八年级下人教新课标16-2分式的运算同步测试题A
- 格式:doc
- 大小:277.50 KB
- 文档页数:6
16.1 分式同步测试题1、式子①x 2 ②5y x + ③a -21 ④1-πx 中,是分式的有( ) A .①② B. ③④ C. ①③ D.①②③④2、分式13-+x a x 中,当a x -=时,下列结论正确的是( ) A .分式的值为零 B.分式无意义 C. 若31-≠a 时,分式的值为零 D. 若31≠a 时,分式的值为零 3. 若分式1-x x 无意义,则x 的值是( ) A. 0 B. 1 C. -1 D.1±4. (2008年山西省太原市)化简的结果是( ) A .B .C .D . 5.使分式x++1111有意义的条件是( ) A.0≠x B.21-≠-≠x x 且 C.1-≠x D. 1-≠x 且0≠x6.当_____时,分式4312-+x x 无意义. 7.当______时,分式68-x x 有意义. 8.当_______时,分式534-+x x 的值为1. 9.当______时,分式51+-x 的值为正. 10.当______时分式142+-x 的值为负. 11.要使分式221y x x -+的值为零,x 和y 的取值范围是什么?12.x 取什么值时,分式)3)(2(5+--x x x (1)无意义?(2)有意义? (3)值为零?222m n m mn-+2m n m -m n m -m n m +m n m n-+13.2005-2007年某地的森林面积(单位:公顷)分别是321,,S S S ,2005年与2007年相比,森林面积增长率提高了多少?(用式子表示)14.学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,那么这笔钱全部用来买钢笔可以买多少支?15.用水清洗蔬菜上残留的农药.设用x (1≥x )单位量的水清洗一次后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为x+11. 现有a (2≥a )单位量的水,可以一次清洗,也可以把水平均分成两份后清洗两次.试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.16.1 分式第1课时课前自主练1.________________________统称为整式.2.23表示_______÷______的商,那么(2a+b )÷(m+n )可以表示为________. 3.甲种水果每千克价格a 元,乙种水果每千克价格b 元,取甲种水果m 千克,乙种水果n 千克,混合后,平均每千克价格是_________.课中合作练题型1:分式、有理式概念的理解应用 22是有理式的有_________.题型2:分式有无意义的条件的应用5.(探究题)下列分式,当x 取何值时有意义.(1)2132x x ++; (2)2323x x +-.6.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x + D .2221x x + 7.(探究题)当x______时,分式2134x x +-无意义. 题型3:分式值为零的条件的应用8.(探究题)当x_______时,分式2212x x x -+-的值为零. 题型4:分式值为±1的条件的应用9.(探究题)当x______时,分式435x x +-的值为1; 当x_______时,分式435x x +-的值为-1. 课后系统练 基础能力题10.分式24x x -,当x_______时,分式有意义;当x_______时,分式的值为零. 11.有理式①2x ,②5x y +,③12a -,④1x π-中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④12.分式31x a x +-中,当x=-a 时,下列结论正确的是( ) A .分式的值为零; B .分式无意义C .若a ≠-13时,分式的值为零; D .若a ≠13时,分式的值为零 13.当x_______时,分式15x -+的值为正;当x______时,分式241x -+的值为负. 14.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +- D .211m m ++ 15.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±116.(学科综合题)已知y=123x x--,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(•3)y 的值是零;(4)分式无意义.17.(跨学科综合题)若把x 克食盐溶入b 克水中,从其中取出m 克食盐溶液,其中含纯盐________.18.(数学与生活)李丽从家到学校的路程为s ,无风时她以平均a 米/•秒的速度骑车,便能按时到达,当风速为b 米/秒时,她若顶风按时到校,请用代数式表示她必须提前_______出发.19.(数学与生产)永信瓶盖厂加工一批瓶盖,甲组与乙组合作需要a 天完成,若甲组单独完成需要b 天,乙组单独完成需_______天.20.(探究题)若分式22x x +-1的值是正数、负数、0时,求x 的取值范围.21.(妙法巧解题)已知1x -1y =3,求5352x xy y x xy y +---的值.22.(2005.杭州市)当m=________时,分式2(1)(3)32m m m m ---+的值为零.16.1分式第2课时课前自主练1.分数的基本性质为:______________________________________________________.2.把下列分数化为最简分数:(1)812=________;(2)12545=_______;(3)2613=________. 3.把下列各组分数化为同分母分数:(1)12,23,14; (2)15,49,715.4.分式的基本性质为:______________________________________________________.用字母表示为:______________________.课中合作练题型1:分式基本性质的理解应用5.(辨析题)不改变分式的值,使分式115101139x y x y-+的各项系数化为整数,分子、分母应乘以(• ) A .10 B .9 C .45 D .906.(探究题)下列等式:①()a b c --=-a b c -;②x y x -+-=x y x -;③a b c -+=-abc +; ④m nm --=-m nm -中,成立的是( )A .①②B .③④C .①③D .②④7.(探究题)不改变分式2323523x xx x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+题型2:分式的约分8.(辨析题)分式434y x a +,2411x x --,22x xy y x y -++,2222a abab b +-中是最简分式的有( )A .1个B .2个C .3个D .4个9.(技能题)约分:(1)22699x x x ++-; (2)2232m m m m -+-.题型3:分式的通分10.(技能题)通分:(1)26xab ,29ya bc ; (2)2121a a a -++,261a -.课后系统练基础能力题11.根据分式的基本性质,分式a a b--可变形为( ) A .a a b -- B .a a b + C .-a a b - D .a a b + 12.下列各式中,正确的是( )A .x y x y -+--=x y x y -+;B .x y x y -+-=x y x y ---;C .x y x y -+--=x y x y +-;D .x y x y -+-=x y x y-+ 13.