多因素时间序列的灰色预测模型
- 格式:rtf
- 大小:424.72 KB
- 文档页数:4
灰色预测模型公式灰色预测模型是一种基于历史数据和现有数据的预测方法,它可以用来预测未来某个事件或指标的发展趋势。
灰色预测模型的核心思想是利用系统自身的信息和规律,通过建立灰色微分方程来进行预测。
灰色预测模型的公式可以表示为:$$\hat{X}_{0}^{(k)} = (X_{0}^{(1)} + X_{0}^{(2)} + ... + X_{0}^{(k)}) / k$$$$\hat{X}_{i}^{(k)} = (X_{0}^{(1)} + X_{0}^{(2)} + ... + X_{0}^{(k)}) / k$$$$\hat{X}_{i+1}^{(1)} = aX_{i}^{(1)} + b$$$$\hat{X}_{i+1}^{(k+1)} = aX_{i}^{(k+1)} + b$$其中,$X_{0}^{(k)}$表示观测数据的累加生成序列,$\hat{X}_{i}^{(k)}$表示预测值,$a$和$b$为待确定的系数。
灰色预测模型的核心思想是将数据分为两个部分:系统的发展规律部分和随机波动部分。
系统的发展规律部分可以通过灰色微分方程进行建模和预测,而随机波动部分则通过随机项来表示。
灰色预测模型的建模步骤如下:1. 数据预处理:对原始数据进行平滑处理,消除随机波动的影响,得到累加生成序列。
2. 确定发展规律:根据累加生成序列,建立灰色微分方程,估计系统的发展规律。
3. 模型参数估计:通过最小二乘法估计模型的参数,确定$a$和$b$的值。
4. 模型检验和优化:对模型进行检验和优化,确保预测结果的准确性和可靠性。
5. 模型预测:利用建立好的灰色预测模型,对未来的数据进行预测。
灰色预测模型在实际应用中具有广泛的应用价值。
它可以用来预测各种经济指标、环境数据、自然灾害等,为决策提供科学依据。
同时,灰色预测模型还可以用于评估和分析系统的可持续发展能力,帮助企业和机构合理规划和管理资源。
灰色预测模型是一种基于历史数据和现有数据的预测方法,它通过利用系统自身的信息和规律,建立灰色微分方程来进行预测。
灰色系统模型(Grey Model,GM)一:解决的关键问题 (所谓灰色系统是指部分信息已知而部分信息未知的系统,灰色系统所要考察和研究的是对信息不完备的系统,通过已知信息来研究和预测未知领域从而达到了解整个系统的目的)灰色系统模型作为一种预测方法广泛应用于工程控制,经济管理,社会系统等众多领域。
二:GM(1,1)模型(一):对原始序列累加处理一次累加生产序列②(即1-AGO序列),表示为其中,一次累加序列(1)X 的第k 项由原序列的前k 项和产生,即: 由(1)X 的相邻项平均得到(1)X 的紧邻均值生成序列(1)z ,表示为:根据上述序列,有灰色系统模型GM(1,1)的基本形式:(二)构造GM(1,1)模型方程组的矩阵形式,并求解参数 GM(1,1)模型的微分方程基本形式:(三)求的时间响应序列,累减得到原序列的预测值(四)模型检验残差的均值、方差分别为:21S C S 称为均方差比值,对于给定的00C ,当0C C 时,称模型为均方差比合格模型;1(()0.6745)p p k S 称为小误差概率,对于给定的00P ,当0P P 时,称模型为小误差概率合格模型。
一般均方差比值C 越小越好(因为C 小说明S 小,1S 大,即残差方差小,原始数据方差大,说明残差比较集中,摆动幅度小,原始数据比较分散,摆动幅度大,所以模拟效果好,要求2S 与1S 相比尽可能小),以及小误差概率p 越大越好,给定000,,,C p 的一组取值,就确定了检验模型模拟精度的一个等级,常用的精度等级见表1。
软件DPS 的分析结果也提供了C 、p 的检验结果。
(五)残差修正模型(六)建立新陈代谢GM(1,1)进行动态预测在实际建模过程中,原始数据序列的数据不一定全部用来建模。
我们在原始数据序列中取出一部分数据,就可以建立一个模型。
一般说来,取不同的数据,建立的模型也不一样,即使都建立同类的GM(1,1)模型,选择不同的数据,参数a,b的值也不一样。
