矿井通风方案设计书12325
- 格式:doc
- 大小:467.50 KB
- 文档页数:19
矿井通风方案矿山作为重要的能源供应基地,具有重要的经济和社会价值。
然而,矿井生产环境复杂,安全风险高,因此通风系统的设计和运行对保障矿工生命安全和提高生产效率至关重要。
一、矿井通风的目标通风系统的目标是保持矿井中的空气质量和温湿度在安全的范围内,以提供良好的工作环境。
具体目标包括:1. 保持足够的氧气供应。
矿工在地下工作需要大量的氧气供应,通风系统必须能够有效地提供足够的氧气。
2. 控制瓦斯浓度。
瓦斯是矿井中常见的有毒气体,通风系统需要及时排除矿井中的瓦斯浓度,以防止爆炸事故的发生。
3. 控制粉尘浓度。
矿井作业中产生的粉尘对矿工的健康有害,通风系统需要及时排除矿井中的粉尘,保持空气清新。
4. 控制温度和湿度。
地下矿井有时会出现高温和高湿的环境,通风系统需要及时降低温湿度,提供适宜的工作环境。
二、通风系统的设计通风系统的设计应考虑到矿井的特点和生产需求。
以下是通风系统设计的主要内容:1. 通风主井道选择和布置。
矿井的主井道要选择在地势最高处,并布置合理。
主井道的数量和位置应满足矿井的通风需求,确保通风系统的有效运行。
2. 通风设备的选择和安装。
通风系统需要配备适当的通风设备,如风机和风门等。
设备的选择要考虑到矿井的规模和通风需求,确保设备的稳定运行。
3. 通风系统的管网设计。
通风系统需要设计合理的管网,以保证通风气流的均匀分布和高效运行。
管网的布置要充分考虑到矿井的地质条件和生产布局。
4. 瓦斯抽放和排风系统的设置。
矿井中产生的瓦斯需要及时排放,通风系统需要设置瓦斯抽放和排风系统,确保矿井中的瓦斯浓度控制在安全范围内。
三、通风系统的运行和管理通风系统的运行和管理对确保通风系统的有效运行和矿工的安全十分重要。
以下是运行和管理的主要内容:1. 通风系统的监测与调节。
通风系统需要进行定期监测,包括气体浓度、风速和温湿度等参数,及时调整通风系统的运行参数,保证通风效果的稳定和安全。
2. 矿山瓦斯的处理。
通风系统需要配合瓦斯监测系统,及时发现矿井中的瓦斯泄漏,采取相应的处理措施,确保矿井的安全。
煤矿调整通风系统设计方案及安全技术措施负责人:编制人:编制日期:xx年3月4日***煤矿调整通风系统设计及安全技术措施根据矿安排,井下所有采掘头面计划将于xx年3月10日复工,复工前,需将主要通风机改为抽出式通风,并将井下辅助通风机停运,为保证调整通风系统期间的安全和调整通风系统后通风系统稳定,特制定如下调整通风系统设计及安全技术措施。
一、调整前通风系统状况及情况说明1、调整前通风系统状况调整前,井下为一台辅助通风机抽出式通风,矿井通风系统为回风立井和副斜井并联进风,主斜井回风。
矿井总进风量为3600m3/min,矿井总回风量在3200m3/min。
(见附图1、调整前通风系统示意图)矿井目前有一个备用工作面,工作面过风量在600m3/min左右,通风路线为:回风立井进风→+820m水平回风大巷进风→102回风顺槽进风→切眼→102主、辅运顺槽回风→+820m水平胶运大巷、+820m水平辅运大巷回风→主斜井回风→地面。
二、调整方案及设计1、组织措施为了保证调整工作的顺利进行,成立调整通风系统工作领导小组。
组长:总工程师成员:安检科科长通防科科长机运科科长调度室主任通修队队长方大公司负责人富昌公司负责人2、各单位职责通防科及通修队:全面负责井下通风瓦斯观测及通风系统调整工作,包括调风前后的风量测定、瓦斯检查、通风设施构筑施工及控风设施稳定性检查。
机运科:主要通风机开启前,对井下机电设备进行全面检查,杜绝失爆。