下列各式中,正确的是( )A .a m a b m b +=+B .a b a b++=0 C .1111ab b ac c --=-- D .221x y x y x y -=-+ 14.(2005·天津市)若a=23,则2223712a a a a ---+的值等于_______. 15.(2005·广州市)计算222a ab a b +-=_________. 16.公式22(1)x x --,323(1)x x --,51x -的最简公分母为( ) A .(x-1)2 B .(x-1)3 C .(x-1) D .(x-1)2(1-x )317.21?11x x x -=+-,则?处应填上_________,其中条件是__________. 拓展创新题 18.(学科综合题)已知a 2-4a+9b 2+6b+5=0,求1a -1b 的值.19.(巧解题)已知x 2+3x+1=0,求x 2+21x的值.20.(妙法求解题)已知x+1x=3,求2421x x x ++的值.16.1分式同步测试题A一、选择题(每题分,共分)1、把分式y x x +中的、都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小9倍2、把分式xy y x +中的、都扩大2倍,那么分式的值 ( )A 、扩大2倍B 、扩大4倍C 、缩小2倍D 不变3、下列等式中成立的是 ( )A 、B 、C 、D 、4、(2008年株洲市)若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .2x ≠- C .2x >- D .2x <5、已知,则 ( )A 、B 、C 、D 、A 、①③④B 、①②⑤C 、③⑤D 、①④二、填空题(每题分,共分) 1、分式392--x x 当x __________时分式的值为零. 2、当x __________时分式x x 2121-+有意义.当________________x 时,分式8x 32x +-无意义. 3、①())0(,10 53≠=a axy xy a ②()1422=-+a a . 4、约分:①=ba ab 2205__________,②=+--96922x x x __________. 5、已知P=999999,Q=911909,那么P 、Q 的大小关系是_______。
《分式》复习教案教学内容本节课主要内容是对本单元进行回顾.教学目标1.知识与技能会进行分式的基本运算(加、减、乘、除、乘方),熟练掌握分式方程的解法,能应用“建模”思想解决实际问题.2.过程与方法经历回顾分式概念、计算、应用的过程,提高观察、类比归纳、猜想等能力,.领会其算理.3.情感、态度与价值观培养学生的自主、合作、交流的意识,和严谨的学习态度,让学生体会知识的内在价值.重难点、关键1.重点:通过理解分式的基本性质,掌握分式的运算、应用.2.难点:分式的通分以及分式方程的“建模”.3.关键:把握分式的基本性质,领会算理.教学准备教师准备:投影仪,制作与本节课有关的投影片,图片等.学生准备:做一份本单元知识小结.学法解析1.认知起点:在学习了不等式基本性质、约分、通分、混合运算,•以及分式方程、应用内容后进行反思.2.知识线索:3.学习方式:采用知识体系梳理,•合作交流的学习方式达到巩固提高本单元知识的目的.教学过程一、回顾交流,巩固反馈【组织交流】教师活动:打开投影机,先将学生分成四人小组,交流各自准备的单元小结,然后开展小组汇报.学生活动:小组合作交流,交流内容是(1)单元知识结构图;(2)课本P41“回顾与思考”的5个问题;(3)自己的单元小结.活动形式:先小组合作交流,再小组汇报,师生互动.媒体使用:学生汇报中,可借用投影仪,辅助讲解.教师归纳:本章主要内容是分式的概念;分式的基本性质;分式混合运算和可化为一元一次方程的分式方程及其应用,这些内容在今后进一步学习方程、函数等知识时占有重要地位和作用.(投影显示本单元知识体系,见课本P41)1.分式的基本性质是分式恒等变形的依据,•正确理解和熟练掌握这一性质是学好分式的关键,因此学习中要注意以下三点:(1)基本性质中的字母表示整数,(,A A M A A M B B M B B M⨯÷==⨯÷,M ≠0) (2)要特别强调M ≠0,且是一个整式,由于字母的取值可以是任意的,所以M•就有等于零的可能性,因此,应用基本性质时,重点要考查M 的值是否为零.2.约分,约分的目的是化简,关键是找分子和分母的最高公因式,•即系数的最大公约数、相同因式的最低次幂.3.通分,通分关键是确定n 个分式的公分母,•通常取各分母所有因式的最高次幂的积作公分母,这样的公分母叫最简公分母.4.分式的乘除法本质就是(1)因式分解,(2)约分.5.分式的加减法本质就是(1)通分,(2)分解因式,(3)约分.6.解分式方程的本质就是将分式方程化成整式方程,但要注意验根.【设计意图】让学生掌握课堂的主动权,以自主、合作、交流的手法调动学生的主观能动性.二、寓思与练,讨论交流【显示投影片1】演练题1:当x 取什么数时,下列分式有意义?(1)22461;(2);(3)512x x x x m-++. 思路点拨:(1)令5x+1=0,相应求出x 的值,然后x 不取这个值时分式必有意义.(•x ≠-15);(2)由于无论x 取何值x 2+2的值均大于零,因此,x 取任何实数,此分式都有意义;(3)因为任何数的平方均为非负数,则m 2≥0,所以m ≠0即可.演练题2:当x 取什么数,下列分式的值为零?(1)23||2;(2)47(2)(5)x x x x x +-++-. 思路点拨:令分子等于零,由此求出x 的值,此时应考虑分母是否等于零,•若等于零,则分式无意义,应舍去.(1)x=-32;(2)x=2. 【活动方略】教师活动:操作投影仪,引导学生训练,并请学生上台板演.学生活动:独立完成演练题1,2,以练促思.三、随堂练习,巩固深化1.x 为何值时,2||5x x -的值为零;(x ±5) 2.x 为何值时,259x x +-没有意义;(x=9) 3.x 为何值时,6721a a -+的值等于1.(a=2) 4.课本P42复习题16第6题.四、X 例学习,提高认知例1 计算.2244222815(1);(2)()(66).583()[:(1),(2)]6x y a b xy x y x y ab xy x y ax xy x y b -÷-++答案思路点拨:按法则进行分式乘除法运算,应注意,如果运算结果不是最简分式,一定要约分,对于分式的乘除混合运算,按乘除的顺序依次进行;当分子、分母是多项式时,一般先分解因式,并在运算过程中约分,使运算简化.例2 计算.222222222(1);11112(2)()().4444224xy y x x y y x x y b a ab b a ab b a b a b a b -+--+-÷+-+++-+- 思路点拨:(1)•分式的加减运算就是把异分母的加减化成同分母的分式的加减,因此,在通分过程中找出最简公分母是关键.(2)对于分式的混合运算,•应注意运算顺序.【活动方略】教师活动:通过分析例1、例2的算理,增强学生的运算能力,提高运算的准确性. 学生活动:参与例1、例2的分析,同老师一道领会算理,掌握正确的学习方法.五、随堂练习,巩固深化1.计算. 22225(1)221(2)1111(3)1();()121x xx x x x a a a a a a a a +----+-+--÷-+--+ 2.先化简,再求值:()(2)(1)x y x y y y x y x x -÷+-÷+,其中x=115,.[]253y = 六、联系实际,实践应用【显示投影片2】例3 解分式方程:1-6351x x x+=-+ [x=2] 思路点拨:解分式方程基本思路是方程两边都乘以各分母的最简公分母,使方程化为整式方程,但解后必须验根.