灰色预测模型理论及其应用灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测.灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.本文主要围绕灰色预测GM(1,1)模型及其应用进行展开。
一、灰色系统及灰色预测的概念1.1灰色系统灰色系统产生于控制理论的研究中。
若一个系统的内部特征是完全已知的,即系统的信息是充足完全的,我们称之为白色系统。
若一个系统的内部信息是一无所知,一团漆黑,只能从它同外部的联系来观测研究,这种系统便是黑色系统。
灰色系统介于二者之间,灰色系统的一部分信息是已知的,一部分是未知的。
区别白色和灰色系统的重要标志是系统各因素间是否有确定的关系。
特点:灰色系统理论以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定型系统的研究对象。
1.2灰色预测灰色系统分析方法是通过鉴别系统因素之间发展趋势的相似或相异程度,即进行关联度分析,并通过对原始数据的生成处理来寻求系统变动的规律。
生成数据序列有较强的规律性,可以用它来建立相应的微分方程模型,从而预测事物未来的发展趋势和未来状态。
灰色预测是用灰色模型GM(1,1)来进行定量分析的,通常分为以下几类:(1) 灰色时间序列预测。
用等时距观测到的反映预测对象特征的一系列数量(如产量、销量、人口数量、存款数量、利率等)构造灰色预测模型,预测未来某一时刻的特征量,或者达到某特征量的时间。
(2) 畸变预测(灾变预测)。
通过模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。
(3) 波形预测,或称为拓扑预测,它是通过灰色模型预测事物未来变动的轨迹。
灰色系统理论是由我国学者邓聚龙教授于1982年创立的一门横断面大、渗透性强、应用面极广的边缘学科。
它以“部分信息已知,部分信息未知”的“小样本”、“贫信息”不确定性系统为研究对象,主要通过对“部分”已知信息的生成、开发,提取有价值的信息,实现对系统运行规律的正确认识和有效控制。
如人口系统涉及因素太多,具有明显的灰色性,适宜采用灰色模型去发掘和认识其原始时间序列综合灰色量所包涵的内在规律。
下面以灰色模型中应用广泛的GM(l ,l)模型为例,介绍灰色建模方法设)0(X = [)0(x (1), )0(x (2), …, )0(x (n)]为系统输出的非负原始数据序列,对序列)0(X 进行一阶累加生成,得生成序列)1(X ,即)()1(k x =)(1)0(i x ki ∑= (k = 1, 2, …, n)GM(1, 1)预测模型是一阶单变量的灰色微分方程动态模型)()0(k x + )()1(k az = b (k = 1, 2, …, n) (1)其中)()1(k z 为)()1(k x 的紧邻均值生成,即)()1(k z = 0.5[)()1(k x +)1()1(-k x ],式(1)白化方程形式为:b ax dtdx =+)1()1( 其中a ,b 为待定系数,分别称之为发展系数和灰色作用量,a 的有效区间是(-2, 2)。
应用最小二乘法可经下式求得:aˆ = T b a ),(= n T T Y B B B ⋅⋅-1)( 其中 B =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+--+-+-111)),()1((2/1)),3()2((2/1 )),2()1((2/1)1()1()1()1()1()1( n x n x x x x x n Y = [)0(x (2), )0(x (3), …, )0(x (n)] 方程的解即时间响应函数为⎪⎩⎪⎨⎧-+=++⋅-=+-)(ˆ)1(ˆ)1(ˆ))1(()1(ˆ)1()1()0()0()1(k x k x k xa b e a b x k x ak模型检验为确保所建灰色模型有较高的精度应用于预测实践,可用残差进行检验:(1) 求出)()0(k x 与)(ˆ)0(k x之残差)(k e 、相对误差k ∆和平均相对误差∆: )(ˆ)()()0()0(k x k x k e -=, %100)()()0(⨯=∆k x k e k , ∑=∆=∆n k k n 11 (2) 求出原始数据平均值x ,残差平均值e :x = ∑=n k x n 1)0(1(k), e = )(112)0(∑=-n k k e n (3) 求出原始数据方差21s 与残差方差22s 的均方差比值C 和小误差概率P :21s = ∑=-n k x k x n 12)0(])([1, 22)0(22])([11e k e n s n k --=∑= C =2s /1s , p = P{e k e -)()0( < 0.67451s }通常)(k e 、k ∆、C 值越小,p 值越大,则模型精度越好。
