【优质文档】人教版五年级数学下册笔记整理完整版
- 格式:pdf
- 大小:70.69 KB
- 文档页数:6
最全面人教版数学五年级下册知识点归纳总结玉河冰剑制作人教版数学五年级下册复提纲日期:4/25/2022一、图形的变换图形变换的基本方式包括平移、对称和旋转。
1、轴对称轴对称图形是指一个图形沿着一条直线对折后两部分完全重合,这条直线叫做对称轴。
1)学过的轴对称平面图形包括长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形等,而任意梯形和平行四边形则不是轴对称图形。
2)圆有无数条对称轴。
3)对称点到对称轴的距离相等。
4)轴对称图形的特征和性质包括对应点到对称轴的距离相等,对应点的连线与对称轴垂直,对称轴两边的图形大小、形状完全相同。
2、旋转旋转是指在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化。
旋转中心定点O,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。
1)生活中的旋转包括电风扇、车轮、纸风车等。
2)旋转要明确绕点、角度和方向。
3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。
等边三角形绕中点旋转120度与原来重合。
旋转的性质包括图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变,两组对应点分别与旋转中心的连线所成的角相等,都等于旋转角,旋转中心是唯一不动的点。
3、对称和旋转的画法:旋转要注意顺时针、逆时针、度数。
二、因数和倍数1、整除整除是指被除数、除数和商都是自然数,并且没有余数。
整数包括自然数。
2、因数、倍数当大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例如,12是6的倍数,6是12的因数。
1)数a能被b整除,那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的因数的求法是成对地按顺序找。
1.一个数的倍数无限,最小的倍数是它本身。
我们可以通过依次乘以自然数来求一个数的倍数。
【经典】新课标人教版五年级数学下册知识点归纳第一部分图形与几何一、观察物体1、从不同的位置(或同一位置)观察物体,看到的形状可能相同也可能不同;从同一位置观察长方体或正方体时不能看到所有的面,最多只能看到三个面,最少看到一个面。
2、正面、侧面(左面,右面)、后面都是相对的,它是随着观察角度的变化而变化。
通过观察、想象、猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。
3、观察物体,从实物观察到对立体图形的观察有一个体验、认识、提高的过程,多观察物体,多画观察到的图形,自己制作立体图形,有意识的训练想象能力,逐渐就会观察立体图形了。
4、观察物体,先要确定观察的位置(方向)(常选择上面、正面、左侧面、右侧面),再确定观察的形状,并把它画下来,在平面图形画上斜线。
5、根据各个位置看到的平面图形推算共有几个小正方体方法:从正面看数层数,从下往上数;从上面看数列数,从左往右数;从左面看数排数,前排在右后排在左,从右往左数。
6、至少用8个正方体可拼成较大的正方体,27个64个125个。
都可拼成较大正方体。
二、图形的运动图形变换的基本方式是对称、平移和旋转。
对称点是关于一条直线对称的点(对称点一般用于轴对称),对应点是一个图形经变换后的图形与变换前的图形位置相同的点(对应点一般用于平移和旋转)(一)图形的平移1、平移不改变图形的大小和形状。
2、平移的三要素:原图形的位置、平移的方向、平移的距离。
平移的方向一般为:水平方向、垂直方向两种。
平移的距离:一般为几个单位长度(也即几个方格)3、平移是整个图形的移动,图形的每个关键点都需要按要求移动。
4、把图形平移的步骤:(1)确定原图形位置、平移的方向、平移的距离。
(2)找出原图形的各关键点。
(3)根据题目要求将各个点依次平移。
(4)顺次连接平移后的各点,标明各点名称。
(二)轴对称: 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