例4 某水泵厂在一定天数内生产4 000台水泵,工人为了支援祖国现代化建设,每天比原计划增加25%,可提前10天完成任务,问原计划每天生产多少台?(80台)思路点拨:工程问题常用的关系式是时间=总工作量日产量,设原计划每天生产x台,•列式4000400014x x x-+=10.【活动方略】教师活动:操作投影仪,启发引导学生弄清题意,正确解答.学生活动:利用例3、例4,复习分式方程解法,以及应用题“建模”方法,并归纳小结.七、继续演练,反复认识【显示投影片3】1.解方程:8177xx x----=8(无解)2.一列火车从车站开出,预计行程450千米,当它开出3小时后,因出现特殊情况多停一些,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,•求这列火车原来的速度.[提示:设火车原速为x千米/小时,列车450314531.22xx x-+=,x=75]3.课本P43“复习题16”第11,12题.八、布置作业,专题突破1.课本P42“复习题16”第1,2(3)(4)(6),3(2)(4)(6),4,5,8,9,10题.2.选用课时作业设计.九、课后反思课时作业设计【驻足“双基”】1.x______时,分式755x x +-有意义. 2.分式2134,,11m m m +-的最简公分母是________. 3.计算:(a+b )·2222a b a b a b---=______. 4.当x=______时,分式752x x-与的值相等. 5.当m=______时,方程233y m y y =---会产生增根. 6.若分式29(3)(4)a a a -+-的值为零,则a 的值是( ). A .±3 B .-3 C .3 D .以上结论都不对7.能使分式233x x x+---2值为零的x 的值是( ). A .x=4 B .x=-4 C .x=-4或x=4 D .以上结论都不对8.计算.(1)2(1)1132(2)(1)(1)(1)1166x x x x x x x x x x x +---÷-+-++-- 9.化简求值:133(2),(2)(1)24x x x x x x +÷-+=+-+其中. 10.解方程:1122x x x----=-3 【提升“学力”】 11.a 为何值时,关于x 的方程12325x a x a +-=-+的解等于零? 12.某个体商贩一次同时卖出两件上衣,每件都以135元出售,其中一件盈利25%,另一件亏本25%,讨论在这次买卖中,该商贩能否赚到钱?13.某某到某某铁路长300千米,为适应两省、市经济发展的要求,客车的行车速度每小时比原来增加了40千米,这样使得由某某至某某的时间缩短了1.5小时,•求列车原来的速度及现在的速度.请参照上面的应用题,编一道类似的应用题(不需要求解)这道应用题应满足:(1)不改变分式方程的形式; (2)改变实际背景和数据.答案:1.x ≠5 2.m (m+1)(m-1) 3.a+b 4.-5 5.-3 6.C 7.A8.(1)2211,(2)9.1610.2()11.13(3)5x x a x x --==--增根 (提示:先把a 看作已知数,•按照解分式方程的步骤求出x ,然后令x=0,得到关于a 的方程,求出a 值.(8-a )x=1-5a ,当a ≠8时,x=15151,0,150,885a a a a a a --=-=∴=--解唯一令则.) 12.赚不到 13.设列车原来的速度为x 千米/时,则30030040x x -+=1.5.。
初中数学同步训练必刷题(人教版八年级下册第十六章二次根式全章测试卷)一、单选题(每题3分,共30分)1.(2022八下·中山期末)式子√x+3在实数范围内有意义,则x的取值范围是()A.x≠-3B.x≥−3C.x≥3D.x≥02.(2022八下·番禺期末)下列计算正确的是()A.√22=2B.√(−2)2=﹣2C.√−83=2D.√(−2)2=±2 3.(2022八下·防城港期末)下列各式中,是最简二次根式的为().A.√52B.√2C.√27D.√134.(2022八下·拱墅期末)−√2×√5=()A.√10B.−√10C.√7D.−√75.(2022八下·朝阳期末)若√63n是整数,则正整数n的最小值是()A.3B.7C.9D.636.(2022八下·潢川期中)下列关于2√6的表述错误的是()A.2√6是最简二次根式B.2√6是无理数C.2√6就是2×√6D.2√6大于57.(2022八下·临海期末)下列计算正确的是()A.√2+√3=√5B.2√2−√2=1C.√6×√2=2√3D.√(−2)2=−2 8.(2022八下·滨海期末)化简后,与√2的被开方数相同的二次根式是()A.√10B.√12C.√12D.√169.(2022八下·藁城期末)下列四个算式中,正确的是() A.√(−1)2=−1B.√5−√2=√3 C.√(−4)×(−9)=√−4×√−9D.√12÷√3=210.已知a=√2+1,b=√2−1,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方值相等二、填空题(每题3分,共30分)11.(2022八下·镇海区期末)代数式2√1−x有意义,则x的取值范围是. 12.(2022八下·诸暨期末)当x=-2时,二次根式√2−7x的值是13.(2021八下·澄海期末)计算√3×√15√5的结果是.14.(2021八下·建华期末)若0≤a≤3 ,则√a2+√a2−6a+9=.15.(2021八下·新罗期末)长方形的宽是√3,面积为2√6,则长方形的长为16.(2022八下·诸暨期末)已知x,y均为实数,y=√x−2+√2−x+5,则x+y的值为17.(2022八下·灌云期末)如果最简二次根式√x+3与最简二次根式√1+2x是同类二次根式,则x=.18.(2021八下·营口期末)计算:√12+|√3−2|=.19.(2021八下·平泉期末)已知:√12+3√13=a√3+√3=b√3,则b a=.20.(2021八下·曲靖期末)如图是一个简单的数值运算程序,当输入x的值为√6时,则输出的值为.三、解答题(共6题,共60分)21.(2022八下·涿州期末)计算(1)2√7−√7(2)(√5+√6)(√6−√5)(3)(√12−√13)×√3(4)√8+√18√222.如图A,B,C三点表示的数分别为a,b,c.利用图形化简:|a−b|−√(c−b)2+√(a−c)2.23.(2019八下·岱岳期末)在一个边长为(2 √3+3 √5)cm的正方形的内部挖去一个长为(2 √3+ √10)cm,宽为(√6﹣√5)cm的矩形,求剩余部分图形的面积.24.(2020八下·潢川期中)(1)当x=54时,求√x+1的值;(2)①x为何值时二次根式√12−x的值是10?②当x=▲时二次根式√12−x有最小值.25.挖掘问题中所隐含的条件,解答下列问题:(1)如果√(x−2)2=2-x,那么()A.x<2B.x≤2C.x>2D.x≥2(2)已知√(x−3)2−(√2−x)2=2x,求x的值.(3)已知a,b是实数,且b>√a−2-2 √2−a+1,请化简:√1−2b+b2−√a2.26.(2020八下·北京期中)小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2√2=(1+√2)2,善于思考的小明利用完全平方公式进行了以下探索:3+2√2=12+2×1×√2+(√2)2=(1+√2)2.请你仿照小明的方法解决下列问题:(1)7−4√3=(a−b√3)2,则a=,b=;的算术平方根,求4x2+4x−2020的值;(2)已知x是2−√32(3)当1≤x≤2时,化简√x+2√x−1√x−2√x−1=.答案解析部分1.【答案】B【知识点】二次根式有意义的条件【解析】【解答】解:依题意有x+3≥0,即x≥−3时,二次根式有意义.故答案为:B.【分析】根据题意先求出x+3≥0,再求解即可。