灰色预测模型灰色预测是就灰色系统所做的预测. 所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰箱系统. 一般地说,社会系统、经济系统、生态系统都是灰色系统.灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测.灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.一、GM(1,1)模型灰色系统理论是邓聚龙教授在1981年提出来的,是一种对含有不确定因素系统进行预测的方法. 通过鉴别系统因素之间发展趋势的相异程度,进行关联分析,并通过对原始数据进行生成处理来寻找系统的变化规律,生成较强规律性数据序列,然后建立相应微分方程模型,从而预测事物未来的发展趋势和未来状态. 目前使用最广泛的灰色预测模型是关于数列预测的一个变量、一阶微分的GM(1,1)模型.GM(1,1)模型是基于灰色系统的理论思想,将离散变量连续化,用微分方程代替差分方程,按时间累加后所形成的新的时间序列呈现的规律可用一阶线性微分方程的解来逼近,用生成数序列代替原始时间序列,弱化原始时间序列的随机性,这样可以对变化过程作较长时间的描述,进而建立微分方程形式的模型. 其建模的实质是建立微分方程的系数,将时间序列转化为微分方程,通过灰色微分方程可以建立抽象系统的发展模型. 经证明,经一阶线性微分方程的解逼近所揭示的原始时间数列呈指数变化规律时,灰色预测GM(1,1)模型的预测将是非常成功的.1.1 GM(1,1)模型的建立灰色理论认为一切随机量都是在一定范围内、一定时间段上变化的灰色量及灰色过程. 数据处理不去寻找其统计规律和概率分布, 而是对原始数据作一定处理后, 使其成为有规律的时间序列数据, 在此基础上建立数学模型.GM(1,1)模型是指一阶,一个变量的微分方案预测模型,是一阶单序列的线性动态模型,用于时间序列预测的离散形式的微分方程模型.设时间序列()0X 有n 个观察值,()()()()()()(){}00001,2,,X x x x n =,为了使其成为有规律的时间序列数据,对其作一次累加生成运算,即令()()()()101tn xt x n ==∑从而得到新的生成数列()1X ,()()()()()()(){}11111,2,,X x x x n =,新的生成数列()1X 一般近似地服从指数规律. 则生成的离散形式的微分方程具体的形式为dxax u dt+= 即表示变量对于时间的一阶微分方程是连续的. 求解上述微分方程,解为(1)()a t u x t ce a--=+当t =1时,()(1)x t x =,即(1)uc x a=-,则可根据上述公式得到离散形式微分方程的具体形式为()()()11a t u u x t x e a a --⎛⎫=-+ ⎪⎝⎭其中,ax 项中的x 为dxdt的背景值,也称初始值;a ,u 是待识别的灰色参数,a 为发展系数,反映x 的发展趋势;u 为灰色作用量,反映数据间的变化关系.按白化导数定义有0()()limt dx x t t x t dt t→+-= 显然,当时间密化值定义为1时,当1t →时,则上式可记为1lim(()())t dxx t t x t dt→=+- 这表明dxdt是一次累减生成的,因此该式可以改写为 (1)(1)(1)()dxx t x t dt=+- 当t 足够小时,变量x 从()x t 到()x t t +是不会出现突变的,所以取()x t 与()x t t +的平均值作为当t 足够小时的背景值,即(1)(1)(1)1()(1)2x x t x t ⎡⎤=++⎣⎦将其值带入式子,整理得(0)(1)(1)1(1)()(1)2x t a x t x t u ⎡⎤+=-+++⎣⎦ 