陶瓷材料的强韧化方法概述
- 格式:doc
- 大小:38.50 KB
- 文档页数:2
陶瓷材料的强化影响陶瓷材料强度的因素是多方面的,材料强度的本质是内部质点(原子、离子、分子)间的结合力,为了使材料实际强度提高到理论强度的数值,长期以来进行了大量研究。
从对材料的形变及断裂的分析可知,在晶体结构既定的情况下,控制强度的主要因素有三个,即弹性模量E,断裂功(断裂表面能)和裂纹尺寸。
其中E是非结构敏感的,与微观结构有关,但对单相材料,微观结构对的影响不大,唯一可以控制的是材料中的微裂纹,可以把微裂纹理解为各种缺陷的总和。
所以强化措施大多从消除缺陷和阻止其发展着手。
值得提出的有下列几个方面。
(1)微晶, 高密度与高纯度为了消除缺陷,提高晶体的完整性,细、密、匀、纯是当前陶瓷发展的一个重要方面。
近年来出现了许多微晶、高密度、高纯度陶瓷,例如用热压工艺制造的陶瓷密度接近理论值,几乎没有气孔,特别值得提出的是各种纤维材料及晶须。
(2)预加应力人为地预加应力,在材料表面造成一层压应力层,就可提高材料的抗张强度。
脆性断裂通常是在张应力作用下,自表面开始,如果在表面造成一层残余压应力层,则在材料使用过程中表面受到拉伸破坏之前首先要克服表面上的残余压应力。
(3)化学强化如果要求表面残余压应力更高,则热韧化的办法就难以做到,此时就要采用化学强化(离子交换)的办法。
这种技术是通过改变表面的化学组成,使表面的摩尔体积比内部的大。
由于表面体积胀大受到内部材料的限制,就产生一种两向状态的压应力。
4)陶瓷材料的增韧所谓增韧就是提高陶瓷材料强度及改善陶瓷的脆性,是陶瓷材料要解决的重要问题。
与金属材料相比,陶瓷材料有极高的强度,其弹性模量比金属大很多。
韧化的主要机理有应力诱导相变增韧,相变诱发微裂纹增韧,残余应力增韧等。
几种增韧机理并不互相排斥,但在不同条件下有一种或几种机理起主要作用。
相变增韧:利用多晶多相陶瓷中某些相成分在不同温度的相变,从而增韧的效果,统称为相变增韧。
例如,利用的马氏体相变来改善陶瓷材料的力学性能,是目前引人注目的研究领域。
陶瓷材料的强韧化方法概述鉴于本人在研究生阶段的研究方向与陶瓷材料有关,故本篇所选择的主要内容为陶瓷材料的强韧化方法。
与传统材料相比陶瓷材料具有耐高温、耐腐蚀、耐磨损等优异特性,但它也存在脆性大、易断裂的缺点,从而大大限制了陶瓷材料在实际生产中的应用。
因此改善陶瓷材料的脆性、增大强度、提高其在实际应用中的可靠性成为其能否广泛应用的关键。
近年来,陶瓷材料的强韧化课题已经受到国内学者的高度重视。
目前已有的强韧化主要措施如下所述。
1、氧化锆相变增韧:当材料受到外力作用时,裂纹扩展到亚稳的t-ZrO2粒子,这会促发t-ZrO2粒子向m-ZrO2的相变,由此产生的相变应力又会反作用于裂纹尖端,降低尖端的应力集中程度,减缓或完全抑制了裂纹的扩展,从而提高断裂韧性;2、微裂纹增韧:由于温度变化引起的热膨胀差或相变引起的体积差会在陶瓷基体相和分散相之间产生的弥散均布裂纹。