初中数学同步训练必刷题(人教版八年级下册16.1 二次根式)一、单选题(每题3分,共30分)1.(2022八下·顺平期末)下列各式是二次根式的是()3D.√x A.√−2B.−√2C.√2【答案】B【知识点】二次根式的定义【解析】【解答】A.√−2无意义,故A不符合题意;B.−√2是二次根式,故B符合题意;3不是二次根式,故C不符合题意;C.√2D.√x(x≥0)才是二次根式,故D不符合题意.故答案为:B.【分析】形如√a(a≥0)的式子叫做二次根式,据此判断即可.2.(2022八下·灌云期末)代数式√x+1在实数范围内有意义,则实数x的取值范围是()A.x>−1B.x<−1C.x≤−1D.x≥−1【答案】D【知识点】二次根式有意义的条件【解析】【解答】解:代数式√x+1在实数范围内有意义,则x+1≥0,解得:x≥-1.故答案为:D.【分析】根据二次根式有意义的条件列出不等式求解即可。
3.(2022八下·威县期末)若√1−n是二次根式,则n的值可以是()A.−1B.2C.3D.5【答案】A【知识点】二次根式有意义的条件【解析】【解答】解:∵√1−n是二次根式,∴1-n≥0,解得n≤1,符合条件的n 值只有-1, 故答案为:A .【分析】利用二次根式有意义的条件求出1-n≥0,再求解即可。
4.(2022八下·顺平期末)若√2取1.414,则与√50最接近的整数是( )A .6B .7C .8D .10【答案】B【知识点】估算无理数的大小;二次根式的性质与化简 【解析】【解答】因为√50=5√2≈5×1.414≈7.07,所以接近的整数是7, 故答案为:B .【分析】由于√50=5√2,将 √2≈1.414代入求值即可判断.5.(2022八下·铁东期末)已知n 是正整数,√3n 是整数,则n 的最小值是( )A .0B .1C .3D .-3【答案】C【知识点】非负数的性质:算术平方根【解析】【解答】解: ∵n 是正整数,√3n 是整数,∴符合n 的最小值是3. 故答案为:C .【分析】根据二次根式的性质满足开平方即可解得.6.(2022八下·范县期末)√5−m√m+1=√5−m m+1成立的条件是( )A .m≥﹣1B .m≤﹣5C .﹣1<m≤5D .﹣1≤m≤5【答案】C【知识点】二次根式有意义的条件【解析】【解答】解:根据题意,得:5﹣m≥0,m+1>0,∴﹣1<m≤5, 故答案为:C .【分析】先求出5﹣m≥0,m+1>0,再求解即可。
分式的运算同步测试题A 卷:一、精心选一选 1.下列算式结果是-3的是( )A. 1)3(--B. |3|--C. )3(--D. 0)3(-2. (2008黄冈市)计算()a b a b b aa+-÷的结果为( ) A .a b b - B .a b b + C .a b a - D .a b a + 3.把分式中的x 、y 都扩大2倍,则分式的值( ) A.不变 B.扩大2倍 C.缩小2倍 D.扩大4倍4.用科学记数法表示-0.000 0064记为( )A. -64×10-7B. -0.64×10-4C. -6.4×10-6D. -640×10-85.若322=+-b a b a ,则ab 等于 ( ) A .54- B .54 C .1 D .54 6.若0≠-=y x xy ,则分式=-xy 11( ) A.1 B.x y - C.xy1 D.-1 7.一根蜡烛在凸透镜下成实像,物距为U 像距为V ,凸透镜的焦距为F ,且满足F V U 111=+,则用U 、V 表示F 应是( ) A.UV V U + B. V U UV + C. V U D. UV 8.如果x >y >0,那么x y x y -++11的值是( ) A. 0 B. 正数 C. 负数 D. 不能确定二、细心填一填1. (16x 3-8x 2+4x ) ÷(-2x )= 。
2.已知a+b=2,ab=-5,则a b+b a =____________3.(2007年芜湖市)如果2a b =,则2222a ab b a b -++= ____________ 4.一颗人造地球卫星的速度是8×103/秒,一架喷气式飞机的速度是5×102米/秒,这颗人造地球卫星的速度是这架喷气式飞机的速度的____________倍.5.a 取整数 时,分式(1-114++a a )·a 1的值为正整数. 6. 已知a +a 1=6,则(a -a 1)2 = 7.已知25,4n n x y ==,则2()n xy -=_____________8.已知|x+y-3|+(x-y-1)2=0,则-221[(-x y)]2=______________________三、仔细做一做1.计算 2301()20.1252005|1|2---⨯++-2. (1)化简:1)2)(1(31-+---x x x x ,并指出x 的取值范围(2)先化简,再求值已知3=a ,2-=b ,求2211()2ab a b a ab b+⋅++的值.3. 已知 y = ÷ - + 1 ,试说明在右边代数式 有意义的条件下,不论x 为何值,y 的值不变。
人教版八年级数学下册同步练习《16.2 二次根式的乘除》◆基础知识作业1.计算: =2.长方形的宽为,面积为,则长方形的长约为(精确到0.01).3.能使等式成立的x的取值范围是()A.x≠2 B.x≥0 C.x>2 D.x≥24.下列二次根式中,最简二次根式是()A.B.C.D.5.化简的结果是()A.B.C.D.6.已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣7.二次根式,,的大小关系是()A.B.<<C.<<D.<<8.化简:(1)(2)(3)(4)(5)(7)÷.◆能力方法作业9.若和都是最简二次根式,则m= ,n= .10.化简﹣÷= .11.比较大小:﹣﹣.12.下列二次根式中,是最简二次根式的是()A. B. C.D.13.下列根式中,是最简二次根式的是()A.B.C.D.14.计算:等于()A.B.C.D.15.把根号外的因式移入根号内,其结果是()A.B.﹣C.D.﹣16.化简:(1)(2)(x>0)17.计算(1)4÷(﹣5)(2)÷()(a>0,b>0,c>0)18.把根号外的因式移到根号内:(2).◆能力拓展与探究19.下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.20.化简:a(a>b>0)21.体积为18的长方体的宽为1cm,高为=2cm,求这个长方体的长.人教版八年级数学下册同步练习《16.2 二次根式的乘除》解析◆基础知识作业1.计算: =【考点】二次根式的乘除法.【分析】根据二次根式的除法法则对二次根式化简即可.【解答】解:原式==.【点评】主要考查了二次根式的乘除法运算.二次根式的运算法则:乘法法则=(a≥0,b≥0).除法法则=(a>0,b≥0).2.长方形的宽为,面积为,则长方形的长约为 2.83 (精确到0.01).【考点】二次根式的应用.【分析】根据二次根式的相关概念解答.【解答】解:设长方形的长为a,则2=a,a==2≈2.83.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:•=(a≥0,b≥0);=(a≥0,b>0).3.能使等式成立的x的取值范围是()A.x≠2 B.x≥0 C.x>2 D.x≥2【考点】二次根式的乘除法;二次根式有意义的条件.【分析】本题需注意的是,被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围.【解答】解:由题意可得,,解之得x>2.故本题选C.【点评】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.4.