由其离散形式可得到如下矩阵:(1)(1)(0)(1)(1)(0)(0)(1)(1)1(1)(2)2(2)1(2)(3)(3)2()1(1)()2x x x x x x a u x n x n x n ⎛⎫⎡⎤-+ ⎪⎣⎦⎛⎫ ⎪ ⎪ ⎪⎡⎤-+ ⎪⎣⎦ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎡⎤--+ ⎪⎣⎦⎝⎭令 (0)(0)(0)(2),(3),,()TY x x x n ⎡⎤=⎣⎦(1)(1)(1)(1)(1)(1)11(1)(2)211(2)(3)21(1)()12x x x x B x n x n ⎛⎫⎡⎤-+ ⎪⎣⎦ ⎪ ⎪⎡⎤-+⎣⎦ ⎪= ⎪ ⎪ ⎪⎡⎤--+ ⎪⎣⎦⎝⎭()Ta u α=称Y 为数据向量,B 为数据矩阵,α为参数向量. 则上式可简化为线性模型:Y B α=由最小二乘估计方法得()1T T a B B B Y uα-⎛⎫== ⎪⎝⎭上式即为GM(1,1)参数,a u 的矩阵辨识算式,式中()1T T B B B Y -事实上是数据矩阵B 的广义逆矩阵.将求得的a ,u 值代入微分方程的解式,则()1(1)()((1))a t u u x t x e a a--=-+其中,上式是GM(1,1)模型的时间响应函数形式,将它离散化得(1)(0)(1)ˆ()(1)a t u u xt x e a a --⎛⎫=-+ ⎪⎝⎭ 对序列()()1ˆxt 再作累减生成可进行预测. 即 ()(0)(1)(1)(0)(1)ˆˆˆ()()(1)(1)1a a t xt x t x t u x e e a --=--⎛⎫=-- ⎪⎝⎭ 上式便是GM(1,1)模型的预测的具体计算式.或对()at ux t ce a-=+求导还原得(0)(0)(1)ˆ()((1))a t uxt a x e a--=-- 1.2 GM(1,1)模型的检验GM(1,1)模型的检验包括残差检验、关联度检验、后验差检验三种形式. 每种检验对应不同功能:残差检验属于算术检验,对模型值和实际值的误差进行逐点检验;关联度检验属于几何检验范围,通过考察模型曲线与建模序列曲线的几何相似程度进行检验,关联度越大模型越好;后验差检验属于统计检验,对残差分布的统计特性进行检验,衡量灰色模型的精度. ➢ 残差检验残差大小检验,即对模型值和实际值的残差进行逐点检验.设模拟值的残差序列为(0)()e t ,则(0)(0)(0)ˆ()()()e t x t xt =- 令()t ε为残差相对值,即残差百分比为(0)(0)(0)ˆ()()()%()x t xt t x t ε⎡⎤-=⎢⎥⎣⎦令∆为平均残差,11()nt t n ε=∆=∑.设残差的方差为22S ,则[]22211()n t S e t e n ==-∑. 故后验差比例C 为21/C S S =,误差频率P 为{}1()0.6745P P e t e S =-<.对于,C P 检验指标如下表: 检验指标好 合格 勉强 不合格 P >0.95 >0.80 >0.70 <0.70 表 1 灰色预测精确度检验等级标准一般要求()20%t ε<,最好是()10%t ε<,符合要求.➢ 关联度检验关联度是用来定量描述各变化过程之间的差别. 关联系数越大,说明预测值和实际值越接近.设 {}(0)(0)(0)(0)ˆˆˆˆ()(1),(2),,()Xt x x x n =⋯ {}(0)(0)(0)(0)()(1),(2),,()X t x x x n =⋯序列关联系数定义为(){}{}{}(0)(0)(0)(0)(0)(0)(0)(0)ˆˆmin ()()max ()(),0ˆˆ()()max ()()1,0x t x t x t x t t t x t x t x t x t t σξσ⎧-+-⎪≠⎪=⎨-+-⎪=⎪⎩ 式中,(0)(0)ˆ()()x t x t -为第t 个点(0)x 和(0)ˆx 的绝对误差,()t ξ为第t 个数据的关联系数,ρ称为分辨率,即取定的最大差百分比,0ρ<<1,一般取0.5ρ=.(0)()x t 和(0)ˆ()xt 的关联度为 ()11nt r t n ξ==∑精度等级 关联度 均方差比值 小误差概率 好(1级) 0.90≥ 0.35≤ 0.95≥ 合格(2级) 0.80≥ 0.50≤ 0.80≥ 勉强(3级) 0.70≥ 0.65≤ 0.70≥ 不合格(4级) 0.70< 0.65> 0.70<表 2 精度检验等级关联度大于60%便满意了,原始数据与预测数据关联度越大,模型越好.