典型的几种整流检波电路-精
- 格式:ppt
- 大小:1.57 MB
- 文档页数:32
常用的整流滤波电路
改善滤波特性的方法:实行多级滤波。
如:RC–型滤波电路:在电容滤波后再接一级RC滤波电路。
L-C型滤波电路:在电感滤波后面再接一电容。
LC–型滤波电路:在电容滤波后面再接L-C 型滤波电路。
性能及应用场合分别与电容滤波和电感滤波相像。
1.RC–型滤波器
改善滤波特性的方法:实行多级滤波
R愈大,C2愈大,滤波效果愈好。
但R太大,将使直流压降增加。
主要适用于负载电流较小而又要求输出电压脉动很小的场合。
2.L-C 型滤波电路
设uo1的直流重量为U′O,沟通重量的基波的幅值为U′O1m,:3.LC –型滤波电路
明显,LC –型滤波电路输出电压的脉动系数比只有LC滤波时更小,波形更加平滑;由于在输入端接入了电容,因而较只有LC滤波时,提高了输出电压。
滤波效果比LC滤波器更好,但整流二极管中的冲击电流较大。
4.倍压整流电路
利用滤波电容的充放电作用,将多个电容和二极管组合可获得倍数于变压器附边电压的输出电压。
1、二倍压整流电路
u2的正半周时:D1导通,D2截止,抱负状况下,电容C1的电压:u2的负半周时:D2导通,D1截止,抱负状况下,电容C2的电压:输出端的电压:即二倍压电压。
8种类型精密全波整流电路及详细分析精密全波整流电路是将交流信号转换为直流信号的一种电路。
下面将介绍8种常见的精密全波整流电路及其详细分析:1.整流电阻式整流电路:这种电路通过一个电阻来限制电流,将输入信号的负半周去掉,输出为纯正半周波信号。
该电路简单且成本较低,但效果不稳定,受负载变化的影响较大。
2.桥式全波整流电路:桥式整流电路是将四个二极管按桥形连接,可以实现将输入信号的负半周反向成正半周输出。
该电路具有高效率、稳定性好且抗干扰能力强的优点,被广泛应用。
3.中点整流电路:中点整流电路是将输入信号通过一个变压器分成两路,然后进行整流,再通过滤波电容和稳压电路来获得稳定的直流输出。
该电路具有较好的稳定性和输出质量,但成本较高。
4.高压全波整流电路:高压全波整流电路是在桥式整流电路的基础上加入一个电压倍压电路,用于输出高压直流。
该电路被广泛应用于高压直流电源。
5.隔离型全波整流电路:隔离型全波整流电路是通过一个变压器将输入的交流信号与输出的直流信号进行电气隔离,以提高安全性和抗干扰能力。
6.双绕组全波整流电路:双绕组全波整流电路是通过两个平衡绕组来实现整流,可以提高转换效率和输出质量,适用于高精度和高要求的应用场景。
7.调谐式全波整流电路:调谐式全波整流电路通过一个调谐电路来实现对输入信号波波数的调谐,并通过滤波电路和稳压电路获得稳定的直流输出。
该电路适用于需要对输入信号进行调谐的场景。
8.双向全波整流电路:双向全波整流电路是将输入信号进行整流后得到一个正半周波信号,然后通过一个功率倍增电路产生一个负半周波信号,最后将两者相加得到完整的全波信号,可以提高输出质量和效率。
总之,不同的精密全波整流电路适用于不同的场景,根据具体要求选择合适的电路可以提高输出质量和效率,满足各种应用需求。
⼏种滤波整流电路的介绍总结⼀、有源滤波电路为了提⾼滤波效果,解决π型RC滤波电路中交、直流分量对R的要求相互⽭盾的问题,在RC电路中增加了有源器件-晶体管,形成了RC有源滤波电路。
常见的RC有源滤波电路如图Z0716所⽰,它实质上是由C1、Rb、C2组成的π型RC滤波电路与晶体管T组成的射极输出器联接⽽成的电路。