下列二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、=|a|,可化简;B、==,可化简;C、==3,可化简;因此只有D: =,不能开方,符合最简二次根式的条件.故选D.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.5.化简的结果是()A.B.C.D.【考点】二次根式的性质与化简.【专题】计算题.【分析】原式被开方数利用平方差公式化简,约分后化简即可得到结果.【解答】解:原式====.故选D【点评】此题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.6.已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣【考点】二次根式的性质与化简.【分析】二次根式有意义,y<0,结合已知条件得y<0,化简即可得出最简形式.【解答】解:根据题意,xy>0,得x和y同号,又x中,≥0,得y<0,故x<0,y<0,所以原式====﹣.故答案选D.【点评】主要考查了二次根式的化简,注意开平方的结果为非负数.7.二次根式,,的大小关系是()A.B.<<C.<<D.<<【考点】分母有理化.【分析】本题可先将各式分母有理化,然后再比较它们的大小.【解答】解:将三个二次根式化成同分母分数比较:∵=, ==,;∴<<.故本题选C.【点评】解答本题的关键是将各分式分母有理化,然后再比较它们的大小.在分母有理化的过程中,找出分母的有理化因式是解题的关键.8.化简:(1)(2)(3)(4)(5)(6)(7)÷.【考点】二次根式的乘除法.【分析】(1)直接进行化简即可;(2)直接进行化简即可;(3)先进行加法运算,然后进行化简即可;(4)先计算根号下的数值,然后进行化简即可;(5)先计算根号下的数值,然后进行化简即可;(6)先进行除法运算,然后进行化简;(7)先进行除法运算,然后进行化简.【解答】解:(1)原式=;(2)原式=;(3)原式==;(4)原式==;(5)原=;(6)原式==2;(7)原式==3.【点评】本题考查了二次根式的乘除法,解答本题的关键是掌握运算法则以及二次根式的化简.◆能力方法作业9.若和都是最简二次根式,则m= 1 ,n= 2 .【考点】最简二次根式.【分析】由于两二次根式都是最简二次根式,因此被开方数的幂指数均为1,由此可得出关于m、n 的方程组,可求出m、n的值.【解答】解:由题意,知:,解得:;因此m的值为1,n的值为2.故答案为:1,2.【点评】本题考查的最简二次根式的定义.当已知一个二次根式是最简二次根式时,那么被开方数(或因式)的幂指数必为1.10.化简﹣÷= .【考点】二次根式的乘除法.【分析】运用二次根式的运算性质,结合最简二次根式的概念,对二次根式进行化简.注意约分的运用.【解答】解:原式=﹣•=﹣•=﹣••=﹣2a.【点评】在二次根式的化简中,准确运用二次根式的性质,二次根式的除法法则和最简二次根式的概念,把结果化成最简的形式.11.比较大小:﹣<﹣.【考点】实数大小比较.【分析】首先把两个数平方,再根据分母大的反而小即可比较两数的大小.【解答】解:∵(﹣)2=,(﹣)2=,又∵>,∴﹣<﹣,即﹣<﹣.故填空答案:<【点评】此题主要考查了实数的大小比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.12.下列二次根式中,是最简二次根式的是()A. B. C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件(①被开方数不含分母;②被开方数不含能开得尽方的因数或因式)是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数里含有能开得尽方的因数8,故本选项错误;B、符合最简二次根式的条件;故本选项正确;B、,被开方数里含有能开得尽方的因式x2;故本选项错误;C、被开方数里含有分母;故本选项错误.D、被开方数里含有能开得尽方的因式a2;故本选项错误;故选;B.【点评】本题主要考查了最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.13.(2013秋•阆中市期末)下列根式中,是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】A选项的被开方数中含有分母;B、D选项的被开方数中含有能开得尽方的因数或因式;因此这三个选项都不是最简二次根式.所以只有C选项符合最简二次根式的要求.【解答】解:因为:A、=;B、=2;D、=|b|;所以这三项都可化简,不是最简二次根式.故选:C.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.14.计算:等于()A.B.C.D.【考点】二次根式的乘除法.【分析】根据二次根式的乘除法法则计算.【解答】解: ==.故选A.【点评】二次根式的乘除法法则:(a≥0,b≥0);(a≥0,b>0).15.把根号外的因式移入根号内,其结果是()A.B.﹣C.D.﹣【考点】二次根式的乘除法.【分析】由于被开方数为非负数,可确定1﹣a的取值范围,然后再按二次根式的乘除法法则计算即可.【解答】解:由已知可得,1﹣a>0,即a﹣1<0,所以, =﹣=﹣.故本题选B.【点评】由已知得出1﹣a的取值范围是解答此题的关键.16.化简:(1)(2)(x>0)【考点】二次根式的乘除法.【分析】(1)先进行二次根式的化简,然后求解;(2)直接进行二次根式的化简即可.【解答】解:(1)原式==;(2)原式=.【点评】本题考查了二次根式的乘除法,掌握二次根式的乘法法则和除法法则以及二次根式的化简是解题的关键.17.计算(1)4÷(﹣5)(2)÷()(a>0,b>0,c>0)【考点】二次根式的乘除法.【分析】(1)先进行二次根式的化简,然后求解即可;(2)先进行二次根式的除法运算,然后化简求解.【解答】解:(1)原式=﹣4×=﹣;(2)原式==.【点评】本题考查了二次根式的乘除法,掌握二次根式的乘法法则和除法法则以及二次根式的化简是解题的关键.18.把根号外的因式移到根号内:(1)(2).【考点】二次根式的性质与化简.【专题】计算题.【分析】(1)先变形得到原式=﹣5×,然后利用二次根式的性质化简后约分即可;(2)先变形得到原式=(1﹣x)•,然后利用二次根式的性质化简后约分即可.【解答】解:(1)原式=﹣5×=﹣5×=﹣;(2)原式=(1﹣x)•=(1﹣x)•=﹣.【点评】本题考查了二次根式的性质与化简: =|a|.◆能力拓展与探究19.下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.【考点】二次根式的乘除法;同底数幂的除法;完全平方公式;分式的基本性质.【分析】此类题目难度不大,可用验算法解答.【解答】解:A、a12÷a6是同底数幂的除法,指数相减而不是相除,所以a12÷a6=a6,错误;B、(x+y)2为完全平方公式,应该等于x2+y2+2xy,错误;C、===﹣,错误;D、正确.故选D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:①a m÷a n=a m﹣n,②÷=(a≥0,b>0).20.化简:a(a>b>0)【考点】二次根式的性质与化简.【专题】计算题.【分析】先利用完全平方公式变形得到原式=a,再利用二次根式的性质得到原式=a•|﹣|,然后利用a>b>0去绝对值后进行分式的运算.【解答】解:原式=a=a•|﹣|,∵a>b>0,∴原式=a•[﹣(﹣)]=.【点评】本题考查了二次根式的性质和化简: =|a|.也考查了完全平方公式和绝对值的意义.21.体积为18的长方体的宽为1cm,高为=2cm,求这个长方体的长.【考点】二次根式的乘除法.【分析】已知长方体的宽与高,根据二次根式的乘法,即可求得这个长方体的长.【解答】解:长方体的高为=2cm,宽为1cm,则长方体的长为: =9cm,答:长方体的长是9cm.【点评】此题考查了二次根式的乘法.此题比较简单,注意÷=(a>0,b>0)。