负责将全井下所有非本质安全型电器设备停电闭锁。
调度室:负责各种信息的上传下达,协调各部门工作。
安检科:参与井下调风实施工作,并在各井口设置警戒,杜绝与调风无关的人员入井。
在调风前开展一次安全大检查,对检查中发现的问题及时督促进行整改,监督检查各部门安全技术措施贯彻落实情况。
方大公司及富昌公司:调整通风系统前,负责撤出本单位井下所有人员,确保与调风无关的人员全部出井。
3、调整方案及设计内容将井下辅助通风机抽出通风改为矿井主要通风机抽出式通风,矿井通风系统由原回风立井、副斜井并联进风,主斜井回风改为由主、副斜井并联进风,回风立井回风。
第一节矿井概况本矿区开采煤层中瓦斯含量较低,2013年度的瓦斯检测报告显示:瓦斯最大相对涌出量为2.96㎥/T,瓦斯最大绝对涌出量为0.636㎥/min; 二氧化碳最大相对涌出量为4.2㎥/T。
根据2005年煤尘爆炸性鉴定报告,所采煤层的煤尘具有爆炸性;根据2005年煤的自燃性实验报告,所采煤层均不自燃。
第二节矿井通风系统现状我矿采用三平硐开拓方式:主平硐铺设皮带运输机,负责煤炭运输和辅助进风;副平硐铺设辅道,负责设备、材料运输,兼主进风;回风平硐负责矿井总回风。
井下主要巷道采用锚喷支护,其他巷道采用工字钢支护。
井下采煤工作面布置方式为走向长壁斜切工作面,使用整体顶梁液压支架支护,放顶煤,一次采全高,完全陷落法管理顶板。
矿井通风方式为中央分列式。
在回风平硐口安装两台型号FBCZ-No.14 的主通风机,其风压为:805-218Pa,风量为:612-2172㎥/min 。
当前,矿井实测总回风量为㎥/min,主平硐进风㎥/min,副平硐进风㎥/min;其中副平硐材料上山进风量㎥/min,副平硐运输上山进风量㎥/min。
目前,我矿井下工作面仅有一个掘进工作面和一个待撤采煤工作面。
将来复工后,井下工作面个数势必增加,按矿井规划将安排两个掘进工作面和一个采煤工作面回收;采煤工作面回收以后,再增加一个掘进工作面。
因此,矿井通风系统需要进一步优化。
第三节矿井通风系统调整方案一、矿井需风量计算根据《煤矿安全规程》和《煤炭工业小煤矿设计规范》的有关规定,矿井总风量应按矿井达到设计能力时的最大用风量进行计算。
我矿井下开采一个采煤工面保证矿井年产量15万吨,但必须有不少于两个掘进工作面保证矿井采掘正常接替。
矿井需用风量计算如下:1、按井下同时工作最多人数计算:Q=4NK=4×50×1.2=240㎥/min。
式中:Q-总风量N-同时工作最多人数,按50人;K-风量备用系数,取1.2;4-每人每分钟用风标准;2、按采煤、掘进、硐室及其他地点实际需风量计算:(1)采煤工作面实际需风量①按瓦斯涌出量计算Q采=100×q采×K c=100×0.636×2=127.2㎥/min,取128㎥/min。
煤矿通风设计任务书1、煤矿通风设计资料某煤矿的井田走向长8400m,倾角15°~18°,相对瓦斯涌出量为5(6、7、8、9、10、11、12、13、14、15、16)m3/t,煤尘有爆炸危险性,煤矿开拓开采情况如下:(1)煤矿生产能力与服务年限。
煤矿生产能力为0.9Mt/a,服务年限46a。
(2)煤矿开拓方式与采区划分。
煤矿采用立井单水平上下山分区式开拓。
全矿共划分12个采区,上山部分6个(见图1),下山部分6个。
上山部分服务年限25a,下山部分服务年限21a。
煤矿开拓系统如图2所示。
主、副井布置在井田的中央,通过主石门与东西向的运输大巷相连通。
总回风布置在井田的上部边界,回风井分别布置在上山釆区No.5、No.6上部边界中央,形成两翼对角式通风系统。