该电路的优点是:1.滤波电阻Rb 接于晶体管的基极回路,兼作偏置电阻,由于流过Rb 的电流⼊很⼩,为输出电流Ie的1/(1+β),故Rb可取较⼤的值(⼀般为⼏⼗k Ω),既使纹波得以较⼤的降落,⼜不使直流损失太⼤。
2.滤波电容C2接于晶体管的基极回路,便可以选取较⼩的电容,达到较⼤电容的滤波效果,也减⼩了电容的体积,便于⼩型化。
如图中接于基极的电容C2 折合到发射极回路就相当于(1+β)C2的电容的滤波效果(因 ie = (1+ β)ib之故)。
3.由于负载凡接于晶体管的射极,故 RL上的直流输出电压UE≈UB,即基本上同RC⽆源滤波输出直流电压相等。
这种滤波电路滤波特性较好,⼴泛地⽤于⼀些⼩型电⼦设备之中。
⼆、复式滤波电路复式滤波电路常⽤的有LCГ型、LCπ型和RCπ型3种形式,如图Z0715所⽰。
它们的电路组成原则是,把对交流阻抗⼤的元件(如电感、电阻)与负载串联,以降落较⼤的纹波电压,⽽把对交流阻抗⼩的元件(如电容)与负载并联,以旁路较⼤的纹波电流。
其滤波原理与电容、电感滤波类似,这⾥仅介绍RCπ型滤波。
图Z0715(c)为RCπ型滤波电路,它实质上是在电容滤波的基础上再加⼀级RC滤波电路组成的。
其滤波原理可以这样解释:经过电容C1滤波之后,C1两端的电压包含⼀个直流分量与交流分量,作为RC2滤波的输⼊电压。
对直流分量⽽⾔,C2 可视为开路,RL上的输出直流电压为:对于交流分量⽽⾔,其输出交流电压为:若满⾜条件则有由式可见,R愈⼩,输出的直流分量愈⼤;由式可见,RC2愈⼤,输出的交流分量愈⼩。
1.第一种得模拟电子书上(第三版442页)介绍得经典电路。
A1用得就是半波整流并且放大两倍,A2用得就是求与电路,达到精密整流得目得。
(R1=R3=R4=R5=2R2)2.第二种方法瞧起来比较简单A1就是半波整流电路,就是负半轴有输出,A2得电压跟随器得变形,正半轴有输出,这样分别对正负半轴得交流电进行整流!(R1=R2)3.第三种电路仿真效果如下:这个电路真就是她妈得坑爹,经过我半天得分析才发现就是这样得结论:Uo=-|Ui|,整出来得电路全就是负得,真想不通为什么作者放到这里,算了先把分析整理一下:当Ui>0得时候电路等效就是这样得放大器A就是同相比例电路,Uo1=(1+R2/R1)Ui=2Ui放大器B就是加减运算电路,Uo2=(1+R2/R1)Ui-(R4/R3)Uo1=-Ui当Ui<0得时候电路图等效如下:放大器A就是电压跟随器,放大器B就是加减运算电路式子整理:Uo2=(1+R4/(R2+R3))Ui- R4/(R2+R3)Ui=Ui以上就是这个电路得全部分析,但就是想达到正向整流得效果就应该把二极管全部反向过来电路与仿真效果如下图所示4.第四种电路就是要求所有电阻全部相等。
这个仿真相对简单。
电路与仿真效果如下计算方法如下:当Ui>0时,D1导通,D2截止(如果真就是不清楚为什么就是这样分析,可以参照模拟电子技术书上对于第一种电路得分析),这就是电路图等效如下(R6就是为了测试信号源用得跟这个电路没有直接得关系,不知道为什么不加这个电阻就仿真不了)放大器A构成反向比例电路,uo1=-ui,这时在放大器B得部分构成加减运算电路,uo2=-uo1=-(-ui)注意:这里放大器B得正相输入端就是相当于接地得,我刚开始一直没有想通,后来明白了,这一条线路上就是根本就没有电流得,根本就没有办法列出方程来。
(不知道这么想就是不就是正确得)当Ui<0得时候,D1截止,D2导通,电路图等效如下:这时就需要列方程了Ui<0时Ui/R1=-(U2/R5+U2/(R2+R3))计算得到U2=-2/3 Ui再根据U2/(R2+R3)=(U0-U2)/R4 得到U0=3/2 U2带入得到U0=-Ui这个电路在网上找到得,加在这里主要就就是感觉与上一个电路有点像,但就是现在分析了一下,这个就是最经典得电路变形,好处还不清楚。