➢ 后验差检验后验差检验,即对残差分布的统计特性进行检验. 检验步骤如下:1、计算原始时间数列(){}0(0)(0)(0)(1),(2),,()X x x x n =的均值和方差()2(0)(0)2(0)11111(),()n n t t xx t S x t x n n ====-∑∑ 2、计算残差数列{}(0)(0)(0)(0)(1),(2),,()e e e e n =的均值e 和方差22s ()2(0)2(0)21111(),()n n t t e e t S e t e n n ====-∑∑其中(0)(0)(0)ˆ()()(),1,2,,e t x t x t t n =-=为残差数列.3、计算后验差比值21C S S =4、计算小误差频率{}(0)1()0.6745P P e t e S =-<令0S =0.67451S ,(0)()|()|t e t e ∆=-,即{}0()P P t S =∆<.若对给定的00C >,当0C C <时,称模型为方差比合格模型;若对给定的00P >,当0P P >时,称模型为小残差概率合格模型.P C 模型精度 >0.95 <0.35 优 >0.80 <0.5 合格 >0.70 <0.65 勉强合格 <0.70 >0.65 不合格表 3 后验差检验判别参照表1.3 残差GM(1,1)模型当原始数据序列(0)X 建立的GM(1,1)模型检验不合格时,可以用GM(1,1)残差模型来修正. 如果原始序列建立的GM(1,1)模型不够精确,也可以用GM(1,1)残差模型来提高精度.若用原始序列(0)X 建立的GM(1,1)模型(1)(0)ˆ(1)[(1)]at u uxt x e a a-+=-+ 可获得生成序列(1)X 的预测值,定义残差序列(0)(1)(1)ˆ()()()e k x k xk =-. 若取k=t , t+1, …, n ,则对应的残差序列为{}(0)(0)(0)(0)()(1),(2),,()e k e e e n =计算其生成序列(1)()e k ,并据此建立相应的GM(1,1)模型(1)(0)ˆ(1)[(1)]e a k e ee eu u et e e a a -+=-+ 得修正模型(1)(0)(0)(1)(1)()()(1)e a k ak e e e u u u x t x e k t a e e a a a δ--⎡⎤⎡⎤+=-++---⎢⎥⎢⎥⎣⎦⎣⎦其中1()0k tk t k tδ≥⎧-=⎨≤⎩为修正参数.应用此模型时要考虑:1、一般不是使用全部残差数据来建立模型,而只是利用了部分残差.2、修正模型所代表的是差分微分方程,其修正作用与()k t δ-中的t 的取值有关.1.4 GM(1,1)模型的适用范围定理:当GM(1,1)发展系数||2a ≥时,GM(1,1)模型没有意义.我们通过原始序列()0i X 与模拟序列()0ˆiX 进行误差分析,随着发展系数的增大,模拟误差迅速增加. 当发展系数0.3a -≤时,模拟精度可以达到98%以上;发展系数0.5a -≤时,模拟精度可以达到95%以上;发展系数1a ->时,模拟精度低于70%;发展系数 1.5a ->时,模拟精度低于50%.进一步对预测误差进行考虑,当发展系数0.3a -<时,1步预测精度在98%以上,2步和5步预测精度都在90%以上,10步预测精度亦高于80%;当发展系数0.8a ->时,1步预测精度已低于70%.通过以上分析,可得下述结论:1、当0.3a -<时,GM(1,1)可用于中长期预测;2、当0.30.5a <-≤时,GM(1,1)可用于短期预测,中长期预测慎用;3、当0.50.8a <-≤时,GM(1,1)作短期预测应十分谨慎;4、当0.81a <-≤时,应采用残差修正GM(1,1)模型;5、当1a ->时,不宜采用GM(1,1)模型.1.5 GM(1,1)模型实例分析()()(0)(0)(0)(0)(0)(1),(2),(3),(4)79,74.825,74.29,76.98X x x x x ==对(0)X 作一次累加后的数列为()()(1)(1)(1)(1)(1)(1),(2),(3),(4)79,153.825,228.115,305.095X x x x x == 对(1)X 做紧邻均值生成. 