图1上山采区划分示意图图2开拓系统示意图(3)釆煤方法。
采区巷道布置如图3所示。
煤矿有2个采区同时生产,共3个釆煤工作面,其中2个生产,1个备用,釆煤方法为走向长壁普通机械化釆煤。
工作面长150m,釆高2.2m,釆用全部垮落法管理顶板,最大控顶距4.2m,最小控顶距3.2m,最大班工作人数26人,作业形式为两釆一准。
毎个釆区有两个煤巷掘进工作面,釆用打眼放炮破煤。
图3巷道布置系统示意图(4)煤矿工作制度。
煤矿年工作日300d,工作制度为“三八”作业。
井下最大班工作人数120人。
(5)井巷尺寸及支护情况见表1。
表1井巷尺寸及支护情况2、通风设计要求(1)矿井风量计算和分配要符合要求;(2)矿井通风阻力计算要合理;(3)通风设备选择要可靠经济;(4)概算矿井通风费用要包括局部通风机;(5)矿井通风系统要安全、可靠、稳定;(6)矿井灾害防治措施符合《安全规程》的要求,要有针对性;(7)设计说明书条理清晰、步骤全面、数据准确、表格完整、文字无误、插图合理;(8)容易时期、困难时期的通风系统图和网络图要画出,用1号图纸;(9)两周时间完成。
矿井通风课程设计说明书..目录 (2)第一章井田概况及地质特征 (5)1.1 井田概况 (5)1.1.1 位置、交通 (5)1.1.2 矿区自然地理及经济概况 .. 51.2 地质特征 (6)1.2.1 区域地质 (6)1.2.2 矿区地质 (6)1.2.3 矿体地质 (6)1.3 水文地质 (6)第二章井田开拓 (7)2.1 井田境界及储量 (7)2.1.1 井田境界 (7)2.1.2储量82.2 矿井设计生产能力及服务年限 .. 102.2.1 矿井年生产能力确定 (10)2.2.3 矿井年生产能力的验证 (10)2.3 井田开拓 (10)2.3.1 开拓方式的选择原则 (10)2.3.2 方案选择 (11)2.4 开拓系统及井筒位置的确定 (11)2.4.1 井筒的数目、用途及位置 . 112.5 阶段运输巷道的布置 (12)2.6 开采顺序 (12)第三章采矿方法 (13)3.1采矿法的选择133.1.1 开采技术条件 (13)3.1.2 采矿方法的选择 (13)3.1.3 确定采矿方法 (13)3.2 采矿方案确定 (13)3.2.1 矿块布置及结构参数 (13)3.2.2 采准切割工作 (14)3.2.3 回采工作 (14)3.2.4 同时工作的矿块数目: (15)3.2.5 矿块回采工艺对照表 (15)第四章通风 (16)4.1 概况 (16)4.1.1 通风系统的选择原则 (17)4.1.2 通风系统的几项具体规定 . 174.2 矿井通风 (17)4.2.1 矿井通风方式 (17)4.2.2 通风系统 (18)4.3 风量计算 (18)4.3.1 全矿通风总量 (18)4.3.2 回采工作面风量 (18)4.3.3 备采工作面风量 (19)4.3.4 掘进工作面所需风量 (19)4.3.5 独立通风硐室 (19)4.4风量分配204.5 通风阻力计算 (20)4.5.1 容易时期通风总阻力 (20)4.5.2 困难时期通风阻力 (22)第五章设备选择 (24)5.1 通风设备的选择 (24)5.1.1 主扇 (25)5.1.2 扇风机选择 (26)5.1.3 局扇 (26)参考文献 (28)致谢 (29)第一章井田概况及地质特征1.1 井田概况1.1.1 位置、交通下湿壕矿区位于固阳县南东60公里,行政区划隶属固阳县下湿壕乡管辖。