常见全波精密整流电路形式:(1)精密全波整流电路之一图3 精密全波整流电路之一如图3中的a电路所示,N1及外围电路构成正半波输入2倍压反相整流放大电路,N2为反相求和电路。
若输入信号峰值为±2V的正弦波信号电压,则a 点输出为-4V对应输入正半波的电压信号;此信号经在N1反相输入端与输入信号相加(-4V+2V=-2V),得到-2V的脉动直流(在后级电路需要正的采样电压时)输入信号,又经N2反相求和电路,得到2V脉动直流信号。
电路起到全波或桥式整流电路同样的作用,但整流线性和精度得到保障。
该电路形式比之图3电路,采用一级反相加法器,为实用电路。
另外,若令R1=R2=R4=R5,令R3=1/2R1,将偏置电路的参数改变后,电路全波整流性能仍然是相同的。
同一功能电路,可以有多种设计模式,正所谓条条大道通罗马。
(2)精密全波整流电路之二图4 精密全波整流电路之二将图4全波整流电路的工作原理简述如下:输入正半波期间(Vi》0),N1输入端电压《0,D1通,D2断;同时正向输入电压送入N2同相输入端,D3、D4通。
此时等效为电压跟随器电路,将正半波信号输送到Vo端,即Vi=Vo。
在输入负半波期间(Vi《0),N1的输出端》0,D1断,D2通;N2因输入负半波导致D4断,D3通,输出信号回路被阻断。
此时N1变身为反相器电路,将输入负半波倒相后送至Vo端。
利用D1~D2的单向导电——通、断特性与放大器配合,巧妙地完成了全波整流任务。
(3)精密全波整流电路之三图5 精密全波整流电路之三将图5电路简述一下:此为高输入阻抗(输入信号进入N1、N2的同相输入端,输入信号电流近于零)全波整流电路,输入正半波期间,D1通,D2断,N2(此时为电压跟随器)将输入正半波送至Vo端;输入负半波期间,D1断,D2通,N1此时变身为2倍压同相放大器,其输出信号电压向Vi信号同时送入N2(此时变身为减法器),经相减后输出负向的全波整流电压。
电源的整流滤波原理图详解(五种滤波整流电路)五种滤波整流电路介绍一、有源滤波电路为了提高滤波效果,解决π型RC滤波电路中交、直流分量对R的要求相互矛盾的问题,在RC电路中增加了有源器件-晶体管,形成了RC有源滤波电路。
常见的RC有源滤波电路如图Z0716所示,它实质上是由C1、Rb、C2组成的π型RC滤波电路与晶体管T组成的射极输出器联接而成的电路。
该电路的优点是:1.滤波电阻Rb接于晶体管的基极回路,兼作偏置电阻,由于流过Rb的电流入很小,为输出电流Ie的1/(1+β),故Rb可取较大的值(一般为几十kΩ),既使纹波得以较大的降落,又不使直流损失太大。
2.滤波电容C2接于晶体管的基极回路,便可以选取较小的电容,达到较大电容的滤波效果,也减小了电容的体积,便于小型化。
如图中接于基极的电容C2折合到发射极回路就相当于(1+β)C2的电容的滤波效果(因ie=(1+β)ib之故)。
3.由于负载凡接于晶体管的射极,故RL上的直流输出电压UE≈UB,即基本上同RC 无源滤波输出直流电压相等。
这种滤波电路滤波特性较好,广泛地用于一些小型电子设备之中。
二、复式滤波电路复式滤波电路常用的有LCГ型、LCπ型和RCπ型3种形式,如图Z0715所示。
它们的电路组成原则是,把对交流阻抗大的元件(如电感、电阻)与负载串联,以降落较大的纹波电压,而把对交流阻抗小的元件(如电容)与负载并联,以旁路较大的纹波电流。
其滤波原理与电容、电感滤波类似,这里仅介绍RCπ型滤波。