当导致断裂的主裂纹扩展时,这些均匀分布的微裂纹会促使主裂纹分叉,使得其扩展路径变得曲折,增加了扩展过程的表面能,从而使裂纹快速扩展受到了阻碍,增加了材料的韧性;3、裂纹偏转增韧:在发生裂纹偏转时,裂纹平面会在垂直于施加张应力方向上重新取向,这就意味着裂纹扩展路径将被增长。
同时,由于裂纹平面不再垂直于张应力方向而使得裂纹尖端的应力降低,因而可以增大材料的韧性;4、裂纹弯曲增韧:在裂纹扩展过程中,如果遇到基体相中存在的断裂能更大的第二相增强剂就会被其阻止,裂纹前沿如需继续扩展便要越过第二障碍相而形成裂纹弯曲。
这也会使裂纹快速扩展受到了阻碍,从而增加材料的韧性;5、裂纹桥接增韧:所谓的裂纹桥接是指由增强元连接扩展裂纹的两表面形成裂纹闭合力而导致脆性基体材料增韧的方法。
其增强元可分为两种:一种为刚性第二相,另一种则是韧性第二相;6、韧性相增韧:韧性相会在裂纹扩展中起到附加吸收能量的作用,这就使得裂纹进一步扩展所需的能量远远超过形成新裂纹表面所需的净热力学表面能。
陶瓷材料的增韧方法
陶瓷材料的增韧方法可以采用以下几种途径:
1. 添加增韧剂:向陶瓷材料中添加一定比例的增韧剂,如纤维、颗粒等微观颗粒,通过增加材料的断裂面积来阻止裂纹扩展,从而提高材料的韧性。
2. 控制晶粒尺寸:通过控制陶瓷材料的晶粒尺寸,可以增加材料的韧性。
通常,晶粒尺寸越小,材料的韧性越高,因为小晶粒可以提供更多的晶界来阻碍裂纹扩展。
3. 调节成分配比:通过调节陶瓷材料中的成分配比,可以改变材料的晶格结构和传输性能,从而影响材料的韧性。
例如,添加一些特定的元素,可以形成固溶体或次微晶结构,从而提高材料的韧性。
4. 控制材料微观结构:通过控制材料的微观结构,如孔隙度、烧结密度等,可以影响陶瓷材料的韧性。
通常,降低材料的孔隙度和提高烧结密度可以增加材料的韧性。
需要注意的是,以上方法并非适用于所有陶瓷材料,具体的增韧方法需要根据具体材料的性质和应用需求进行选择和优化。
晶须增韧陶瓷基复合材料强韧化机制的评述
1. 晶须增韧化技术是什么?
晶须增韧化技术是一种将晶须材料引入到基础材料中的技术,通过晶须的固定和增长,改善复合材料的机械性能和韧性。
2. 什么是陶瓷基复合材料?
陶瓷基复合材料是以陶瓷为基础材料,通过添加其他强化材料来提高其性能,具有高强度、高硬度、高温耐性、耐磨损等特点。
3. 强韧化机制是如何发生的?
晶须增韧陶瓷基复合材料的强韧化机制主要是由晶须与基础材料之间的相互作用所产生的。
晶须可以在材料中分散均匀,形成纤维状结构,避免裂纹扩展,增加其韧性。
同时,晶须具有很高的强度,它与基础材料之间的化学结合可以增强材料的力学性能。
4. 晶须增韧化技术的优点是什么?
晶须增韧化技术是一种有效提高材料性能的技术,具有以下优点:
(1)提高材料韧性,增强抗裂性;
(2)增加材料强度,提高其耐久性;
(3)降低材料疲劳度,延长材料的使用寿命。
5. 晶须增韧化技术的应用领域有哪些?
晶须增韧化技术可以应用于各种复合材料的制备中,主要应用领域包括:
(1)汽车工业——制备高硬度、高温度下可靠的发动机零件、制动系统;
(2)电子工业——制备高强度、高温度下可靠的电子陶瓷;
(3)航空航天工业——制备高强度、轻质、高温度下可靠的航空材料。
6. 晶须增韧陶瓷基复合材料的未来发展趋势是什么?