目录前言3第一章矿井基本概况 (44)第一节矿井概况 (4)一、井田概况 (4)二、煤层地质概况 (4)三、瓦斯概况 (5)四、水文概况 (5)五、煤尘、煤炭自燃概况 (5)六、通风概况 (5)第二章通风系统设计可行性论证 (8)第一节矿井通风系统优化背景 (8)一、矿井目前通风及生产能力情况 (8)二、矿井生产能力发展前景 (8)第二节通风系统改造的必要性分析、论证 (9)第三节通风系统改造的主要手段 (10)第四节通风系统改造总体方案的选择 (10)第三章矿井通风参数计算 (14)第一节通风系统改造后矿井需要风量的计算 (14)一、矿井风量计算原则 (14)二、矿井需风量的计算 (14)第二节通风系统改造后矿井通风阻力的计算 (19)一、矿井通风总阻力计算原则 (19)二、矿井通风总阻力计算 (19)第三节通风系统改造方案比较 (33)第四章矿井通风设备的选择 (35)第一节主要通风机选型 (35)一、设计依据 (35)二、通风设备选型 (35)第二节矿井主要通风设备的配置要求 (38)第五章通风费用概算 (40)第六章矿井安全技术措施 (43)第一节粉尘灾害防治 (43)一、防尘措施 (43)二、防爆措施 (43)三、隔爆措施 (43)第二节瓦斯灾害防治 (44)第三节防灭火 (44)一、煤的自燃预防措施 (44)二、外因火灾防治 (44)第四节矿井防治水 (45)第五节井下其它灾害预防 (45)一、顶板灾害防治 (45)二、机电运输事故防治 (45)前言矿井通风是一个运用多种技术手段输送、调度空气在井下流动,维护矿井正常生产和劳动安全的动态过程。
在生产期间其任务是利用通风动力,以最经济的方式,向井下各用风地点供给质优量足的新鲜空气,保证工作人员的呼吸,稀释并排除瓦斯、粉尘等各种有害物质,降低热害,给井下创造良好的劳动环境;在发生灾变时,能有效、及时地控制风向及风量,并与其它措施结合,防止灾害的扩大,最大限度地减少事故损失。
矿井通风设计第一节矿井通风系统的确定一、选择矿井通风系统的原则和基本要求(1)每个矿井至少有二个通向地面的安全出口,井下每个水平到上一水平和每个采区至少有二个出口,并和通向地面的出口相连通。
(2)进风井口要避免污风尘土、炼焦气体、矸石、燃烧气体等侵入,回风井的设置地点必须在稳定的地质层且便于防洪的位置。
(3)箕斗井一般不作为进风井或回风井,皮带斜井部的兼作回风井,如果斜井的风速不超过4m/s,有可靠的降尘措施,保证粉尘浓度符合卫生标准,皮带斜巷可兼作进风井。
(4)所有矿井都要采用机械通风,主要通风机必须安装在地面。
(5)不宜把两个可以独立通风的矿井合并为一个通风系统,若有几个出风井,则自采区流动到各个出风井的风流需要保证独立;各工作面的回风进入采区回风道之前,各工作面的回风在进入回风水平之前都不能任意贯通;下水平的回风风流和上水平的进风风流必须严格隔开。
在条件允许时,要尽量使进风井风量早分开。
(6)次用多台主通风机通风时,为了保证联合运转的稳定性,主进风道的断面不宜过小,尽可能减少公共风路、风阻。
(7)要充分注意降低通风费用,尽可能少用通风构筑物,同时重视降低基建费用。
(8)要符合采区通风和掘进通风的若干要求,要满足防止瓦斯、火、煤尘和水对矿井通风系统的特殊要求。
二、矿井通风方式的选择新建矿井多数是在中央并列式、中央分列式、两翼对角式和分区域式中选择并进行技术经济的比较。
下面对这几种通风方式的特点及优缺点适用条件列表比较,见表4-1-1。
方案一:中央并列式主斜井、副斜井都位于井田上部边界,主、副井进风,斜井回风。
方案二:两翼对角式进风井位于井田的中央,回风井设在井田两翼的上部边界。
表4-1-1通风方式比较.通过上述方案的比较,本井田只能考虑中央并列式通风。
但考虑到井田走向长的缘故,提出了两种通风方案。
