幂律型非牛顿流体能量边界层本构方程
- 格式:pdf
- 大小:171.95 KB
- 文档页数:5
4. 非牛顿型流体的分类非牛顿型流体是一大类实际流体的统称。
一般地说,凡流动性能不能用方程(2-2)来描述的流体,统称为非牛顿型流体。
在高分子液体范畴内,可以粗略地把非牛顿型流体分为:纯粘性流体,但流动中粘度会发生变化,如某些涂料、油漆、食品等。
粘弹性流体,大多数高分子熔体、高分子溶液是典型的粘弹性流体,而且是非线性粘弹性流体。
一些生物材料,如细胞液,蛋清等也同属此类。
流动性质有时间依赖性的流体。
如触变性流体,震凝性流体。
4. 1 Bingham 塑性体Bingham体的可塑性质。
只有当外界施加的应力超过屈服应力y σ,物体才能流动。
流动方程为:⎩⎨⎧≥-<=yy y σσησσσσγ/)(0 (2-74)说明:有些Bingham 塑性体,在外应力超过y σ开始流动后,遵循Newton 粘度定律,流动方程为:γησσ p y += (2-75) 称为普通Bingham 流体,p η为塑性粘度。
有些Bingham 塑性体,开始流动后,并不遵循Newton 粘度定律,其剪切粘度随剪切速率发生变化,这类材料称为非线性Bingham 流体。
特殊地,若流动规律遵从幂律,方程为n y K γσσ += (2-76) 则称这类材料为Herschel-Bulkley 流体。
图2-16 Bingham 流体的流动曲线牙膏、油漆是典型Bingham 塑性体。
油漆在涂刷过程中,要求涂刷时粘度要小,停止涂刷时要“站得住”,不出现流挂。
因此要求其屈服应力大到足以克服重力对流动的影响。
润滑油、石油钻探用泥浆,某些高分子填充体系如碳黑混炼橡胶,碳酸钙填充聚乙烯、聚丙烯等也属于或近似属于Bingham 流体。
填充高分子体系出现屈服现象的原因可归结为,当填料份数足够高时,填料在体系内形成某种三维结构。
如CaCO 3形成堆砌结构,而碳黑则因与橡胶大分子链间有强烈物理交换作用,形成类交联网络结构。
这些结构具有一定强度,在低外力下是稳定的,外部作用力只有大到能够破坏这些结构时,物料才能流动。
proo oKdp B⎰一、概念1、折算压力及其公式和其实质:油藏中任一点的实测压力均与其埋藏深度有关,为了确切地表示地下的能量分布情况,必须把地层内各点的压力折算到同一水平面上,经折算后的压力称为折算压力,通常选取原始油水界面为折算平面。
折算压力在实质上代表了该点流体所具有的总的机械能。
公式:p ZM =p M +ρgΔD M 2、非活塞式水驱油方式: 由于油水粘度差、毛细管现象、油水重率差以及地层本身非均质性等因素的影响,水渗入到油区后,不可能把全部的石油都置换出去,而会出现一个油水同时混合流动的两相渗流区,这种驱油方式称为非活塞式的水驱油。
在非活塞式水驱油时,从供给边界到生产井排之间可以分为三个区,即纯水区、油水混合区和纯油区。
混合区逐渐扩大到生产井排。
3、气井绝对无阻流量及其二项式表达式,物理意义:天然气井在井底压力为1个大气压时 气井流量。
(AOF q A B=-表示气井的(最大)气井稳定试井时,按二项式处理试井资料,其流动方程为p e 2-p a 2=Aq sc +Bq 2sc4、导压系数定义式、单位及其物理意义:导压系数η=K/φμC t ; m 2·Pa/Pa·s,物理意义:表示压力波在地层中的传导能力,或单位时间内压力传播的面积。
5.井干扰现象及其实质:在油层中有许多井同时,其中任一口井工作制度的改变,如新井投产、事故停产或更换油嘴等等,必然会引起其它井的产量或井底压力发生变化,这种现象叫做井干扰现象。
其实质为地层中能量重新平衡(或压力重新分布)。
二、简答题1.单相弱可压缩液体不稳定渗流基本微分方程为,----该类型方程称为热传导型方程。
2.油气储集层是油气储集场所和油气运移通道,特点:储容性,渗透性,比表面大,结构复杂。
3.流体渗流中受到的力主要有粘滞力、岩石及流体的弹性力和毛细管力。
4.渗流力学是研究流体在多孔介质中流动规律的一门学科。
5.油井不完善类型有打开程度不完善、打开性质不完善和双重不完善。
幂律流体在环形通道中的流动规律0 前言在许多工程领域中经常会遇到非牛顿流体在环空中流动的情况,例如在石油工程中泥浆或钻井液在钻杆和套管间的流动,类似的例子在化学工程、生物食品工业和摩擦润滑中都会经常遇到。
按照非牛顿流体的分类,许多情况下都可将其看成是幂律流体。
幂律流体在这样的环空中的流动规律直接关系到具体工艺过程的效率、成本和质量。
因此研究幂律流体在环空中的流动规律有着非常重要的工程实际意义。
1 运动方程及求解假设不可压缩的幂律流体在如图1所示的同心环空中作轴向稳定等温的层流流动,R i为环形空间内径,R o 为环形空间外径,R λ为环形空间内最大速度所对应的半径。
图1 环空的几何结构这样幂律流体在环形空间的速度为:0==θu u r ()r u u z = (1)同时其偏应力张量为:0==θθz r T T ()γτ =rz T (2)式中()drr du =γ为剪切速率。
这样运动方程可以简化为:()01=--∂∂g dzdp rT r r rz ρ (3) 引入有效压力*p :gz p p ρ+=*(4)(3)式可以简化为:()01=-∂∂*dzdp rT r r rz (5) 定解条件为:0==i R r u 0==o R r u (6) 0==λR r drdu (7)将(5)式对r 积分,得到:rc dz dp r T rz 02+=* (8)根据(7)式,在λR r =处,剪切速率0=γ ,剪切应力也应为零,故由(8)式解得:dzdp R c *-=220λ (9)将(9)式代到(8)式有:⎪⎪⎭⎫ ⎝⎛-=*r R r dz dp T rz 221λ(10) (1)当λR r R i ≤≤时,0≥drdu,0≥rz T ,幂律流体的本构方程为: nrz dr du K T ⎪⎭⎫⎝⎛= (11)由(10)、(11)式可得:nr R r dz dp K dr du 1221⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=*λ (12) 将上式从i R 到r 积分并利用定解条件(6),可得λR r R i ≤≤时的速度分布:dr r R r dz dp K u nr R i 1221⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=*λ (13) (2)当o R r R ≤≤λ时,0≤drdu,0≤rz T ,幂律流体的本构方程为: nrz dr du K T ⎪⎭⎫⎝⎛--= (14)由(10)、(11)式可得:nr r R dz dp K dr du1221⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=*λ (15)将上式从r 到o R 积分并利用定解条件(6),可得o R r R ≤≤λ时的速度分布:dr r rR dz dp K u nR ro 1221⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=*λ(16) (13)式和(16)式即为幂律流体在环空中的速度分布。
