则的、大致的通用分类这种分类可供各学科领域各国民经济部门笼统的使用第二类则是针对某一学科领域某一具体工程或某一工程的具体部位的特殊要求甚至专为某工程目的服务的专用分类。而对于第二类由于各行业的工程项目在规模、使用环境、使用寿命和稳定性的要求方面有很大差异。因此在对工程岩体分类时需要考虑的因素就会不同。比如水工建筑基岩通常要考虑岩体的渗透性能而深埋地下洞室和人工高边坡则必须注意初始应力场的影响采矿业则更关心岩石的可钻性和可爆性。这说明影响工程岩体分类的因素是多种多样的我们很难找出一种尽可能准确又有较大的应用范围的分类方法。正因如此随着岩石力学等相关领域的发展工程岩体的分类方法趋于多样化。又由于长期的地质作用岩体本身存在复杂性主要表现在它的不均匀性和各向异性所以任何一种工程岩体的分类方法都存在有待完善改进的地方。但尽管如此还是有许多的学者致力于工程岩体的研究工作。尤其是随着国内外一系列大中型水利水电工程的开发建设, 施工过程中所存在的大量工程地质问题使人们逐渐认识到工程区岩体质量分类的实用性和重要性。众所周知面对与岩体相联系的工程项目在项目的可行性研究阶段和初步设计阶段为了在经济性和安全性作出合理选择有赖于对岩体的稳定性评价。而岩体的稳定性评价方法三致分为分析计算法、模拟试验法和岩体分类法。而前两者过程周期长、耗资大其不足之处是显而易见的。相比之下工程岩体分类法不需要详尽的岩体力学测试资料尤其是现场大型测试可以节省大量的时间和投资快速作出评价。并且由于考虑了岩块强度、结构面强度等诸多因素所以合理并且准确的岩体分类法不仅能对工程区岩体结构模式及其强度特性作出评价帮助我们更及时地了解岩体的质量好坏预测可能出现的岩体力学问题而且还能对可利用岩体作出判别、工程优化设计、确定合理建基面从而为后续的工程设计、支护衬砌、建筑选型和施工方法选择等提供参数和依据。这就是工程岩体分类的指导意义所在。

岩石的分类

岩石的分类 自然界有各种各样的岩石,按成因可分为岩浆岩、沉积岩和变质岩三大类。 一、岩浆岩 岩浆岩的形成: 地壳下部,由于放射性元素的集中,不断地蜕变而放出大量的热能,使物质处于高温(1000"C 以上)、高压(上部岩石的重量产生的巨大压力)的过热可塑状态。成分复杂,但主要是硅酸盐,并含有大量的水汽和各种其他的气体。当地壳变动时,上部岩层压力一旦减低,过热可塑性状态的物质就立即转变为高温的熔融体,称为岩浆。岩浆内部压力很大,不断向地壳压力低的地方移动,以致冲破地壳深部的岩层,沿着裂缝上升。上升到一定高度,温度、压力都要减低。当岩浆的内部压力小于上部岩层压力时,迫使岩浆停留下,冷凝成岩浆岩。 岩浆的成分: 主要有SiO2、TiO2、A1203、Fe203、FeO、MgO、MnO、CaO、K2O、Na2O等。 依其含SiO2量的多少,分为: 基性岩浆:特点是富含钙、镁和铁,而贫钾和钠,粘度较小,流动性较大。 酸性岩浆:富含钾、钠和硅,而贫镁、铁、钙,粘度大,流动性较小。 岩浆岩的分类:(成岩的地质环境) (1)深成岩: 岩浆侵入地壳某深处(约距地表3km)冷凝而成的岩石。由于岩浆压力和温度较高,温度降低缓

慢,组成岩石的矿物结晶良好。 (2)浅成岩: 岩浆沿地壳裂缝上升距地表较浅处冷凝而成的岩石。由于岩浆压力小,温度降低较快,组成岩石的矿物结晶较细小。 (3)喷出岩: 岩浆沿地表裂缝一直上升喷出地表,这种活动叫火山喷发,对地表产生的一切影响叫火山 作用,形成的岩石叫喷出岩。在地表的条件下,温度降低迅速,矿物来不及结晶或结晶较差。肉眼不易看清楚。 岩浆岩的产状: 是反映岩体空间位置与围岩的相互关系及其形态特征。由于岩浆本身成分的不同,受地质条件的影响,岩浆岩的产状大致有下列几种: 岩基: 深成巨大的侵入岩体,范围很大,常与硅铝层连在 一起。形状不规则,表面起伏不平。与围岩成不谐和接 触,露出地面大小决定当地的剥蚀深度。 岩株: 与围岩接触较陡,面积达几平方公里或几十平方公

各种规范岩石分类.