即甲方案:采用中央并列式,乙方案:采用两翼对角式。
甲乙两种方案对比(1)通风方式对比1)甲方案该方案采用中央并列式,抽出式通风,副斜井作为辅助进风井,主斜井主进风;回风斜井回风。
矿井通风系统设计方案目录1 矿井概述 (1)2 井田地质特征 (1)2.1 地质特征 (1)2.2 煤层特征 (2)3 矿井开拓及基本巷道布置 (3)3.1 矿井开拓 (3)3.2 矿井基本巷道 (4)4 采煤方法和矿井运输、提升系统 (8)4.1 采煤方法和回采工艺 (8)4.2 矿井运输系统 (11)4.3 矿井提升系统 (13)5 矿井通风系统 (14)5.1 矿井通风系统的选择 (14)5.2 矿井需风量 (15)5.3 矿井通风阻力的计算 (23)5.4 主要通风机的选择 (31)5.5 电动机选型 (34)结论 (35)参考文献 (37)附表1 通风容易时期摩擦阻力及风速校核计算表 (39)附表2 通风困难时期摩擦阻力及风速校核计算表 (40)附图1 开拓平面图附图2 开拓剖面图附图3 通风平面图附图4 通风系统示意图附图5 矿井2#煤层底板等高线及地质储量计算图1矿井概述某矿井是位于某市东北部约4公里处的一座高瓦斯矿井,隶属于某矿务局。
本矿区在地貌上属于华北大平原西侧的一部分,就其成因而言为太行山东麓冲洪积平原的一部分。
区内地势平坦,地表标高介于+53m~+62m之间,自然坡度2.3‰。
公路交通:其西距京广公路约3.4公里、距规划中的东环路约300米;北距京广公路与京深高速公路联络线(北外环)1.30公里、距规划中的北环路310米;东距东外环2.60公里、距京深高速公路3.60公里;南距某(台)某(县)公路约2.40公里,距牛尾河1.45公里。
该矿井年平均气温13℃左右,年最高气温42℃,年最低气温-22℃;年降雨量300mm~600mm,蒸发量400mm~600mm;常年风向为西北风,风速最大为18m/s;冻土最大厚度为440mm。
2井田地质特征2.1 地质特征2.1.1 煤系地层特征该井田为一全隐蔽型井田,上覆第四系地层厚度变化较大,一般在210~320m,分布规律为西薄东厚,其底界面无大的波状起伏。
采矿工程毕业设计——矿井通风设计指导书第一章矿井概况第一节井田概况一、地理概况: 1.交通位置;2. 自然地理地形;3. 气象及地震情况;4.主要自然灾害。
二、井田开发概况:井田范围、走向长、倾斜长、上下标高;矿井的开发历史;相邻井田(矿区)的情况。
三、地质构造: 井田内的断层、摺曲、陷落柱、火成岩浸入等构造情况及对开采的影响。
四、地层:地层年代及地层特征;含煤地层。
五、煤层(附煤层特征表):井田内可采煤层的层数、厚度、间距、倾角、走向、倾向及煤层变化情况;煤层内夹石及火成岩浸入情况;煤层顶底板岩石性质、厚度、稳定性及对采掘的影响;煤的硬度、容重。
六、煤质:井田内所含煤层煤质的技术指标情况,包括水分、灰分、挥发分、全硫、发热量。
七、水文地质: 井田内主要含水层的岩性、厚度;隔水层的岩性、厚度及隔水性质;断层的导水性及断层防水煤柱;其它构造对水文地质影响情况;工作面涌水的主要来源,涌水量;矿井充水因素分析。
八、其它开采技术条件:瓦斯涌出量,煤层自燃倾向性及自然发火期;煤尘爆炸危险性;地温等。
第二节矿井生产概况一、井田开拓开采1、井田境界、储量、设计能力及服务年限。
2、井田开拓:(1)开拓方式、井筒个数、位置、用途、断面尺寸、装备等情况。
(2)矿井水平划分,采区(盘区)划分,大巷位置、数量、断面尺寸、用途等情况。
(3)井底车场形式。
(4)井下主要机电硐室、火药库、消防材料库等布置情况。