2020-2021学年八年级数学人教版下册第16章《二次根式》易错题学校:___________姓名:___________班级:___________考号:___________一,单项选择题(本大题共10小题,每小题3分,共30分)1.下列运算正确的是()A=.(22=C+=2=-【答案】B【分析】利用二次根式的加减法对A、C进行判断;根据二次根式的性质对B、D进行判断.【详解】解:A A选项错误;B、(22=,所以B选项正确;C C选项错误;=-D选项错误.D、原式22故选:B.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.下列二次根式能与)A.B C D【答案】A【分析】能与【详解】解:.A =,被开方数与A 正确;B =,被开方数与B 错误;C =,被开方数与C 错误;D =,被开方数与D 错误. 故选择:A .【点睛】本题考查了同类二次根式,几个二次根式化成最简二次根式后被开方数相同,这几个二次根式叫同类二次根式,同类二次根式可以进行合并,熟练掌握同类二次根式的定义是解题的关键.3.若|2013|a a -=,则22013a -的值是( )A .2012B .2013C .2014D .无法确定【答案】C【分析】根据二次根式的被开方数是非负数、将其代入求值即可.【详解】解:∵a -2014≥0,∵a≥2014,-=a ,=2013,∵a -2014=20132,∵a -20132=2014.故选:C .【点睛】a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.4.已知||5a =7=b a =-,则a b +=( )A .2B .12C .2或12D .2-或12-【答案】C【分析】先根据绝对值性质和二次根式的性质得出a 、b 的值,再分别代入计算可得.【详解】解:∵|a|=57=,∵a=±5,b=±7,又b a =-,∵a -b≤0,即a≤b ,则a=-5,b=7或a=5,b=7,当a=-5,b=7时,a+b=-5+7=2;当a=5,b=7时,a+b=5+7=12;综上,a+b 的值为2或12,故选C .【点睛】本题主要考查二次根式的性质与化简,解题的关键是掌握绝对值性质和二次根式的性质.5.下列计算中正确的是( )A .1=B =C .5=±D 761=-= 【答案】B【分析】根据二次根式的性质和减法运算分别判断.【详解】解:A 、=,故错误,不符合;B 223)2332,故正确,符合;C 5=,故错误,不符合;D 13,故错误,不符合;故选B .【点睛】 本题考查了二次根式的性质,二次根式的减法运算,解题的关键是掌握运算法则. 6.当x在实数范围内有意义( ) A .1x >B .1≥xC .1x <D .1x ≤ 【答案】A【分析】根据分式的分母不等于0的条件及二次根式非负性解答.【详解】由题意得:x-1>0,解得x>1,故选:A.【点睛】此题考查未知数的取值范围的确定,掌握分式的分母不等于0的条件及二次根式非负性是解题的关键.7的结果估计在()A.10到11之间B.9到10之间C.8到9之间D.7到8之间【答案】D【分析】先根据二次根式的乘法计算得到原式为4+的范围,即可得出答案.【详解】===+,解:原式4∵34<<,∵748<+<,故选:D.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.8.如x为实数,在“1)□x”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x不可能是()A.1B1C.D.1【答案】C【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】-=,故选项A不符合题意;解:A、1)1)0⨯=,故选项B不符合题意;B、1)1)2C1与C符合题意;+=,故选项D不符合题意.D、1)(10故选:C.【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.9.已知m、n是正整数,则满足条件的有序数对(m,n)为()A.(2,5)B.(8,20)C.(2,5),(8,20)D.以上都不是【答案】C【分析】根据二次根式的性质分析即可得出答案.【详解】解:m 、n 是正整数, ∵m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m ,n )为(2,5)或(8,20),故选:C .【点睛】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.10.当x =()20193419971994x x --的值为( ).A .1B .1-C .20022D .20012-【答案】B【解析】【分析】 由原式得()2211994x -=,得244+11994x x -=,原式变形后再将244+11994x x -=代和可得出答案.【详解】∵12x +=,()2211994x ∴-=,即24419930x x --=,()()32241997199444199344199311x x x x x x x ∴--=--+---=-. ∴原式()201911=-=-.【点睛】本题难度较大,需要对要求的式子进行变形,学会转化.二、填空题(本大题共7小题,每小题3分,共21分) 114132-⎛⎫-+-= ⎪⎝⎭__________________. 【答案】-13【分析】根据二次根式的运算、负指数幂及绝对值可直接进行求解.【详解】解:原式=16313+-=-;故答案为13-.【点睛】本题主要考查二次根式的运算及负指数幂,熟练掌握二次根式的加减运算及负指数幂是解题的关键.12.已知1,1a b ==,则ab =_____,a b b a+=_____. 【答案】1 6【分析】(1)运用平方差公式计算;(2)先通分,然后a 、b 的值代入计算.【详解】解:1,1a b ==,221)11ab ∴==-=,a b b a+ 22a b ab+= 2()2a b ab ab-+== 6=.故答案为1,6.【点睛】本题考查了二次根式、分式的化简求值,熟练掌握求解的方法是解题的关键.13.如果点A (x ,y 80y -=,则点A 在第_____象限.【答案】二【分析】根据非负性求出x 、y 的值,即可判断A 所在的象限.【详解】80y -=根据二次根式和绝对值的非负性可知x =﹣2,y=8.则A(﹣2,8),应在第二象限.故答案为:二.【点睛】本题考查非负性的应用,坐标点与象限的关系,关键在于利用非负性解出x ,y .14.下列各式:=;==a >0,b≥0);①=-,其中一定成立的是________(填序号). 【答案】∵∵∵【分析】根据二次根式的性质及运算法则逐项分析即可.【详解】∵00,a b ≥>≠,故不一定;=00,a b ≥>; ∵当00,a b >≥时,22231633333b b b a ab a a a aa ===,故一定成立; ∵3a 成立时,0a ≤3a a a a a ,故一定成立;故答案为:∵∵∵.【点睛】本题考查二次根式的性质以及乘除远算法则,熟练掌握基本性质计算法则是解题关键.15.对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:-2-=※________.【答案】1-【分析】先将新定义的运算化为一般运算,再计算二次根式的混合运算即可.【详解】解:2※=2=2-2=43-=1-故答案为:1-【点睛】本题考查新定义的实数运算,二次根式的混合运算.