各种规范岩石分类和鉴定 1 1 工民建工程 1.1、岩石坚硬程度分类 《岩土工程勘察规范》GB50021—2001 坚硬程度 坚硬岩较硬岩较软岩软 岩 极软岩饱和单轴抗压强度( Mpa ) fr >60 60≥fr >30 30≥fr >15 15≥fr >5 Fr ≤5 注:1 当无法取得饱和单轴抗压强度数据时,科用点荷载试验强度换算,换算方法按现行国家标准《工程岩体 分级标准》(GB50218)执行; 2 当岩体完整程度极为破碎时,可不进行坚硬程度分类。1.2、岩石坚硬程度等级定性分类《岩土工程勘察规范》 GB50021—2001 坚硬程度等级定性鉴定 代表性岩石 硬质岩 坚硬岩 锤击声清脆,有回弹,震手,难击碎,基本无吸水反应 未风化~微风化的花岗岩、闪长岩、辉绿岩、玄武岩、安山岩、片麻岩、石英岩、石英砂岩、硅质砾岩、硅质石灰岩等较硬岩锤击声较清脆,有轻微回弹,稍震手,较难击碎,有轻微吸水反应1微风化的坚硬岩;2未风化~微风化的大理岩、板岩、石灰岩、白云岩、钙质砂岩等 软质岩 较软岩 锤击声不清脆,无回弹,较易击碎,浸水后指甲可刻划出印痕1中等风化~强风化的坚硬岩或较硬岩;2未风化~微风化的 凝灰岩、千枚岩、泥灰岩、砂质泥岩等软岩 锤击声哑,无回弹,有凹痕,易击碎,浸水后手可掰开 1强风化的坚硬岩或较硬岩; 2中等风化~强风化的较软岩; 3未风化~微风化的页岩、泥岩、泥质砂岩等极软岩 锤击声哑,无回弹,有较深凹痕,手可捏碎,浸水后可捏成团 1全风化的各种岩石;2各种半成岩 1.3、岩体完整程度分类《岩土工程勘察规范》 GB50021—2001 完整程度完 整 较完整较破碎破 碎 极破碎完整性指数 >0.75 0.75~0.55 0.55~0.35 0.35~0.15 <0.15 注: 完整性指数为岩体压缩波速与岩块压缩波速之比的平方。 1.4-1、岩石完整程度的定性分类《岩土工程勘察规范》GB50021—2001 完整程度结构面发育程度 主要结构面的结合程度主要结构面 类型相应结构类型组数平均间距(m ) 完 整 1~2 >1.0 结合好或结合一般 裂隙、层面整体状或巨厚层状结构较完整 1~2 >1.0 结合差裂隙、层面 块状或厚层状结构 2~3 1.0~0.4 结合好或结合一般 块状结构 较破碎 2~3 1.0~0.4 结合差裂隙、层面、 小断层裂隙块状或中厚层状结构 ≥3 0.4~0.2 结合好镶嵌碎裂结构结合一般中、薄层状结构破碎≥3 0.4~0.2 结合差各种类型结 构面 裂隙块状结构≤0.2 结合一般或结合差 碎裂状结构极破碎 无序 结合很差 散体状结构 1.4-2、岩体完整程度划分《建筑地基基础设计规范》(GB50007—2002) 名称结构面组数 控制性结构面平均间距( m ) 代表性结构类型 完 整 1~2 >1.0 整状结构较完整2~3 0.4~1.0 块状结构较破碎>3 0.2~0.4 镶嵌状结构破 碎 >3 <0.2 碎裂状结构极破碎 无序 — 散体状结构

岩土等级分类

1.1、根据工程的规模和特征,以及由于岩土工程问题造成工程破坏或影响正常使用的后果,可分为三个工程重要性等级: 1 一级工程:重要工程,后果很严重; 2 二级工程:一般工程,后果严重; 3 三级工程:次要工程,后果不严重; 1.2、根据场地的复杂程度,可按下列规定分为三个场地等级: 1、符合下列条件之一者为一级场地(复杂场地): 1)对建筑抗震危险的地段; 2)不良地质作用强烈发育; 3)地质环境已经或可能受到强烈破坏; 5)有影响工程的多层地下水,岩溶裂隙水或其他水文地质条件复杂,需专门研究的场地。 1.3、符合下列条件之一者为二级场地(中等复杂场地): 1)对建筑抗震不利的地段; 2)不良地质作用一般发育; 3)地质环境已经或可能受到一般破坏; 4)地形地貌较复杂; 5)基础位于地下水位以下的场地; 1.4、符合下列条件者为三级场地(简单场地): 1)抗震设防烈度等于或小于6 度,或对建筑抗震有利的地段; 2)不良地质作用不发育; 3)地质环境基本未受破坏; 4)地形地貌简单; 5)地下水对工程无影响; 1.5、根据地基的复杂程度,可按下列规定分为三个地基等级: 1、符合下列条件之一者为一级地基(复杂地基): 1)岩土种类多,很不均匀,性质变化大,需特殊处理; 2)严重湿陷、膨胀、盐渍、污染的特殊性岩土,以及其他情况复杂,需作专门处理的岩土。 2、符合下列条件之一者为二级地基(中等复杂地基): 1)岩土种类较多,不均匀,性质变化较大; 2)除本条第1 款规定以外的特殊性岩土。 3、符合下列条件者为三级地基(简单地基): 1)岩土种类单一,均匀,性质变化不大; 2)除本条第1 款规定以外的特殊性岩土。 1.6、根据工程重要性等级、场地复杂程度等级和地基复杂程度等级、可按下列条件划分岩土工程勘察等级。 甲级、在工程重要性、场地复杂程度和地基复杂程度等级中,有一项或多项为一级; 乙级、除勘察等级为甲级和丙级以外的勘察项目; 丙级、工程重要性、场地复杂程度和地基复杂程度等级均为三级。