3、井下开采(1)采区内采煤工作面数量、位置、采煤方法及工艺、支护形式和主要机电设备。
(2)开拓、掘进工作面数量、位置、掘进方法及工艺、主要机电设备。
(附:生产采区内主要机械设备一览表)。
二、矿井提升运输、通风、排水、压气设备1、提升设备(1)主井:主井的技术参数、支护形式;提升运输方式、提升运输设备的型号、数量、功率等情况。
(2)副井:副井的技术参数、支护形式;提升运输方式、提升运输设备的型号、数量、功率等情况。
(3)其他井筒:行人井(辅助运输井)的技术参数、支护形式;提升运输方式、提升运输设备的型号、数量、功率等情况。
前言《矿井通风》设计是学完《矿井通风》课程后进行,是学生理论联系实际的重要实践教案环节,是对学生进行的一次综合性专业设计训练。
通过课程设计使学生获得以下几个方面能力,为毕业设计打下基础。
1、进一步巩固和加深我们所学矿井通风理论知识,培养我们设计计算、工程绘图、计算机应用、文献查阅、运用标准与规范、报告撰写等基本技能。
2、培养学生实践动手能力及独立分析和解决工程实际的能力。
3、培养学生创新意识、严肃认真的治学态度和理论联系实际的工作作风。
依照老师精心设计的题目,按照大纲的要求进行,要求我们在规定的时间内独立完成计算,绘图及编写说明书等全部工作。
设计中要求严格遵守和认真贯彻《煤炭工业设计政策》、《煤矿安全规程》、《煤矿工业矿井设计规范》以及国家制定的其它有关煤炭工业的方针政策,设计力争做到分析论证清楚,论据确凿,并积极采用切实可行的先进技术,力争使自己的设计达到较高水平,但由于本人水平有限,难免有疏漏和错误之处,敬请老师指正。
(一)矿井基本简况1、煤层地质简况单一煤层,倾角25°,煤层厚4m,相对瓦斯涌出量为13m3/t,煤尘有爆炸危险。
2、井田范围设计第一水平深度240m,走向长度7200m,双翼开采,每翼长3600m。
3、矿井生产任务设计年产量为0.6Mt,矿井第一水平服务年限为23a。
4、矿井开拓与开采用竖井主要石门开拓,在底板开围岩平巷,其开拓系统如图1-1所示。
拟采用两翼对角式通风,在7、8两采区中央上部边界开回风井,其采区划分见图1-2。
采区巷道布置见图1-3。
全矿井有2个采区同时生产,分上、下分层开采,共有4个采煤工作面,1个备用工作面。
为准备采煤有4条煤巷掘进,采用4台局部通风机通风,不与采煤工作面串联。
井下同时工作的最多人数为380人。
回采工作面最多人数为38人,温度t=20℃,瓦斯绝对涌出量为3.2m3/min,放炮破煤,一次爆破最大炸药量为2.4kg。
有1个大型火药库,独立回风。
5、开拓系统图、采区布置图、巷道布置图、以及井巷尺寸及其。
图1-1 开拓系统图图1-3 巷道布置图附表1-1 井巷尺寸及其支护情况区段井巷名称井巷特征及支护情况巷长m断面积m21~2 副井两个罐笼,有梯子间,风井直径D=5m 2402~3 主要运输石门三心拱,混凝土碹,壁面抹浆120 9.5 3~4 主要运输石门三心拱,混凝土碹,壁面抹浆80 9.5 4~5 主要运输巷三心拱,混凝土碹,壁面抹浆450 7.0 5~6 运输机上山梯形水泥棚135 7.0 6~7 运输机上山梯形水泥棚135 7.0 7~8 运输机顺槽梯形木支架d=22cm,Δ=2 420 4.8 8~9 联络眼梯形木支架d=18cm,Δ=4 30 4.09~10 上分层顺槽梯形木支架d=22cm,Δ=2 80 4.8 10~11 采煤工作面采高2m控顶距2~4m,单体液压,机采110 6.0 11~12 上分层顺槽梯形木支架d=22cm,Δ=2 80 4.8 12~13 联络眼梯形木支架d=18cm,Δ=4 30 4.0 13~14 回风顺槽梯形木支架d=22cm,Δ=2 420 4.8 14~15 回风石门梯形水泥棚30 7.5 15~16 主要回风道三心拱,混凝土碹,壁面抹浆2700 7.5 16~17 回风井混凝土碹(不平滑),风井直径D=4m 70(二)拟定矿井通风系统矿井开拓采用立井开拓方式,矿井通风采用两翼对角式通风方式。