The constitutive equation for energy boundary layer inpower law non-Newtonian fluidsLiancun Zheng 1, Xinxin Zhang 21Department of Mathematics and Mechanics, University of Science and Technology Beijing,Beijing 100083, China, e-mail: liancunzheng@2Mechanical Engineering School, University of Science and Technology Beijing,Beijing 100083, China, e-mail: xxzhang@Abstract: A new energy boundary layer equation model for power law non-Newtonian fluids is established first time by assuming that the thermal diffusivity a is characterized as a power law function of temperature gradient. The Prandtl number is characterized by a relationship of velocity gradient, temperature gradient, and the power law index. Furthermore, a new similarity number are derived by supposing that the heat boundary layer equation existing similarity solution.Keywords: Power law fluids, heat transfer, similarity solution, nonlinear boundary value problem. AMS Subject Classification: 34B15, 76D101. IntroductionRecently, considerable attention has been devoted to the problem of how to predict the drag force behavior of non-Newtonian fluids. The main reason for this is probably that fluids(such as molten plastics, pulps, slurries, emulsions), which do not obey the Newtonian postulate that the stress tensor is directly proportional to the deformation tensor, are produced industrially in increasing quantities, and are therefore in some cases just as likely to be pumped in a plant as the more common Newtonian fluids. Understanding the nature of this force by mathematical modeling with a view to predicting the drag forces and the associated behavior of fluid flow has been the focus of considerable research work. In addition, the mathematical model considered in the present paper has significance in studying many problems of engineering [1-3, 6-16].2. Boundary Layer Governing EquationsWhen a fluid flows past a solid body at high Reynolds number , a thin viscous boundary layer is known to form at least along the forward portion of the solid surface. Historically, the boundary layer flow past a flat plate was first example considered by Blasius to illustrate the application of Prandtl’s boundary layer theory. Schowalter R [2] applied the boundary layer theory to power law pseu-doplastic fluids and developed the two-dimensional and three dimensional boundary layer equations for the momentum transfer. Acrivos and Shah [3] considered the momentum and heat transfer for a non-Newtonian fluids pastarbitrary external surfaces. Following the discussion by Schowalter and Acrivos, the similarity equation of momentum boundary layer has been known as0)('' )())'('')(''(1 =+−ηηηηf f f f n (1)Eqs.(1) has been used to describe the momentum transfer in power law fluids boundary layer for more than 40 years [2-20]. However, the similarity equation for thermal boundary layer has not been established up to now. This paper investigates the applicability of boundary layer theory for the flow of power law fluids.A special emphasis is given to the formulation of boundary layer equations, which provide similarity solutions.Consider a semi-infinite plate aligned with a uniform power law flow of constant speed U at uniform wall temperature. The laminar boundary layer equations expressing conservation of mass, momentum and energy should be written as follows: ∞∂∂∂∂U X V Y+=0 (2) YY U V X U U XY ∂∂=+τρ∂∂∂∂1 (3) (Y T a Y Y T V X T U ∂∂∂∂=+∂∂∂∂ (4)where the and axes are taken along and perpendicular to the plate, and V are the velocitycomponents parallel and normal to the plate, X Y U 1−∂∂=n YU γν(γ) is the kinematic viscosity, the thermal diffusivity may be defined as ρ/K =a 1−∂∂=n Y T ω0<n a with and as positive constant. The casecorresponds to a Newtonian fluid and the case is “power