能根据题意将新定义运算化为一般运算是解题关键.16.数轴上有A ,B ,C 三点,相邻两个点之间的距离相等,其中点A 表示,点B 表示1,那么点C 表示的数是________.【答案】1--或12或2【分析】分点C 在点A 的左侧、点C 在点A 、B 的中间、点C 在点B 的右侧三种情况,再分别利用数轴的定义建立方程,解方程即可得.【详解】设点C 表示的数是x ,由题意,分以下三种情况:(1)当点C 在点A 的左侧时,则AC AB =,即1(x =-,解得1x =--(2)当点C 在点A 、B 的中间时,则AC BC =,即(1x x -=-,解得12x =; (3)当点C 在点B 的右侧时,则AB BC =,即1(1x -=-,解得2x =;综上,点C 表示的数是1--或2故答案为:1--12或2+. 【点睛】本题考查了实数与数轴、一元一次方程的应用,熟练掌握数轴的定义是解题关键.17.若a ,b ,c 是实数,且10a b c ++=,则2b c +=________.【答案】21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而【详解】∵10a b c ++=∵100a b c ---=∵2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∵2221)2)3)0++=∵123===∵111429a b c -=⎧⎪-=⎨⎪-=⎩∵2511a b c =⎧⎪=⎨⎪=⎩∵2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.三、解答题(本大题共6小题,共49分)18.计算:(1)101(3)|2|2π-⎛⎫--+- ⎪⎝⎭ (22【答案】(1)3;(2(1)根据负指数幂、零指数幂和绝对值的概念直接计算即可;(2)根据二次根式的运算进行计算即可.【详解】解:(1)101(3)|2|2π-⎛⎫--+- ⎪⎝⎭2123=-+=(2222=-【点睛】 本题考查了负指数幂、零指数幂的计算,二次根式的计算,熟练掌握运算法则是解题的关键.19.计算题:(1;(2;(3))()2331⨯-【答案】(1)(2)8;(3)【分析】(1)先利用二次根式的性质进行化简,再利用二次根式的乘除法运算法则计算即可; (2)先利用二次根式的性质进行化简,再利用二次根式的运算法则计算即可;(3)先利用完全平方公式和平方差公式进行计算,再利用二次根式的加减运算法则计算即可.【详解】(1====(2=102=-8=(3)23)(31)+---2(31)=+--22223211⎡⎤=---+⎣⎦9531=--+=.【点睛】本题主要考查二次根式的混合运算,解题的关键是正确化简二次根式,熟练掌握二次根式的运算法则.20.先化简,再求值:2241244x x x x x -⎛⎫-÷ ⎪--+⎝⎭,其中2x =-+【答案】22x -+, 【分析】首先计算括号里面分式的减法,然后再计算括号外分式的除法,化简后,再代入x 的值可得答案.【详解】 解:2241244x x x x x -⎛⎫-÷ ⎪--+⎝⎭22(2)22(2)(2)x x x x x x x --⎛⎫=-⨯ ⎪--+-⎝⎭ 2222x x x --=⨯-+ 22x =-+,当2x =-+== 【点睛】本题考查了分式的化简求值,二次根式的混合运算.分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式. 21.阅读下列简化过程:1===;==== ……解答下列问题:(1)请用n (n 为正整数)表示化简过程规律________;(2; (3)设a =,b =c =,比较a ,b ,c 的大小关系.【答案】(1==(2)1;(3)c b a >>【分析】(1)根据已知可得:两个连续正整数算术平方根的和的倒数,等于分子分母都乘以这两个连续正整数算术平方根的差,化简得这两个连续正整数算术平方根的差;(2)利用分母有理化分别化简,再合并同类二次根式得解;(3)将a 、b 、c 分别化简,比较结果即可.【详解】(1== (2+1=1=1=.(3)a ==2b ==+2c ==, 22>,a b ∴>, 又53>b c ∴>,c b a ∴>>.【得解】此题考查代数式计算规律探究,分母有理化计算,根据例题掌握计算的规律并解决问题是解题的关键.22.已知x =y = (1)求222x xy y ++的值. (2【答案】(1)40;(2)6-【分析】(1)先将x 、y 进行分母有理化,再代入式子计算可得;(2)先将式子化简再代入x 、y 进行计算即可.【详解】 (1)310x ==,3y ==, x y ∴+=6-=x y ,22222()40x xy y x y ∴++=+==.(2)103x =,3y =,20x ∴->,10y+>,21(2)(1)x y x x y y -+=--+ 11x y=-=-=33=-.6【点睛】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的性质及分母有理化的方法、完全平方公式的变形等知识点.23.阅读下列材料,然后回答问题.①一样的式子,其实我们====还可以将其进一步化简:1以上这种化简的步骤叫做分母有理化.①学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知a+b=2,ab =-3 ,求a2 + b2.我们可以把a+b和ab看成是一个整体,令x=a+b ,y = ab ,则 a 2+ b2= (a + b)2- 2ab = x2- 2y = 4+ 6=10.这样,我们不用求出a,b,就可以得到最后的结果....+(1b 2a2+ 1823ab + 2b2=(2)已知m 是正整数,a2019 .求m.(31=【答案】(1(2)2;(3)9【分析】(1)先将式子的每一项进行分母有理化,再计算即可; (2)先求出,a b ab +的值,再用换元法计算求解即可;(31=【详解】解:(1)原式12019+2222=+++12019122+++==(2)∵a,b∵2(21),1a b m ab +==+= ∵2a 2+ 1823ab + 2b 2 = 2019∵222()18232019a b ++=∵2298a b +=∵24(21)100m +=∵251m =±- ∵m 是正整数∵m=2.(31=得出21==20∵2281=+=≥≥=.9【点睛】本题考查的知识点是分母有理化以及利用换元思想求解,解此题的关键是读懂题意.理解分母有理化的方法以及利用换元方法解题的方法.试卷第21页,总21页。
数学:16.2 分式的运算同步测试题A (人教新课标八年级下) A 卷:
一、精心选一选
1.下列算式结果是-3的是( )
A. 1)3(--
B. |3|--
C. )3(--
D. 0)3(-
2. (2008黄冈市)计算()a b a b b a
a
+-÷
的结果为( ) A .a b b - B .a b b + C .a b a - D .a b a + 3.把分式中的x 、y 都扩大2倍,则分式的值( ) A.不变 B.扩大2倍 C.缩小2倍 D.扩大4倍
4.用科学记数法表示-0.000 0064记为( )
A. -64×10-7
B. -0.64×10-4
C. -6.4×10-6
D. -640×10-8
5.若
322=+-b a b a ,则a
b 等于 ( ) A .54- B .54 C .1 D .54 6.若0≠-=y x xy ,则分式=-x
y 11( ) A.1 B.x y - C.xy
1 D.-1 7.一根蜡烛在凸透镜下成实像,物距为U 像距为V ,凸透镜的焦距为F ,且满足
F V U 111=+,则用U 、V 表示F 应是( ) A.