矿井主要进风井为位于井田中央的副井,矿井主要回风井位于第七采区和第八采区的上部边界。
矿井主要通风机采用抽出式通风方式。
大巷位置位于负240M处石门揭煤地带的岩石巷道中。
在第一采区有一个备用工作面,一个采煤工作面,两个掘进工作面,在第二采区有两个采煤工作面,两个掘进工作面所以矿井总共有4个采煤工作面,4个掘进工作面。
回采工作的采煤方法采用单一走向长壁采煤法,采煤工作面推进方向采用后退式,附矿井通风系统图如下:(三)矿井总风量计算与分配一、矿井需风量计算原则(1)矿井需风量应按照“由里往外”的计算原则,由采、掘工作面、硐室和其他用风地点的实际最大需风量总和,再考虑一定的备用风量系数后,计算出矿井总风量。
(2)按该用风地点同时工作的最多人数计算,每人每分钟供给风量不得少于4 m3。
(3)按该用风地点风流中的瓦斯、二氧化碳和其他有害气体浓度、风速以及温度等都符合《规程》的有关规定分别计算,取其最大值。
二、矿井需风量的计算方法矿井需风量按以下方法计算,并取其中最大值。
(1)按进下同时工作的最多人数计算Q矿=4NK=4×380×1.15=1748m3/min式中Q矿——矿井总需风量,m3/minN——井下同时工作的最多人数,人;4——矿井通风系数,包括矿井内部漏风和分配不均等因素。
采用压入式和中央并列式通风时,可取 1.20~1.25。
采用对角式或区域式通风时,可取1.10~1.15。
上述备用系数在矿井产量T≧0.90Mt/a时取大值。
(2)按采煤、掘进、硐室等处实际需风量计算采煤工作面需风量计算采煤工作面的需风量应按下列因素分别计算,并取其中最大值。
1、按瓦斯(二氧化碳)涌出量计算:Q采=100Q瓦K瓦=100×3.2×1.6=512m3/min式中Q采——采煤工作需要风量,m3/min;Q瓦——采煤工作面瓦斯(二氧化碳)绝对涌出量,m3/min;K瓦——采煤工作面因瓦斯(二氧化碳)涌出量不均匀的备用风量系数,即该工作面炮采工作面可取 1.4~2.0。
水采工作面可取2.0~3.0。
生产矿井可根据各个工作面正常生产条件时,至少进行五昼夜的观测,得出五个比值,取其最大值。
2、按工作面进风流温度计算;采煤工作面应有良好的气候条件,其进风流温度可根据风流温度预测方法进行计算。
其气温与风速应符合表1的要求采煤工作面的需风量按下式计算:Q 采=60v 采S 采K 采,m 3/min=60×1.0×6×1=360m 3/min式中v 采——采煤工作面适宜风速,m/sS 采——采煤工作面平均有效断面积,㎡,按最大和最小控顶有效断面积的平均值计算;K 采——采煤工作面长度风最系数,按表2先取3、按炸药使用量计算:Q采=25A采,m3/min=25×2.4=60 m3/min式中25——每使用1kg炸药的供风量,m3/minA采——采煤工作面一次爆破使用的最大炸药量,kg4、按工作人员数量计算:Q采=4n采,m3/min=4×38=152 m3/min式中4——每人每分钟供给的最低风量,m3/minn采——采煤工作面同时工作的最多人数,人。
5、按风速验算:按最低风速验算各个采煤工作面的最小风量:Q采≧60×0.25S采,m3/min=60×0.25×6=90m3/min按最高风速验算各个采煤工作面的最大风量:Q采≦60×4S采,m3/min=60×4×6=1440m3/min掘进工作面需风量计算煤巷、半煤岩巷和岩巷掘进工作面的需风量,应按下列因素分别计算,取其最大值。