令(1)(1)(1)()0.5()0.5(1)Z k x k x k =+-,得()()(1)(1)(1)(1)(2),(3),(4)116.4125,151.47,150.1925Z z z z ==则数据矩阵B 及数据向量Y 为(1)(1)(1)(2)1116.41251(3)1151.471(4)1150.19251z B z z ⎡⎤--⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,(0)(0)(0)(2)74.825(3)74.29(4)76.98x Y x x ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 对参数列ˆ[,]T aa b =进行最小二乘估计,得 176.61ˆ()[,]0.0144T T T T a B B B Y B Y a u -⎡⎤====⎢⎥-⎣⎦即 0.0144a =-,76.61u = 则GM(1,1)模型为()()110.014476.61dx x dt-= 时间响应式为(1)0.0144ˆ(1)5399.13895320.1389xk e -+=- 当1k =时,我们取(1)(0)(0)ˆˆ(1)(1)(0)79xx x === 还原求出(0)X 的模拟值. 由(0)(1)(1)ˆˆˆ()()(1)Xk x k x k =--,取2,3,4k =,得 ()()(0)(0)(0)(0)(0)ˆˆˆˆˆ(1),(2),(3),(4)79,74.281,74.3584,76.4513xx x x x == 通过预测,得到实际值与预测值如下表:实际值 预测值相对误差()k ε 第一学期79 79 0 第二学期 74.825 74.2810 0.73% 第三学期 74.29 74.3584 0.0921% 第四学期76.9876.45130.7051%表 4 四学期的实际值与预测值的误差表因为()10%k ε<,那就可得学生的预测值,与现实值进行比较得出该模型精度较高,可进行预测和预报.我们对学生未来两个学期(也就是第五、六个学期)的成绩进行预测,分别为77.5602分和78.6851分.例:某大型企业1999年至2004年的产品销售额如下表,试建立GM(1,1)预测模型,并预测2005年的产品销售额。
数学模型与数学实验数课程报告题目:灰色预测模型介绍专业:班级:姓名:学号:二0一一年六月1. 模型功能介绍预测模型为一元线性回归模型,计算公式为Y=a+b。
一元非线性回归模型:Y=a+blx+b2x2+…+bmxm。
式中:y为预测值;x为自变量的取值;a,b1,b2……bm为回归系数。
当自变量x与因变量y之间的关系是直线上升或下降时,可采用一元线性预测模型进行预测。
当自变量x和因变量y之间呈曲线上升或下降时,可采用一元非线性预测模型中的y=a+b1x+b2x2+…+bmxm这个预测模型。
当自变量x和因变量y之间关系呈上升一下降一再上升一再下降这种重复关系时,可采用一元线性预测模型中的Y=a+bx这个模型来预测。
其中我要在这里介绍灰色预测模型。
灰色预测是就灰色系统所做的预测,灰色系统(Grey System)理论[]1是我国著名学者邓聚龙教授20世纪80年代初创立的一种兼备软硬科学特性的新理论[95]96]。
所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰色系统。
一般地说,社会系统、经济系统、生态系统都是灰色系统。
例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。
灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。
尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。
灰色系统的基本原理公理1:差异信息原理。
“差异”是信息,凡信息必有差异。
公理2:解的非唯一性原理。
信息不完全,不明确地解是非唯一的。
公理3:最少信息原理。
灰色系统理论的特点是充分开发利用已有的“最少信息”。