最新人教版小学数学五年级下册知识点归纳总结2的倍数:个位数字为0、2、4、6、83的倍数:各位数字之和是3的倍数5的倍数:个位数字为0或5三、约分和通分1、约分:将一个分数的分子和分母同时除以一个相同的数,得到与原数相等的新分数.1)约分的目的是简化分数,使分子和分母都尽可能小.2)约分的方法:找到分子和分母的公因数,然后同时除以这个公因数.2、通分:将两个或两个以上的分数的分母改成相同的数,得到新的分数,这个相同的数就是它们的公倍数.1)通分的目的是为了方便分数的比较和运算.2)通分的方法:找到两个分数的公倍数,然后同时乘以这个公倍数的因子,使它们的分母变成公倍数.3)两个分数通分后,它们的分子相加或相减,分母不变.四、分数的加减1、同分母分数的加减:将分数的分子相加或相减,分母不变.2、异分母分数的加减:先通分,再按同分母分数的加减法进行计算.1)通分后的分子相加或相减,分母不变.2)如何通分:找到两个分数的公倍数,然后同时乘以这个公倍数的因子,使它们的分母变成公倍数.3)通分后,要将分数约分,使它们的分子和分母都尽可能小.五、分数的乘除1、分数的乘法:将两个分数的分子乘起来,分母乘起来,得到一个新的分数.1)乘法的结果比原来的数更小.2)分数的乘法满足交换律和结合律.2、分数的除法:将一个分数的分子乘以另一个分数的分母,分母乘以另一个分数的分子,得到一个新的分数.1)除法的结果比原来的数更大.2)分数的除法不满足交换律和结合律.3)除数不能为0.4)分数的除法可以转化为乘法,即将除数取倒数,然后乘以被除数.改写:一、图形的变换图形变换的基本方式包括平移、对称和旋转。
1、轴对称:当一个图形沿着一条直线对折后两部分完全重合时,这个图形就是轴对称图形,对称轴即为对折的直线。
1)轴对称平面图形包括长方形、圆形、等腰三角形、等边三角形、等腰梯形等,其中等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,但任意梯形和平行四边形不是轴对称图形。
人教版数学五年级下册:知识点归纳总结第一单元观察物体(三)1、根据一个方向观察到的形状摆小正方体,有多种摆法,无法确定立体图形的形状。
2、根据三个方向观察到的形状摆小正方休,只有1 种摆法。
3、只要对着原来物体的前面或后面的任意1个正方体添1个正方体,从正面看到的形状就都不变。
4、从正面、左面、上面3个不同的方向观察同一组物体而画出的图形就是三视图。
5、综合三视图的形状,可以确定出立体图形中小正方体的摆放位置,通常只有一种摆法。
6、由三视图拼摆正方体的方法:俯视图打地基,主视图疯狂盖,左视图拆违章。
7、先摆出符合正面的立体图形,再摆出符合上面的立体图形,最后确定立体图形。
根据从正面、左面、上面观察到的平面图形还原立体图形只有唯一的一种情况。
8、想象不出来时,用小正方体摆一摆就简单了。
第二单元因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
最小的自然数是02、因数、倍数:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
例:12÷2=6, 12是6的倍数,6是12的因数。
为了方便,在研究因数和倍数时,我们所说的数是自然数(一般不包括0)。
数a能被b整除,那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找。
一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
一个数的最大因数=最小倍数=它本身3、2、3、5的倍数特征1)奇数和偶数的意义:在自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
①自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数,叫奇数。
也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
人教版五年级下册数学重点知识(精华版)--最新版人教版五年级数学下册精选重点知识点总结第一单元:观察物体1.从不同角度观察长方体(或正方体),最多能看到3个面。
2.给出一个(或两个)方向观察的图形无法确定立体图形的形状。
必须从三个方向观察到的图形才能确定立体图形的形状,并还原立体图形。
先由上面确定立体图形的形状,再由左(右)和前(后)确定立体图形有几层,每层有几行几列。
3.从一个方向看到的图形可以摆成多种不同的立体图形。
4.从多个角度观察立体图形:先根据平面图分析出要拼搭的立体图形有几层,然后确定要拼搭的立体图形有几排,最后根据平面图形确定每层和每排的小正方体的个数。
例如:画三视图和搭积木。
第二单元:因数与倍数1.在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括)。
2.在整数除法中,如果商是整数而没有余数,我们就说被除数是除数(或者商)的倍数,除数(或者商)是被除数的因数。
在整数乘法中,因数是积的因数,积是因数的倍数。
例如:12÷2=6→12是2(或者6)的倍数,2(或者6)是12的因数。
2×6=12→12是2(或者6)的倍数,2(或者6)是12的因数。