(整理)工程地质岩石分类及鉴定

工程地质岩石分类及鉴定 中国?宜昌 2016年5月4日

目录 1.工民建工程 (3) 2.公路工程 (5) 3.港口工程 (10) 4.铁路工程 (13) 5.工程岩体分级标准 (18)

1 工民建工程 1.1、岩石坚硬程度分类《岩土工程勘察规范》GB50021—2001 注:1 当无法取得饱和单轴抗压强度数据时,科用点荷载试验强度换算,换算方法按现行国家标准《工程岩体分级标准》(GB50218)执行; 2 当岩体完整程度极为破碎时,可不进行坚硬程度分类。 1.2、岩石坚硬程度等级定性分类《岩土工程勘察规范》GB50021—2001 1.3、岩体完整程度分类《岩土工程勘察规范》GB50021—2001 注: 完整性指数为岩体压缩波速与岩块压缩波速之比的平方。 1.4-1、岩石完整程度的定性分类《岩土工程勘察规范》GB50021—2001 1.4-2、岩体完整程度划分《建筑地基基础设计规范》(GB50007—2002)

1.5、岩石按风化程度分类《岩土工程勘察规范》GB50021—2001 注:1 波速比Kv为风化岩石与新鲜岩石压缩波速度之比; 2 风化系数K f为岩石与新鲜岩石饱和单轴抗压强度之比; 3 花岗岩类岩石,可采用标准贯入试验划分,N≥50为强风化;50>N≥30为全风化;N<30为残积土。 4 泥岩和半成岩,可不进行风化程度划分。 1.6、岩体基本质量等级分类《岩土工程勘察规范》GB50021—2001 1.7、岩石按质量指标RQD分类《岩土工程勘察规范》GB50021—2001 1.8、岩层厚度分类《岩土工程勘察规范》GB50021—2001 1.9、岩石按在水中软化系数分类《岩土工程勘察规范》GB50021—2001 注:软化系数(K R)等于饱和状态与风干状态的岩石单轴极限抗压强度之比。

工程岩体分类标准

工程岩体分类标准

我国工程岩体分级标准 1 总则 1.0.1 为建立统一的评价工程岩体稳定性的分级方法;为岩石工程建设的勘察、设计、施工和编制定额提供必要的基本依据,制定本标准。 1.0.2 本标准适用于各类型岩石工程的岩体分级。 1.0.3 工程岩体分级,应采用定性与定量相结合的方法,并分两步进行,先确定岩体基本质量,再结合具体工程的特点确定岩体级别。 1.0.4 工程岩体分级所必需的地质调查和岩石试验,除应符合本标准外,尚应符合有关现行国家标准的规定。 2术语、符号 2.l 术语 2.1.1 岩石工程 rock engineering 以岩体为工程建筑物地甚或环境,并对岩体进行开挖或加固的工程,包括地下工程和地面工程。 2.1.2 工程岩体 engineering rock mass 岩石工程影响范围内的岩体,包括地下工程岩体、工业与民用建筑地基、大坝基岩、边坡岩体等。 2.1.3 岩体基本质量 rock mass basic quality 岩体所固有的、影响工程岩体稳定性的最基本属性,岩体基本质量由岩石坚硬程度和岩体完整程度所决定。 2.1.4 结构面 structural Plane(discontilnuity)

岩体内开裂的和易开裂的面,如层面、节理、断层、片理等,又称不连续面。 )(岩体速度指数) intactness index of rock mass 2.1.5 岩体完整性指数(K V (velocity index of rock mass) 岩体弹性纵波速度与岩石弹性纵波速度之比的平方。 2.1.6 岩体体积节理数(J ) volumetric joint count of rock mass V 单体岩体体积内的节理(结构面)数目。 ) point load strength index 2.1.7 点荷载强度指数从(I S(50) 直径50mm圆柱形试件径向加压时的点荷载强度。 2.1.8 地下工程岩体自稳能力(stand-up time of rock mass for underground excavation) 在不支护条件下,地下工程岩体不产生任何形式破坏的能力。 2.1.9 初始应力场initial stress field 在自然条件下,由于受自重和构造运动作用,在岩体中形成的应力场,也称天然应力场。 2.2 符号

相关主题
文本预览
相关文档 最新文档