1、按瓦斯(二氧化碳)涌出量计算:Q掘=100Q瓦K瓦=100×1.2×2=240 m3/min2、按炸药量使用最计算:Q掘=25A掘,m3/min=25×2.4=60 m3/min3、按局部通风机吸风量计算:Q掘=Q通IK通,m3/min=200×1×1.3=260m3/min式中Q通——掘进工作面局部通风机额定风量(表3),I——掘进工作面同时运转的局部通风机台数,台:K通——防止局部通风机吸循球风的风量备用系数,一般取1.2~1.3,进风巷中无瓦斯涌出时取1.2,有瓦斯涌出时取1.3。
4、按工作人员数量计算:Q掘=4n掘,m3/min=4×15=60 m3/min5、按风速进行验算;岩巷掘进工作面的风量应满足:60×0.15×S掘≦Q掘≦60×4×S掘由上式得43.2m3/min≦Q掘≦1152m3/min煤巷、半煤岩巷掘进工作面的风量应满足:60×0.25×S掘≦Q掘≦60×4×S掘=72m3/min≦Q掘≦1152m3/min根据上面的计算掘进工作面的风量应取其最大值。
Q掘=260m3/min72m3/min≦Q掘≦1152m3/min所以,Q掘=260m3/min符合上述要求。
硐室需风量各个独立通风的硐室供风量,应根据不同的硐室分别计算。
1、井下爆破材料库按经验值计算,小型矿井一般80~100m3/min,大型矿井一般100~150m3/min。
2、充电硐室通常充电硐室的供风量不得小于100m 3/min 。
3、机电硐室采区小型机电硐室,可按经验值确定风量,一般为60~80m 3/min 。
4、其它巷道需风量计算新建矿井,其他用风巷道的总风量难以计算时,也可按采煤,掘进,硐室的需风量总和的3%~5%估算。
5、矿井总风量计算;()K Q Q Q Q Q ⨯+++=∑∑∑∑其他硐掘采矿()K Q ∑++++⨯+⨯=其他8010010042605512=4066m 3/min 。
通过计算所得;矿井总风量为4066m 3/min 矿进总风量的分配 (1)分配原则矿井总风量确定后,分配到各用风地点的风量,应不得低于其计算的需风量;所有巷道都应分配一定的风量;分配后的风量,应保证井下各处瓦斯及有害气体浓度、风速等满足《规程》的各项要求。
(2)分配的方法首先按照采区布置图,对各采煤、掘进工作面、独立回风硐室按其需风量配给风量,余下的风量按采区产量、采掘工作面数目、硐室数目等分配到各采区,再按一定比例分配到其它用风地点,用以维护巷道和保证行人安全。
风量分配后,应对井下各通风巷道的风速进行验算,使其符合《规程》对风速的要求。
(四)矿井通风总阻力计算一、矿井通风总阻力的计算原则(1)如果矿井服务年限不长(10~20年),选择达到设计产量后通风容易和困难两个时期分别计算其通风阻力;若矿井服务年限较长(30~50年),只计算前15~25年通风容易和困难两个时期的通风阻力。
为此,必须先给出这两个时期的通风网络图。
(2)通风容易和通风困难两个时期总阻力的计算,应沿着这两个时期的最大通风阻力风路,分别计算各段井巷的通风阻力,然后累加起来,作为这两个时期的矿井通风总阻力。
最大通风阻力风路可根据风量和巷道参数(断面积、长度等)直接判断确定,不能直接确定时,应选几条可能最大的路线进行计算比较。
(3)矿井通风总阻力不应超过2940Pa(4)矿井井巷的局部阻力,新建矿井(包括扩建矿井独立通风的扩建区)宜按井巷摩擦阻力的10%计算;扩建矿井宜按井巷摩擦阻力的15%计算。