非牛顿流体
- 格式:ppt
- 大小:201.50 KB
- 文档页数:10
非牛顿流体原理非牛顿流体是指在流动过程中,其黏度随着剪切速率的变化而变化的流体。
与牛顿流体不同,非牛顿流体在受力作用下,其黏度并不保持不变,而是会随着流动状态的改变而发生变化。
这种流体的特性在实际生活和工业生产中都有着重要的应用,因此对于非牛顿流体的原理和特性的研究具有重要意义。
首先,我们来介绍一下非牛顿流体的分类。
根据其流动特性,非牛顿流体可分为剪切稀化流体和剪切增稠流体两种类型。
剪切稀化流体是指在受到外力作用时,其黏度会随着剪切速率的增加而减小的流体,如淀粉浆、墨水等;而剪切增稠流体则是指在受到外力作用时,其黏度会随着剪切速率的增加而增加的流体,如果冻、牙膏等。
这两种类型的非牛顿流体在实际应用中具有不同的特点和用途。
其次,我们来探讨一下非牛顿流体的原理。
非牛顿流体的黏度变化与其内部微观结构和分子间相互作用有着密切的关系。
在剪切稀化流体中,当外力作用下,流体内部的颗粒会发生重排和分散,从而导致黏度的降低;而在剪切增稠流体中,外力作用会导致流体内部的颗粒聚集和排列,从而使得黏度增加。
这种原理使得非牛顿流体具有了特殊的流变特性,可以根据具体的应用需求来调控其流动性能。
除此之外,非牛顿流体还具有一些特殊的流动特性。
例如,在非牛顿流体的流动过程中,会出现剪切变稀、剪切变稠等现象,这种非线性的流变特性使得非牛顿流体在实际应用中具有了更广泛的用途。
同时,非牛顿流体还表现出了记忆效应和时间依赖性,这也为其在一些特殊领域的应用提供了可能。
总的来说,非牛顿流体的原理和特性对于我们深入理解流体力学和实际应用具有着重要的意义。
通过对非牛顿流体的研究,我们可以更好地利用其特殊的流变特性,开发出更加符合实际需求的流体材料和工艺。
因此,对于非牛顿流体的深入研究和应用具有着重要的意义,也将会在未来的科技发展中发挥着重要的作用。
非牛顿流体分类引言非牛顿流体是一类在流动过程中不遵循牛顿流体力学模型的物质。
与牛顿流体相比,非牛顿流体的粘度在剪切应力变化下会发生变化,即非线性变化。
非牛顿流体在日常生活和工业领域都有广泛应用。
本文将对非牛顿流体进行分类,介绍几种典型的非牛顿流体,并探讨其基本特性和应用领域。
非牛顿流体分类根据流变学特性和粘度变化规律,非牛顿流体可以分为以下几类:塑性流体塑性流体是一类在剪切应力超过一定临界值时才开始流动的流体。
其特点是具有一定的流动阻力,但流动起来后保持稳定流动。
常见的例子包括黏土、糊状果酱等。
塑性流体在建筑、陶瓷、油漆等领域有广泛应用,如建筑中使用的填缝剂和涂料。
压差型流体压差型流体是一类在剪切应力下产生应力反应的流体。
其粘度随着剪切应力的增加而下降,流动起来的粘度较低。
常见的压差型流体例子有胶体溶液、稀胶等。
在食品、医药、化妆品等领域,压差型流体被广泛应用于制备胶体、乳液等。
剪切变稀流体剪切变稀流体是一类在剪切应力下粘度随剪切速率减小的流体。
其流动性随着剪切速率的增加而增强。
著名的剪切变稀流体是液态凝胶。
液态凝胶在医药、冶金、化妆品等领域有重要应用,例如制备药物控释体、金属陶瓷等。
剪切变稠流体剪切变稠流体是一类在剪切应力下粘度随剪切速率增大的流体。
其流动性随着剪切速率的增加而减小。
常见的例子有颗粒悬浮液、糨糊、混凝土等。
在建筑、化工等领域,剪切变稠流体被广泛应用于制备混凝土、陶瓷、纸浆等。