UV V U + B. V U UV + C. V U D. U
V 8.如果x >y >0,那么x y x y -++11的值是( ) A. 0 B. 正数 C. 负数 D. 不能确定
二、细心填一填
1. (16x 3-8x 2+4x ) ÷(-2x )= 。
2.已知a+b=2,ab=-5,则a b
+b a =____________
3.(2007年芜湖市)如果2a b =,则2222
a a
b b a b -++= ____________ 4.一颗人造地球卫星的速度是8×103/秒,一架喷气式飞机的速度是5×102米/秒,这颗人造地球卫星的速度是这架喷气式飞机的速度的____________倍.
5.a 取整数 时,分式(1-
114++a a )·a 1的值为正整数. 6. 已知a +
a 1=6,则(a -a 1)2 = 7.已知25,4n n x y ==,则2()n xy -=_____________
8.已知|x+y-3|+(x-y-1)2=0,则-221[(-x y)]2=______________________
三、仔细做一做
1.计算 2301()
20.1252005|1|2---⨯++-
2. (1)化简:
1)2)(1(31-+---x x x x ,并指出x 的取值范围
(2)先化简,再求值已知3=a ,2-=b ,求22
11()2ab a b a ab b +⋅
++的值.
3. 已知 y = ÷ - + 1 ,试说明在右边代数式 有意义的条件下,不论x 为何值,y 的值不变。
4.按下列程序计算:
n n n n →→+→÷→-→平方答案
(1)填表。
(2)请将题中计算程序用式子表达出来,并化简。
B 卷:
一、选择题
1.在①x ·x 5; ②x 7y ÷xy; ③(-x 2)3; ④(x 2y 3)3÷y 3 中,结果为x 6的有( )
A. ①
B. ①②
C. ①②③④
D. ①②④
2.使分式25
5x
=x-3x -3x 自左至右变形成立的条件是( )
A. x<0 B,x>0 C.x ≠0 D.x ≠0且x ≠3
3.已知b a b
a b a ab b a -+>>=+则且,0622的值为( )
A 、2
B 、2±
C 、2
D 、2± 二、填空题
1. 若1)1(1=-+x x ,则x = .
2. 如果x+x 1=3,则1x x x 242
++的值为 .
3.若-1<a<b<0,把分式 a b
的分子、分母都加1,得分式 1a 1
b ++,则分式
值的变化是___________.(填:增大、减小或不变)
三、解答题
1.给定下面一列分式:3
579
234x x x x y y y y -- ,,,,,(其中0x ≠)
(1)把任意一个分式除以前面一个分式,你发现了什么规律?
(2)根据你发现的规律,试写出给定的那列分式中的第7个分式.
2.请你阅读下列计算过程,再回答所提出的问题。
-
=
- ① =- ②
=x –3–3(x+2) ③
=-2x -9 ④
(1) 上述计算过程中,从哪一步开始出现错误?_______________.
(2) 从②到③是否正确?_________.若不正确,错误的原因是____________.
(3) 请给出正确解答.
3.解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题.例如,原问题是“若矩形的两边长分别为3和4,求矩形的周长”,求出周长等于14后,它的一个“逆向”问题可以是“若矩形的周长为14,且一边长为3,求另一边的长”;也可以是“若矩形的周长为14,求矩形面积的最大值”,等等.
(1)设A =3x x -2-x x +2
,B =x 2-4x ,求A 与B 的积; (2)提出(1)的一个“逆向”问题,并解答这个问题.
答案:A 卷:
一、
1 B
2 A
3 B 提示 把2x x 换成 2y y 换成 代入可得
4 C
5 D 提示 根据内项积等于外项积 6322a b a b -=+ 45a b =
6 A 提示=-x y 11x y xy
-整体代入得1 7 B 提示
1u v uv F += UV F U V =+ 8 B 提示
()()
1111y y xy x xy y x y x x x x x x ++----==+++>0 二、 1.2
842x x -+-
2.
14
5
-提示
()22
a b
+
b a
a b ab
ab
+-
=整体代入
3.3
5
提示可把 a=2b代入也可设特殊值a=2 b=1代入
4.16
5.-4,-2 提示
3
1
a
-
=
+
原式为正整数所以 a+1<0
6.32 提示
2
2
2
11
236
a a
a a
⎛⎫
+=++=
⎪
⎝⎭
2
2
2
11
234232
a a
a a
⎛⎫
-=-+=-=
⎪
⎝⎭
7.
1
10000
提示原式=()2n
xy-=
()2
1
n n
x y
1
10000
8.1
32
提示列方程组求得 x=2 y=1在代入
三、1. 5
2. (1)解
()()()
()()()()
231211
12122
x x x x x
x x x x x
+---+-
===
-+-++
原式 x≠1且x≠
-2
(2)解分式化简得
1
a b
+
当3
=
a,2
-
=
b时原式=1
3.右边=
()
()()()
2
111
1
111
x x
x x x x x
-+
∙-+
+--=
11
11
x x
-+=
4.(1)1 , 1
(2)
222
1 n n n n n
n
n n
++-
-==
B卷一、
1. B
2. C 提示分式两边同时乘以不为0的数或式子
3. C 提示
()
()
2
2
2
8
2
4
a b
a b ab
a b ab
a b
+
+
⎛⎫
=== ⎪
-
⎝⎭-
二、
1.-1 提示任何不为0的0次幂都等于1
2.1
8
提示先求
42
2
22
11
1718
x x
x
x x
++
=++=+=
3.增大提示做差法比较大小三、
1.(1) 规律 商等于2x y - (2) 15
7x y
2.(1)①(2) 不正确 不能去分母 (3) - =
+ =+ =2434
x x +- 4. (1)A ×B =()()()()()()322222822x x x x x x x x x x
+---+∙=+-+ (2)已知A ×B=2x-8 A=3x x -2-x x +2
求 B 的值 (2x-8)÷(3x x -2-x x +2)=(2x+8)×(()()22228x x x x
+-+)=x 2-4x。