3.一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
例如:12的最小因数是1,最大的因数是12.一个数的最小因数是1,最大因数是它本身。
一个数的最小倍数是它本身,没有最大倍数。
例如:18的最小倍数是18.一个不为1的自然数,既是它本身的最小倍数,又是它本身的最大因数。
4.整数中,是2的倍数的数叫做偶数(也是双数)。
不是2的倍数的数叫做奇数(也是单数)。
5.特征:2的倍数的个位上是0、2、4、6、8的数;5的倍数的个位数是0或5的数;3的倍数的个各个数位上的数的和是3的倍数;2和5的倍数的个位上是0的数;3和5的倍数的个位是0或5的并且各个数位上的数字之和能被3整除的数。
游泳池、鱼缸等只有5个面,而水管、烟囱等只有4个面。
第一单元:观察物体根据一个方向观察到的形状摆小正方体,有多种摆法。
根据三个方向观察到的形状摆小正方体,只有一种摆法。
第二单元:因数与倍数1).在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
例如:12÷6=2,我们就说12是6的倍数,6是12的因数。
注意:为了方便,在研究因数与倍数的时候,我们所说的数指的是自然数(一般不包括0)。
或者在a×b=c(a,b,c为非零整数)中,a和b叫做c的因数,c叫做a和b的倍数。
例如:3×8=24中,3和8叫做24的因数,24叫做3和8的倍数。
一个数的因数的求法:成对地按顺序找。
一个数的倍数的求法:依次乘以自然数。
2).一个数的因数的个数是有限的,其中最小的是1,最大的是它本身。
一个数的倍数的个数是无限的,其中最小的是它本身,没有最大的。
3).在整数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
个位上是0或5的数都是5的倍数。
个位上是0、2、4、6、8的数都是2的倍数。
个位上是0的数既是2的倍数也是5的倍数。
一个数每一位上的数的和是3的倍数,这个数就是3的倍数。
比如216,324,27.能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。
同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。
如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
4).一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数)。
如:2、3、5、7都是质数。
一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。
如4、6、15、49,91都是合数。
1既不是质数,也不是合数。
最小的质数是2,最小的合数是4,连续的两个质数是2、3。
每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
5).奇数+偶数=奇数奇数+奇数=偶数偶数+偶数=偶数奇数×偶数=偶数奇数×奇数=奇数偶数×偶数=偶数6).100以内的质数:(25个,只有1和它本身两个因数的数)2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97。
人教版五年级数学下册知识点归纳总结第一单元观察物体(三)1、不同角度观察一个物体,看到的面都是两个或三个相邻的面。
2、不可能一次看到长方体或正方体相对的面。
注意点1)这里所说的正面、左面和上面,都是相对于观察者而言的。
2)站在任意一个位置,最多只能看到长方体的3个面。
3)从不同的位置观察物体,看到的形状可能是不同的。
4)从一个或两个方向看到的图形是不能确定立体图形的形状的。
5)同一角度观察不同的立体图形,得到的平面图形可能是相同,也可能是不同的。
6)如果从物体的右面观察,看到的不一定和从左面看到的完全相同。
第二单元因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找。
(3)一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
(4)2、3、5的倍数特征1)个位上是0,2,4,6,8的数都是2的倍数。
2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。
3)个位上是0或5的数,是5的倍数。
4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。
同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。