粘弹性流体粘弹性流体是一类同时具有粘性和弹性特性的流体。
在微小剪切应力作用下,粘弹性流体表现出弹性固体的特性;在较大剪切应力作用下,则表现出流体的特性。
常见的粘弹性流体有胶体溶液中的聚合物溶液、高分子液体等。
粘弹性流体在油墨、涂料、聚合物复合材料等领域被广泛应用。
应用领域非牛顿流体在众多领域有着广泛的应用。
以下为几个典型应用领域的介绍:1.石油工业:非牛顿流体在地质储层模拟、油井压裂等方面发挥着重要作用。
通过对非牛顿流体的研究和应用,可以提高石油开采的效率和产量。
非牛顿流体非牛顿流体,又称假流体,是指在外力作用下其黏度随应力变化的物质。
相比牛顿流体,非牛顿流体在不同应力下表现出不同的流动行为,从而引发了许多有趣的研究和应用。
非牛顿流体的研究起源于物理学家艾萨克·牛顿对流体力学的研究中发现的其黏度不随剪切速率变化的物质,即牛顿流体。
然而,在实际应用中,许多流体并不符合牛顿流体的特性。
有些流体在剪切力作用下表现出凝固行为,这被称为剪切稀化;而另一些流体则表现出溶解行为,称为剪切稠化。
剪切稀化是指在外力作用下,一些非牛顿流体的黏度随着剪切速率的增加而减小。
这种流体的黏度随着外力的增加而发生变化,具有了一种可逆性。
这种流体的一个典型例子是玉米浆。
当玉米浆处于静止状态时,其黏度较高,表现出稠糊状;而当玉米浆受到剪切力作用时,其黏度会大幅度减小,变得更加流动。
剪切稠化则是指在外力作用下,一些非牛顿流体的黏度随剪切速率的增加而增加。
与剪切稀化相反,这种流体的黏度随着外力的增加而变得更加粘稠。
一个典型的例子是底漆涂料。
底漆涂料在施加较低的剪切力之前,呈现出较低的黏度,但随着施加的剪切力增加,其黏度会显著增加,变得更加粘稠。
非牛顿流体的研究对许多领域都有重要的应用价值。
例如在食品工业中,非牛顿流体的研究可用于改善食品的质感和口感。
通过调整非牛顿流体的黏度,可以改变食品的口感和浓稠度,从而提升食品的美观和口味。
此外,在油漆和涂料工业中,非牛顿流体的研究也具有重要的应用价值。
通过理解非牛顿流体的流动行为,可以控制油漆和涂料的黏度,从而提高涂层的质量和稳定性。
此外,非牛顿流体还可以应用于石油工业,例如在油井钻探和输送过程中,非牛顿流体可以提供更好的润滑和减少摩擦。
非牛顿流体的研究也为医学和生物学领域提供了许多有益的应用。
例如,在血液流变学中,非牛顿流体的研究可以帮助科学家更好地了解血液在血管中的流动行为,从而为心血管疾病的诊断和治疗提供依据。
此外,非牛顿流体的研究还可以应用于药物传输和药剂学中,以帮助科学家更好地设计给药系统,提高药物的传递效率和疗效。
非牛顿流体1. 引言非牛顿流体是指在流动过程中其流变性质会随剪切应力的变化而改变的流体。
与牛顿流体不同的是,非牛顿流体的黏度不是一个固定的常数,而是一个与剪切速率相关的函数。
非牛顿流体广泛存在于日常生活和工业生产中,如牛奶、酸奶、液态口红等。
本文将介绍非牛顿流体的基本概念和分类,以及其在科学研究和工业应用中的重要性和应用。
2. 非牛顿流体的基本概念和分类2.1 基本概念非牛顿流体具有以下几个基本特征:•剪切变应力与剪切速率不成正比关系;•流动过程中粘度随剪切速率的变化而改变;•可存在较大的弹性变形。
2.2 分类根据流变特性的不同,非牛顿流体可以分为多种类型,下面介绍其中几种常见的类型:2.2.1 粘弹性流体粘弹性流体具有既具有液体的粘性特性,又具有固体的弹性特性。