law” relation proposed as being descriptive of pseudo-plastic non-Newtonian fluids and n describes the dilatant fluid. The appropriate boundary conditions are:γω1<1>1=n ∞+∞======U U VU Y Y Y ,0 ,000 (5) ,0∞+∞====T T T T Y w Y (6)3. Nonlinear Boundary Value Problem.The dimensionless variables, the stream function ),( y x ψ, the similarity variable ηand the dimensionless temperature function are introduced as )(ηw [12-14], we arrive at the nonlinear boundary value problems of the form:0)('' )())'('')(''(1 =+−ηηηηf f f f n (7)1)(' ,0)0(' ,0)0(===+∞=ηηf f f (8)0)(')())'(')('(1=+−ηηηηw f N w w Zh n (9)1)( ,0)0(==+∞=ηηw w (10)Eqs.(7)-(10) are the similarity equations for both momentum and thermal boundary layer in non-Newtonian fluids. It is clearly that when , Eqs.(7)-(10) reduce to the Falkner-Skan’s equations for Newtonian fluid.1=n Where the similarity number definedas Zh N ω⋅−=∞∞Re )(N T T L U N W n Zh (11) Assuming the solution of Eqs.(7)-(10) possesses a positive second derivative in and ( it is closely related to boundary conditions). Defining the general Crocco variable transformation as:)(ηf ′′) ,0(∞+0)(=+∞′′f []nf tg )( )(η′′=,φ, (12) )()(ηw t =)('ηf t =where is the dimensionless tangential velocity, is the dimensionless shear force, φ is the dimensionless temperature. Substituting (12) into Eqs.(7)-(10) and applying the chain rule yield the following singular nonlinear boundary value problems:t )(t g )(t 10 , )()(1<<−=′′−t t tg t g n (13)0=(1) ,0)0(g g =′ (14)0)()())'())('((=′′+t g t N t g t zh n φφ (15)1)1( ,0)0(==φφ (16)The momentum equation and the energy equation are decoupled since the fluid is incompressible. As the positive solutions of Eqs.(13)-(14) is concerned, Zheng et al.[12-14] discussed some general cases of power law fluid boundary layer equations for . Sufficient conditions for existence, non-uniqueness, uniqueness and analyticity of positive solutions to the problems were established utilizing the perturbation and shooting techniques. It was shown that for special parameters of , Eqs.(13)-(14) have an analytical solution which may be represented by a power series for at t (i.e.,10≤<n )(t g n 0=∑∞==0)(!)0()(i i i t i g t g ) and converges at . 1=t The nonlinear differential equations (7)-(8)(momentum equation) and (9)-(10)(energy equation) are solved for the dependent variables and as a function of . Clearly, the nonlinear boundary value problems(7)-(8) are de-coupled and can be discussed firstly. The solutions then may be used immediately for solving the nonlinear boundary value problems (9)-(10).f w ηUtilizing the solutions of momentum equations (8)-(9), the solutions of energy equations (10)-(11) can be solved by a shooting technique. For all the results are qualitatively agree very well with that of the classical Blasius problems for Newtonian Fluids which have been discussed by many authors 1=n [1]. 4. ConclusionsThe new energy boundary layer model are developed which can be characterized by a power law relationship between shear stress and velocity gradient. A new similarity number are derived by supposing that the heat boundary layer equation existing similarity solution. The solutions may be presented numerically by using the standard Runge-Kutta formulas and a shooting technique and the associated transfer characteristics are discussed in detail.Acknowledgement: The work is supported by the National Natural Science Foundations of China ( No. 50476083).References[1] Schlichting H., Boundary Layer Theory, New York: McGraw-Hill, 1979.