晶须增韧陶瓷基复合材料的未来发展趋势主要是往以下方面发展:
(1)研制更高性能的晶须材料;
(2)探索更加有效的晶须分散方式;
(3)进一步深入研究晶须与基础材料之间的相互作用机理;
(4)将晶须增韧化技术应用于更多领域,以满足工业和社会的需要。
河北工业大学材料科学与工程学院《陶瓷材料的强韧化》读书报告专业金属材料班级材料116学号111899姓名李浩槊2015年01月05日目录第一部分........................陶瓷材料简介第二部分........................陶瓷材料的结构第三部分........................陶瓷材料的成型方法第四部分........................陶瓷材料的烧结第五部分........................结构陶瓷材料的传统韧化方式第六部分........................陶瓷材料韧化的进展及纳米材料在陶瓷韧化方面的应用第七部分........................参考文献第一部分陶瓷材料简介陶瓷材料是人类应用最早的材料。
它坚硬,稳定,可以制造工具、用具;在一些特殊的情况下也可以用作结构材料。
陶瓷材料属于无机非金属材料,是不含碳氢氧结合的化合物,主要是金属氧化物和金属非氧化物。
由于大部分无机非金属材料含有硅和其它元素的化合物,所以又叫作硅酸盐材料。
它一般包括无机玻璃、玻璃陶瓷和陶瓷三类。
作为结构材料和工具材料,工程上应用最广泛的就是陶瓷材料。
按照成分和用途,工业陶瓷材料可分为:1)普通陶瓷(或传统陶瓷)--主要为硅、铝氧化物的硅酸盐材料。
2)特种陶瓷(或新型陶瓷、高技术陶瓷、精细陶瓷、先进陶瓷)--主要为高熔点的氧化物、碳化物、氮化物、硅化物等烧结材料。
3)金属陶瓷--主要指用陶瓷生产方法制取的金属与碳化物或其它化合物的粉末制品。
陶瓷材料拥有良好的力、热、光、电性能和优异的化学性能。
首先,陶瓷材料是工程材料中刚度最好、硬度最高的材料,其硬度大多在1500HV以上。
陶瓷的抗压强度较高,但抗拉强度较低,塑性和韧性很差。
而且,陶瓷材料一般具有高的熔点(大多在2000℃以上),且在高温下具有极好的化学稳定性;陶瓷的导热性低于金属材料,陶瓷还是良好的隔热材料。
强韧陶瓷材料的制备与力学性能分析为了满足现代工业对高强度、高韧性材料的需求,强韧陶瓷材料的研究与应用日益受到重视。
本文将探讨强韧陶瓷材料的制备方法以及其力学性能的分析。
一、强韧陶瓷材料的制备方法1. 化学法制备陶瓷材料化学法是一种常用的制备陶瓷材料的方法。
其中,溶胶-凝胶法是一种常用的制备无机陶瓷材料的方法。
该方法首先通过水解反应制备出溶胶,然后通过凝胶化反应形成凝胶。
最后,通过热处理使凝胶转变成陶瓷材料。
2. 加压烧结制备陶瓷材料加压烧结是一种常用的制备陶瓷材料的方法,通过将陶瓷粉末进行加压,使其颗粒间形成良好的接触,然后经过高温烧结使其结合成致密的块体。
这种制备方法可以提高材料的密度和强度。
二、强韧陶瓷材料的力学性能分析1. 强度分析强度是衡量材料抵抗破坏的能力。
对于强韧陶瓷材料而言,其强度主要由晶界强度和颗粒强度决定。
其中,晶界强度取决于晶界结构和化学键的性质,而颗粒强度取决于颗粒间的结合力。
2. 韧性分析韧性是衡量材料抵抗断裂的能力。
对于陶瓷材料来说,其韧性通常较低。
但通过控制晶界结构和添加适量的增韧相,可以提高陶瓷材料的韧性。
增韧相的存在可以阻止裂纹扩展,从而提高材料的断裂韧性。