在低剪切速率下表现为固体,而在高剪切速率下则表现为液体。
常见的粘弹性流体有琼脂、凝胶等。
2.2.2 塑性流体塑性流体在低应力下表现为固体,只有在超过一定应力阈值后才能发生流动。
常见的塑性流体有泥浆、黏土等。
2.2.3 剪切稀释流体剪切稀释流体的黏度会随剪切速率的增加而降低。
当剪切速率较低时,流体黏度较高,表现为固体;当剪切速率较高时,流体黏度较低,表现为液体。
常见的剪切稀释流体有牛奶、酸奶等。
2.2.4 剪切增稠流体剪切增稠流体的黏度会随剪切速率的增加而增加。
当剪切速率较低时,流体黏度较低,表现为液体;当剪切速率较高时,流体黏度较高,表现为固体。
常见的剪切增稠流体有淀粉水溶液等。
3. 非牛顿流体的重要性和应用非牛顿流体在科学研究和工业应用中具有广泛的重要性和应用价值。
以下列举了其中几个方面的应用:3.1 食品工业非牛顿流体在食品工业中有着重要的应用。
例如,牛奶和酸奶属于剪切稀释流体,其黏度会随剪切速率的增加而降低。
这就是为什么在搅拌或喝牛奶时会感觉液体更容易流动,而在静止时则更像是固体的原因。
3.2 石油工业在石油工业中,非牛顿流体的应用也非常广泛。
非牛顿流体的本质与流动特性引言在流体力学领域中,牛顿流体是最常见的一种流体类型。
牛顿流体按照牛顿第二运动定律的描述可以简化为线性关系,流体的黏度不随剪切速率的改变而改变。
然而,在实际应用中,我们经常会遇到一些黏度随剪切速率变化的情况,这些流体被称为非牛顿流体。
非牛顿流体的本质与流动特性是流体力学中一个重要的课题。
本文将从非牛顿流体的定义、分类、流动特性以及应用等方面进行综述,以加深对非牛顿流体的理解。
非牛顿流体的定义非牛顿流体是指其黏度随剪切速率或剪切应力的改变而改变的流体。
与牛顿流体相比,非牛顿流体在应变速率较大时显示出了明显的非线性特征。
非牛顿流体的变形行为分为弹性变形和粘性变形两种。
弹性变形指的是流体在受力后恢复原状的能力,而粘性变形则是指流体在受力后无法完全恢复原状的现象。
非牛顿流体的分类根据非牛顿流体的流动性质和黏度变化规律,可以将其分为多种类型,下面介绍几种常见的非牛顿流体分类。
塑性流体塑性流体是一种在低应力下表现为固体,而在较高应力下才表现为流体的非牛顿流体。
当外力大于一定临界值时,塑性流体才能发生流动。
塑性流体的流动规律可由卡塞格伦模型描述,该模型将塑性流体视为一种存在阻力的弹簧系统。
粘弹性流体粘弹性流体是指既具有弹性固体的特性,又具有粘性流体的特性的一类材料,其黏度随变形速率和时间的改变而改变。
粘弹性流体可用弹簧和粘滞器并联的模型进行表征,其流变行为介于弹性固体和牛顿液体之间。
纳米流体纳米流体是指在普通流体中加入纳米颗粒后形成的流体,纳米颗粒的添加使得流体具有了新的特性。
纳米流体的黏度和流变行为与纳米颗粒的浓度和形状密切相关。
纳米流体具有优异的热导性和力学性能,在热传导和润滑方面具有广泛的应用前景。
非牛顿流体的流动特性非牛顿流体的流动特性主要表现在其剪切应力与剪切速率之间的非线性关系上。
剪切稀释效应剪切稀释效应是非牛顿流体的一种典型的非线性特征,指的是黏度随剪切速率的增加而降低的现象。
非牛顿流体简介
非牛顿流体是一类具有特殊性质的物质,其粘度(流动性)不是恒定的,而是随着施加在物质上的应力或应变率的变化而变化。
与牛顿流体不同,牛顿流体的粘度在给定的温度和压力下是恒定的,例如水和空气。