图Z0715(c)为RCπ型滤波电路,它实质上是在电容滤波的基础上再加一级RC滤波电路组成的。
其滤波原理可以这样解释:经过电容C1滤波之后,C1两端的电压包含一个直流分量与交流分量,作为RC2滤波的输入电压。
对直流分量而言,C2可视为开路,RL 上的输出直流电压为:对于交流分量而言,其输出交流电压为:若满足条件则有由式可见,R愈小,输出的直流分量愈大;由式可见,RC2愈大,输出的交流分量愈小。
超经典的精密整流电路分析
在常用的电源电路中,我们经常用普通的二极管,比如:4001到4007等二极管整流,但是,在一些整流电压比较小的场合中,这样做是比较不妥的。
这是因为普通的二极管整流电路,失真比较大,传输的效率比较低。
而且要求输入信号的幅度大于二极管的阈电压(锗管为0.2V,而硅管竟然达到了0.7V!真是可怕)。
所以整流的灵敏度和精度都不是很高,电压损耗相当的大。
这里介绍一种网上常见的一种用集成运放和二极管构成的整流电路,可以克服二极管整流电路的缺点。
在输入信号小于0.2V的时候也能进行线性整流滤波,其精度和效率大大提高。
电路如下:
如图是反相精密整流检波电路,当Vi大于零时,我们知道,运放的输出V0小于0,二极管D1导通,D2截止。
输出电路V0为零;当V1小于0时,Voa大于零,D1截止,D2导通,V0=(-R1/R2)*V1,实现了半波整流。
经理分析可得:Vi小于零时,且幅度值很小的时候,输出电压为:
V0=(-(R2V1/(R2+R1)-Vd/Avd))/(1/Avd+Fv)
当反馈系统Fv远大于1/Avd时,则:
V0=-R1*V2/R1-Vd/(Avd*Fv)(Vi小于零)
上式右边的第一项为理想整流电路的输出电压;第二项为二极管D2的正向压降VD所引起的整流电路的死区电压。
当运放的开环增益Avd无穷大,开环增益很大时,第二项可以忽略不计。
可见,当输入信号电压很小的时候(甚至可以达到微伏级),电压仍然可以进行线性的整流,何乐而不为?当然,这个电路也有它的缺点,就是输入信号的工作频率受集成电路带宽和上升速率的限制。
整流电路电力网供给用户的是交流电,而各种无线电装置需要用直流电。
整流,就是把交流电变为直流电的过程。
利用具有单向导电特性的器件,可以把方向和大小交变的电流变换为直流电。
下面介绍利用晶体二极管组成的各种整流电路。
一、半波整流电路图5-1、是一种最简单的整流电路。
它由电源变压器B 、整流二极管D 和负载电阻Rfz ,组成。
变压器把市电电压(多为220伏)变换为所需要的交变电压e2 ,D 再把交流电变换为脉动直流电。
下面从图5-2的波形图上看着二极管是怎样整流的。
变压器砍级电压e2 ,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。
在0~K时间内,e2 为正半周即变压器上端为正下端为负。
此时二极管承受正向电压面导通,e2 通过它加在负载电阻Rfz上,在π~2π时间内,e2 为负半周,变压器次级下端为正,上端为负。
这时D 承受反向电压,不导通,Rfz,上无电压。
在π~2π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压Usc 。
以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。
这种除去半周、图下半周的整流方法,叫半波整流。
不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。