5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
3、自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数。
叫奇数。
也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
最小的奇数是1,最小的偶数是0.关系:奇数+、- 偶数=奇数奇数+、- 奇数=偶数偶数+、-偶数=偶数。
【经典】新课标人教版五年级数学下册知识点归纳第一部分图形与几何一、观察物体1、从不同的位置(或同一位置)观察物体,看到的形状可能相同也可能不同;从同一位置观察长方体或正方体时不能看到所有的面,最多只能看到三个面,最少看到一个面。
2、正面、侧面(左面,右面)、后面都是相对的,它是随着观察角度的变化而变化。
通过观察、想象、猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。
3、观察物体,从实物观察到对立体图形的观察有一个体验、认识、提高的过程,多观察物体,多画观察到的图形,自己制作立体图形,有意识的训练想象能力,逐渐就会观察立体图形了。
4、观察物体,先要确定观察的位置(方向)(常选择上面、正面、左侧面、右侧面),再确定观察的形状,并把它画下来,在平面图形画上斜线。
5、根据各个位置看到的平面图形推算共有几个小正方体方法:从正面看数层数,从下往上数;从上面看数列数,从左往右数;从左面看数排数,前排在右后排在左,从右往左数。
6、至少用8个正方体可拼成较大的正方体,27个64个125个。
都可拼成较大正方体。
二、图形的运动图形变换的基本方式是对称、平移和旋转。
对称点是关于一条直线对称的点(对称点一般用于轴对称),对应点是一个图形经变换后的图形与变换前的图形位置相同的点(对应点一般用于平移和旋转)(一)图形的平移1、平移不改变图形的大小和形状。
2、平移的三要素:原图形的位置、平移的方向、平移的距离。
平移的方向一般为:水平方向、垂直方向两种。
平移的距离:一般为几个单位长度(也即几个方格)3、平移是整个图形的移动,图形的每个关键点都需要按要求移动。
4、把图形平移的步骤:(1)确定原图形位置、平移的方向、平移的距离。
(2)找出原图形的各关键点。
(3)根据题目要求将各个点依次平移。
(4)顺次连接平移后的各点,标明各点名称。
(二)轴对称: 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
第一单元图形的变换(1)轴对称图形的概念:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形叫做轴对称图形。
沿着的那条对折直线叫做对称轴。
(2)轴对称图形的性质:在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等。
(3)平移:沿着直线移动,这样的现象叫做平移。
(4)旋转:物体都绕着一个固定的点或一个固定的轴移动,这样的现象叫做旋转。
(旋转三要素:旋转中心、旋转方向、旋转角)(5)等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有两条对称轴,正方形有四条对称轴,正五边形有5条对称轴,正六边形有6条对称轴,圆形有无数条对称轴。
(6)第二单元因数和倍数注意:为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)。
1、整除:被除数、除数和商都是非0的自然数,并且没有余数。
如果a能被b整除,那么b是a的因数,a是b的倍数一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
1是所有自然数的因数。
一个数的倍数的个数是无限的,最小的倍数是它本身。
没有最大的倍数。
2、自然数按能不能被2整除来分:奇数偶数奇数:不能被2整除的数,最小的奇数是1偶数:能被2整除的数,最小的偶数是0连续的奇数,如1、3、5等,连续偶数如、12、14、16、等,连续的奇数或连续的偶数前后相差2。
用字母表示连续的奇数或偶数(a-2)、a、(a+2)3、2、3、5倍数的特征个位上是0,2,4,6,8的数都是2的倍数。
个位上是0或5的数,是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
能同时被2、3、5整除的最大的两位数是90,最小的两位数是30,最小的三位数是120。
4、自然数按因数的个数来分:质数、合数、1质数:有且只有两个因数,1和它本身。
最小的质数是2合数:至少有三个因数,1、它本身、别的因数,最小的合数是41:只有1个因数。
“1”既不是质数,也不是合数。
每个合数都可以由几个质数相乘得到。