非牛顿流体的行为无法用牛顿的粘度定律来描述,通常表现出更复杂的特性。
非牛顿流体可进一步分为以下几种类型:
1. 剪切稀化流体(或称拟塑性流体):这类流体的粘度随着剪切应力的增加而降低。
典型例子包括油漆和墨水,这使得它们在涂抹时更容易流动。
2. 剪切增稠流体(或称稠化流体):相对于剪切稀化流体,这类流体在施加剪切力时其粘度增加。
生活中的例子包括玉米淀粉和水的混合物,当快速搅拌这种混合物时,它会表现出像固体一样的性质。
3. 触变性流体:这类流体的粘度随时间变化,但这种变化是在特定的应力或剪切力作用下发生的。
一些油泥和胶体就属于这种类型,它们在搅拌后的一段时间内变得更加流动。
4. 视变性流体:这类流体在受到震动或振动时,其粘度会发生变化。
一些高分子溶液就属于这种类型。
非牛顿流体的这些特性使其在许多工业和科学应用中非常有用,从食品加工到高科技材料,再到医疗设备和消防领域都有应用。
研究这些材料的流变学特性有助于我们设计更出色的产品和工艺,以满足特定的应用需求。
非牛顿流体简介引言流体是一种特殊的物质状态,其具有流动性和变形性。
根据牛顿流体定律,流体的粘度(也称为黏性)是恒定的。
然而,在一些特殊情况下,一些流体不遵循这种定律,它们被称为非牛顿流体。
非牛顿流体的粘度取决于剪切速率或剪切应力的大小和方向。
本文将对非牛顿流体进行介绍,包括其定义、特性、分类和应用领域。
定义非牛顿流体是指其粘度随剪切速率或剪切应力的变化而变化的流体。
牛顿流体的粘度是恒定的,而非牛顿流体的粘度是可变的。
特性非牛顿流体具有以下特性:剪切变稀当施加剪切力时,非牛顿流体的粘度会减小,流动性增强。
这种现象被称为剪切变稀。
剪切变稀的非牛顿流体在施加剪切力后流动性变得更好,类似于液体。
剪切变稠有些非牛顿流体在施加剪切力时,其粘度会增加,流动性减弱。
这种现象被称为剪切变稠。
剪切变稠的非牛顿流体在施加剪切力后流动性变得更差,类似于固体。
黏弹性非牛顿流体还可以表现出黏弹性。
黏弹性是指非牛顿流体在施加剪切力后,粘度会随时间的推移而改变。
具有黏弹性的非牛顿流体在受力后可以保持形变,并且在撤力后会逐渐恢复原状。
非线性粘度牛顿流体的粘度与剪切速率成正比,而非牛顿流体的粘度与剪切速率不呈线性关系。
这意味着非牛顿流体的粘度可能随剪切速率的变化而变化。
分类非牛顿流体可以根据其粘度随剪切速率或剪切应力变化的方式进行分类。
主要的分类包括以下几种:塑性流体塑性流体是一种在没有施加剪切力时是固体,在施加剪切力达到一定阈值后才开始流动的非牛顿流体。
当剪切力超过阈值时,塑性流体会发生变形。
粘弹性流体粘弹性流体是指同时具有粘性和弹性特性的非牛顿流体。
粘弹性流体的行为介于固体和液体之间。
它们在受力时会发生形变,但在撤力后又会恢复原状。
假塑性流体假塑性流体又称为伪塑性流体,其粘度随剪切速率的增加而减小,但没有阈值。
假塑性流体在不受剪切力作用时呈现固态,但在施加剪切力时会变得流动。
剪切变稀流体剪切变稀流体的粘度随剪切速率的增加而减小。
什么就是非牛顿流体1 非牛顿流体的定义自然界最常见的流体以空气与水为代表,通常被认为就是牛顿流体,熊老师在上课时讲过,它们的主要特征就是切应力与切应变率之间的关系服从牛顿内摩擦定律或胡克定律,在流体力学的发展史上,经典流体力学的研究对象主要局限在牛顿流体的范畴,迄今为止已经形成了比较完整的理论体系。
但就是,还有不少材料既不就是虎克固体,也不就是牛顿流体。