3. 断裂行为分析对于强韧陶瓷材料的断裂行为分析,裂纹扩展是一个关键问题。
在实际应用中,陶瓷材料往往处于多次载荷的情况下,裂纹会随之扩展,并最终导致材料的失效。
因此,理解和控制裂纹扩展行为对于提高材料的强韧性至关重要。
结论强韧陶瓷材料的制备是多个因素综合作用的结果,包括材料的成分、结构和制备工艺等。
力学性能的分析是对材料性能进行客观评价的手段。
通过对强韧陶瓷材料的制备方法和力学性能的分析,可以为材料的应用提供依据和指导。
进一步的研究和探索将为未来强韧陶瓷材料的发展和应用提供新的思路和方法。
注:本文仅供参考,具体内容和结构可根据实际需要进行调整和扩展。
陶瓷增韧的主要方法及原理一、引言陶瓷是一种脆性材料,易于断裂。
为了增强其韧性,人们采用了多种方法进行改良。
本文将介绍陶瓷增韧的主要方法及原理。
二、陶瓷增韧的方法1. 颗粒增韧法颗粒增韧法是通过在陶瓷基体中添加颗粒来增强其韧性。
这些颗粒可以是金属、氧化物或碳化物等,它们与基体之间形成界面,能够吸收裂纹扩展时产生的应变能,并阻止裂纹扩展。
此外,颗粒还可以提高材料的耐磨性和抗腐蚀性。
2. 界面改性法界面改性法是通过在陶瓷基体与填充物之间形成高强度的化学键或物理键来增强其韧性。
这些填充物可以是纤维、颗粒或片层等,它们与基体之间形成界面,在受力时能够吸收应变能并阻止裂纹扩展。
3. 晶界工程法晶界工程法是通过控制晶界结构和组成来调控陶瓷的韧性。
晶界是不同晶粒之间的界面,其结构和组成对材料的力学性能有重要影响。
通过控制晶界的取向、密度和化学成分等,可以增强陶瓷的韧性。
4. 段隙复合法段隙复合法是通过在陶瓷基体中引入微观孔隙来增强其韧性。
这些孔隙可以是球形、板状或纤维状等,它们与基体之间形成界面,在受力时能够吸收应变能并阻止裂纹扩展。
5. 热处理法热处理法是通过改变陶瓷的组织结构和物理性质来增强其韧性。
常用的方法包括高温固相反应、快速冷却和退火等。
这些方法可以使陶瓷中形成微观结构,从而提高其韧性。
三、陶瓷增韧的原理1. 裂纹阻挡机制颗粒增韧法、界面改性法和段隙复合法都利用了裂纹阻挡机制来增强陶瓷的韧性。
当裂纹遇到填充物或孔隙时,会发生偏转、分支或停止,从而消耗裂纹扩展时产生的应变能,阻止裂纹继续扩展,提高材料的韧性。
2. 晶界阻挡机制晶界工程法利用了晶界阻挡机制来增强陶瓷的韧性。
当裂纹遇到晶界时,会发生偏转、分支或停止,从而消耗裂纹扩展时产生的应变能,阻止裂纹继续扩展,提高材料的韧性。
3. 相变机制热处理法利用了相变机制来增强陶瓷的韧性。
在高温下进行固相反应或快速冷却可以使陶瓷中形成微观结构,从而改变其物理性质和组织结构。
陶瓷材料的强韧化方法概述
鉴于本人在研究生阶段的研究方向与陶瓷材料有关,故本篇所选择的主要内容为陶瓷材料的强韧化方法。
与传统材料相比陶瓷材料具有耐高温、耐腐蚀、耐磨损等优异特性,但它也存在脆性大、易断裂的缺点,从而大大限制了陶瓷材料在实际生产中的应用。
因此改善陶瓷材料的脆性、增大强度、提高其在实际应用中的可靠性成为其能否广泛应用的关键。
近年来,陶瓷材料的强韧化课题已经受到国内学者的高度重视。
目前已有的强韧化主要措施如下所述。
1、氧化锆相变增韧:当材料受到外力作用时,裂纹扩展到亚稳的t-ZrO2粒子,这会促发t-ZrO2粒子向m-ZrO2的相变,由此产生的相变应力又会反作用于裂纹尖端,降低尖端的应力集中程度,减缓或完全抑制了裂纹的扩展,从而提高断裂韧性;