[2] Schowalter W. R., The Application of Boundary-Layer Theory to Power-Law Pseudoplastic Fluids:Similar Solutions, A.I.Ch.E.Journal, 1960, 6:24-28.[3] Acrivos A., M.J.Shah, and E.E.Petersen, Momentum and Heat Transfer in Laminar Boundary-LayerFlows of Non-Newtonian Fluids Past External Surfaces, A.I.Ch.E.Journal, 1960, 6:.312-317.[4] Callegari A. J. and Nachman A., Some singular, non-linear differential equations arising in boundarylayer theory, J. Math. Anal. Appl., 1978,46: 96-105.[5] Nachman A. and Callegari A., A Nonlinear Singular Boundary Value Problem in the Theory ofPseudoplastic Fluids, SIAM J.Appl. Math. 1980, 38(3): 275-281.[6] Hopwell T.G., Momentum and heat transfer on a continuous moving surface in power law fluid, Int. J.Heat Mass Transfer, 1997, 40(9): 1853-1861.[7] Wang T.Y., Mixed convection from a vertical plate to Non-Newtonian fluids with uniform surfaceheat flux. Int. Comm. in heat and mass transfer, 1995, 22(3): 369-380.[8] Wang T.Y., Mixed convection heat transfer from a vertical plate to non-Newtonian fluids, Int. J. heatand fluid flow, 1995, 16(1): .56-61.[9] Hassanien I. A., Abdullah A. A. and Gorla R.S.R., Flow and heat transfer in a power-law fluid over aNon-isothermal stretching sheet, Math. Comput. Modeling, 1998, 28(9): 105-116.[10] Kumari K., Pop I. And Takhar H.S., Free-convection boundary-layer flow of a non-Newtonian fluidalong a vertical wavy surface, Int. J. heat and fluid flow, 1997, 18(6): 625-631.[11] Hady F.M., Mixed convection boundary-layer flow of Non-Newtonian fluids on a horizontal plate,Applied mathematics and computation, 1995, 68: 105-112.[12] Howell T.G., Jeng D.R., and De Witt K. J., Momentum and heat transfer on a continuous movingsurface in power law fluid, Int. J. Heat Mass Transfer, 40(1997): 1853-1861.[13] Rao J.H., Jeng D.R., andDe Witt K. J., Momentum and heat transfer in a power-law fluid witharbitrary injection/suction at a moving wall, Int. J. Heat Mass Transfer, 42(1999) 2837-2847.[14] Vajravelu K., Soewono E., and Mohapatra R.N., On Solutions of Some Singular, Non-linearDifferential Equations Arising in Boundary Layer Theory, J. Math. Anal. Appl., 155(1991)499-512. u&&[15] Akcay M., Adil Y kselen M., Drag reduction of a nonnewtonian fluid by fluid injection on a movingwall, Archive of applied mech., 69(1999) 215-225.[16] Liancun Zheng, lianxi Ma, and Jicheng He, Bifurcation solutions to a boundary layer problem arisingin the theory of power law fluids, Acta Mathematica Scientia, 2000, 20(2):19-26.[17] Liancun Zheng and Jicheng He, Existence and non-uniqueness of positive solutions to a non-linearboundary value problems in the theory of viscous fluids, Dynamic systems and applications, 1999, 8: 133-145.[18] Liancun Zheng, Xinxin Zhang, and Jicheng He, Bifurcation behavior of reverse flow boundary layerproblem with special injection/suction, Chinese Phys. Lett., 2003, 20(1): 83-86.[19] Liancun Zheng, Xiaohong Su, Xinxin Zhang, Similarity Solutions for Boundary Layer Flow on aMoving Surface in an Otherwise Quiescent Fluids Medium, International Journal of Pure and Applied Mathematics, V ol.19, No.4, 2005, 541-552.[20] Liancun Zheng, Xinxin Zhang, Jicheng He, Existence and Estimate of Positive Solutions to aNonlinear Singular Boundary Value Problem in the Theory of Dilatant non-Newtonian Fluids, Mathematical Computers Modelling,in press.。