这些材料同时具有固体与流体的性质,哪种性质为主决定于进行观察时间的长短以及材料变形的大小。
有许多真实的材料样子像流体,即它们在受到应力时连续地改变它们的形状,但它们不能用牛顿关于常粘度的定律来描述,这类流体叫做非牛顿流体。
现在去医院作血液测试的项目之一,己不再就是“血粘度检查”,而就是“血液流变学捡查”(简称血流变),产生这样的变化就就是因为血液不就是牛顿流体,恒定不变的“粘度”不就是它的一种属性。
牛顿于1687年发表了以水为工作介质的一维剪切流动的实验结果。
实验就是在两平行平板间充满水时进行的,下平板固定不动,上平板在其自身平面内以等速U向右运动。
此时,附着于上、下平板的流体质点的速度,分别就是U与0,两平板间的速度呈线性分布,斜率就是粘度系数。
由此得到了著名的牛顿粘性定律。
斯托克斯1845年在牛顿这一实验定律的基础上,作了应力张量就是应变率张量的线性函数、流体各向同性及流体静止时应变率为零的三项假设,从而导出了广泛应用于流体力学研究的线性本构方程,以及被广泛应用的N·S方程。
后来人们在进一步的研究中知道,牛顿粘性实验定律,对于描述像水与空气这样低分子量的简单流体就是适合的,而对描述具有高分子量的流体就不合适了,那时剪应力与剪切应变率之间己不再满足线性关系。
为区别起见,人们将剪应力与剪切应变率之间满足线性关系的流体称为牛顿流体,而把不满足线性关系的流体称为非牛顿流体。
2 常见的非牛顿流体早在人类出现之前,非牛顿流体就己存在,因为绝大多数生物流体都属于现在所定义的非牛顿流体。
非牛顿流体 - 分类(1)非时变性非牛顿流体:流体的表观粘度只与剪应变率(或剪应力)有关,与剪切作用持续时间无关。
(2)时变性非牛顿流体:流体的表观粘度不仅与剪应变率(或剪应力)有关,而且与剪切作用持续时间有关。
(3)粘弹性流体:兼有粘性和弹性双重性质。
[1]非牛顿流体 - 特性射流胀大如果非牛顿流体被迫从一个大容器流进一根毛细管,再从毛细管流出时,可发现射流的直径比毛细管的直径大。
射流直径与毛细管直径之比称为模片胀大率(亦称为挤出物胀大比)。
对牛顿流体,它依赖于雷诺数,其值约在0.88~1.12间。
而对于高分子熔体或浓溶液,其值大得多,甚至可超过10。
一般来说,模片胀大率是流动速率与毛细管长度的函数。
模片胀大现象在口模设计中十分重要。
聚合物熔体从一根矩形截面的管口流出时,管截面长边处的胀大比短边处的胀大更加显著,在管截面的长边中央胀得最大。
这种射流胀大现象也叫Barus效应或Merrington效应。
爬杆效应1944年Weissenberg在英国伦敦帝国学院公开表演了一个有趣的实验。
在一只有粘弹性流体(非牛顿流体的一种)的烧杯里,旋转实验杆。
对于牛顿流体,由于离心力验的作用,液面将呈凹形;而对于粘弹性流体,却向杯中心运动,并沿杆向上爬,液面变成凸形。
甚至在实验杆的旋转速度很低时,也可以观察到这一现象。
爬杆效应也称为Weissenberg效应。
在设计混合器时,必须考虑爬杆效应的影响。
同样在设计非牛顿流体的输运泵时,也应考虑和利用这一效应。
无管虹吸对牛顿流体来说,在虹吸实验时,如果将虹吸管提离液面,虹吸马上就会停止。
但对高分子液体,如聚异丁烯的汽油溶液和1%POX水溶液,或聚醣在水中的轻微凝胶体系等很容易表演无管虹吸实验。
将管子慢慢地从容器里拔起时,可以看到虽然管子已不再插在流体里,流体仍源源不断地从杯中抽起,继续流进管里。