2、微裂纹增韧:由于温度变化引起的热膨胀差或相变引起的体积差会在陶瓷基体相和分散相之间产生的弥散均布裂纹。
当导致断裂的主裂纹扩展时,这些均匀分布的微裂纹会促使主裂纹分叉,使得其扩展路径变得曲折,增加了扩展过程的表面能,从而使裂纹快速扩展受到了阻碍,增加了材料的韧性;
3、裂纹偏转增韧:在发生裂纹偏转时,裂纹平面会在垂直于施加张应力方向上重新取向,这就意味着裂纹扩展路径将被增长。
同时,由于裂纹平面不再垂直于张应力方向而使得裂纹尖端的应力降低,因而可以增大材料的韧性;
4、裂纹弯曲增韧:在裂纹扩展过程中,如果遇到基体相中存在的断裂能更大的第二相增强剂就会被其阻止,裂纹前沿如需继续扩展便要越过第二障碍相而形成裂纹弯曲。
这也会使裂纹快速扩展受到了阻碍,从而增加材料的韧性;
5、裂纹桥接增韧:所谓的裂纹桥接是指由增强元连接扩展裂纹的两表面形成裂纹闭合力而导致脆性基体材料增韧的方法。
其增强元可分为两种:一种为刚性第二相,另一种则是韧性第二相;
6、韧性相增韧:韧性相会在裂纹扩展中起到附加吸收能量的作用,这就使得裂纹进一步扩展所需的能量远远超过形成新裂纹表面所需的净热力学表面能。
同时裂纹尖端高应力区的屈服流动使应力集中得以部分的消除,抑制了原先所能达到的临界状态,相应的提高了材料的抗断裂能力;
7、纤维、晶须增韧:纤维和晶须具有高弹性和高强度,当它作为第二相弥散于陶瓷基体构成复合材料时,纤维或晶须能为基体分担大部分外加应力而产生强化。
纤维和晶须的存在也使得裂纹扩展途径出现弯曲从而使断裂能增加。
此外在裂纹尖端附近由于应力集中,纤维或晶须也可能从基体中拔出。
拔出时以拔出功的形式消耗部分能量,同时在尖端后部,部分未拔出或未断裂的纤维或晶须则起到了桥接的作用。
而且在裂纹尖端,由于应力集中可使基体和纤维或晶须发生
脱粘。
以上种种现象都能够使材料的韧性得到提高;
8、表面参与压应力增韧:由于陶瓷断裂往往始于表面裂纹,而表面残余压应力则能有效的阻止表面裂纹的扩展,因此该种方法也能起到增韧的作用。
在实际应用中,河南理工大学的张明等人从纤维(晶须)增韧的机理出发,对以SiCw为晶须增韧后的ZrO2陶瓷复合材料增韧进行了研究。
在文中作者指出SiCw/ ZrO2陶瓷复合材料的晶须增韧机理有两种,即晶须的裂纹转向机制和拔出桥连机制。
在实验观察中发现SiCw/ ZrO2陶瓷复合材料(Y2O3摩尔分数为8%)的断裂韧性随晶须含量的增加而提高,如下表所示。
表中ΔKd为裂纹偏转对于断裂韧性贡献量,而ΔKb则为晶须桥联对于断裂韧性贡献量,ΔK*和ΔK则分别为复合材料断裂韧性的理论计算值和实际测量值。
SiCw/ ZrO2陶瓷复合材料的断裂韧性表
SiCw体积分数(%)
预测值测量值ΔKdΔKbΔK*ΔK
0 3.43
10 0.795 0.62 4.64 4.26~4.58
20 1.047 1.02 5.25 4.51~5.25
30 1.192 1.38 5.77 5.64~5.92
由于材料中不可避免的会出现一定的缺陷,因此其实际测量值必然会比预测值低。
从上表中可以看出,在添加晶须后,材料断裂韧性的理论值逐步提高,而实际测量值也有显著的上升。
作者指出,虽然该实验中材料的断裂韧性受到晶须的裂纹转向和拔出桥连两种不同机制的影响,但是以上两种机制对增韧的贡献均随晶须含量而增加。
由此可见,纤维、晶须增韧是一种理想的陶瓷材料增韧方法。
附:本文参考文献:
张明,赵波,刘传绍等. SiCw/ ZrO2陶瓷复合材料晶须增韧机理与效果预测研究[J].新技术新工艺,2006,12:64-66。