甚至更简单地,连虹吸管都不要,将装满该流体的烧杯微倾,使流体流下,这过程一旦开始,就不会中止,直到杯中流体都流光。
非牛顿流体详细教程
非牛顿流体是指其流动受应力作用而变形的流体。
相比牛顿流体,它们具有非线性流变特性,即其粘度随着剪切速率或剪切应力的变化而改变。
非牛顿流体可以分为可塑性流体和假塑性流体两种类型。
可塑性流体的特点是在低剪切速率下表现为固体,但在高剪切速率下表现为液体。
这种流体的粘度随着剪切速率的增加而减小。
常见的可塑性流体有黏土、泥浆等。
假塑性流体的特点是在低剪切速率下表现为液体,但在高剪切速率下表现为固体。
这种流体的粘度随着剪切速率的增加而增加。
常见的假塑性流体有淀粉浆、聚合物溶液等。
非牛顿流体的流变特性可以通过流变仪进行测试。
流变仪是一种专门用于测定流体粘度及变形特性的仪器。
通过在流变仪中施加不同的剪切应力或剪切速率,可以获得非牛顿流体的流变曲线。
常见的流变曲线有剪切应力-剪切速率曲线和粘度-剪切速率曲线。
在工程与科学中,非牛顿流体的应用广泛。
例如在化工工艺中,非牛顿流体的粘度特性对流体的输送、混合和反应过程有重要影响。
在医学领域,非牛顿流体的研究对于了解血液的流动特性和疾病的治疗具有重要意义。
此外,非牛顿流体的研究还在食品加工、油田勘探等领域发挥着重要作用。
总结来说,非牛顿流体是一类具有非线性流变特性的流体。
通过流变仪可以测试其流变特性,对于工程与科学领域具有广泛的应用价值。
以上是对非牛顿流体的简要介绍。
非牛顿流体简单原理非牛顿流体是指在受力作用下,流体的黏度随着剪切速率的改变而发生变化的流体。
相比于牛顿流体,非牛顿流体的黏度不是一个恒定的数值,而是随着流体内部的运动状态而改变的。
非牛顿流体的研究对于理解和应用流体力学具有重要的意义。
下面我们来简单了解一下非牛顿流体的基本原理。
首先,我们需要了解牛顿流体和非牛顿流体的区别。
牛顿流体的黏度是一个恒定的值,不受外力的影响,例如水和空气都属于牛顿流体。
而非牛顿流体的黏度则会随着受力情况的改变而发生变化,例如墨汁、果酱、牛奶等都属于非牛顿流体。
这种特殊的性质使得非牛顿流体在工业生产和科研领域有着广泛的应用。
其次,非牛顿流体的黏度随着剪切速率的改变而发生变化。
当外力作用在非牛顿流体上时,流体分子间的相互作用会发生改变,导致流体的黏度发生变化。
具体来说,当流体受到较小的剪切力时,流体分子之间的相互作用较强,流体呈现出较高的黏度;而当流体受到较大的剪切力时,流体分子之间的相互作用减弱,流体呈现出较低的黏度。
这种剪切速率和黏度之间的关系是非牛顿流体的一个重要特征。
此外,非牛顿流体还可以根据其流变特性进行分类。
常见的非牛顿流体包括塑性流体、假塑性流体和粘弹性流体。
塑性流体在受到较小的剪切力时表现出固体的特性,而在受到较大的剪切力时才呈现出流体的特性;假塑性流体在受到剪切力时呈现出黏度随剪切速率增加而递减的特性;粘弹性流体则同时具有液体和固体的特性,表现出延展性和弹性。
总的来说,非牛顿流体的简单原理就是在受力作用下,流体的黏度随着剪切速率的改变而发生变化。
这种特殊的流体力学特性使得非牛顿流体在食品加工、医药制备、油漆涂料等领域有着广泛的应用。
对非牛顿流体的研究不仅有助于深化我们对流体力学的理解,也为工业生产和科学研究提供了重要的理论基础。
希望通过本文的介绍,读者对非牛顿流体有了更清晰的认识,进一步了解流体力学的相关知识。