二、全波整流电路如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。
图5-3 是全波整流电路的电原理图。
全波整流电路,可以看作是由两个半波整流电路组合成的。
变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a 、e2b ,构成e2a 、D1、Rfz与e2b 、D2 、Rfz ,两个通电回路。
实验八半波/全波精密检波整流电路一、实验目的:了解精密半波/全波检波整流电路的工作原理;了解精密半波/全波检波整流电路正常工作的条件。
二、实验内容:2.1 精密半波检波整流电路是一种由集成运算放大器构成的精密检波电路。
它是由半波整流器(如图8-1所示,由芯片UiA及其附属元件组成)和低通滤波器(如图8-1所示,由芯片UiB及其附属元件组成) 组成。
2.2 精密半波检波整流电路正常工作的条件:2.2.1 运放的输出电压大于二极管的正向电压。
即D1 和 D2 总是一个导通,另一个截止,这样电路就能正常检波。
2.2.2 电路所要求的最小输入电压峰值为Ud/Au (UD 为二极管的正向电压,Au=Rf/R1)。
实验电路图如下:8-1精密半波检波整流电路2.3 所需元件与设备:LF358两片;10K(棕黑橙)电阻5个;IN4148二极管两个;电容103一个;2.4 实验步骤:(1)按精密半波检波整流电路图接好线路;(2)接通电源,IN1输入正弦波,在DRVI中分别观察IN1点、OUT1两处的输出波形。
(3)当In1>0 时,Out1<0 ,D2导通,D1 截止,运放工作在深度负反馈状态。
(4)当In1< 0 时,Out1> 0 , D2截止,D1导通,构成反相比例放大器。
(5)把电路的两个二极管反向,观察输出波形。
(6)把In1输入换成调幅波,分别观察In1点、Out1两处的输出波形,同时与上面所做的正弦波时间的两处波形进行比较。
(7)在精密半波检波整流电路的基础上,加一级加法运算放大器,就组成了精密全波整流电路。
精密全波检波整流电路2.6 所需元件与设备:LF358两片;10K(棕黑黑红棕)电阻5个;IN4148二极管两个;电容103一个;2.7 实验步骤:(1)按精密全波检波整流电路图接好线路;(2)接通电源,In2输入调幅波,在DRVI中观测输出波形Out2(或用视波器进行观测)。
4种整流、5种滤波电路!对比着看一看,你就明白其原理了基本电路:一般直流稳压电源都使用220伏市电作为电源,经过变压、整流、滤波后输送给稳压电路进行稳压,最终成为稳定的直流电源。
这个过程中的变压、整流、滤波等电路可以看作直流稳压电源的基础电路,没有这些电路对市电的前期处理,稳压电路将无法正常工作。
1、变压电路通常直流稳压电源使用电源变压器来改变输入到后级电路的电压。
电源变压器由初级绕组、次级绕组和铁芯组成。
初级绕组用来输入电源交流电压,次级绕组输出所需要的交流电压。
通俗的说,电源变压器是一种电→磁→电转换器件。
即初级的交流电转化成铁芯的闭合交变磁场,磁场的磁力线切割次级线圈产生交变电动势。
次级接上负载时,电路闭合,次级电路有交变电流通过。
变压器的电路图符号见图2-3-1。
2、整流电路经过变压器变压后的仍然是交流电,需要转换为直流电才能提供给后级电路,这个转换电路就是整流电路。
在直流稳压电源中利用二极管的单项导电特性,将方向变化的交流电整流为直流电。
(1)半波整流电路半波整流电路见图2-3-2。
其中B1是电源变压器,D1是整流二极管,R1是负载。
B1次级是一个方向和大小随时间变化的正弦波电压,波形如图2-3-3(a)所示。
0~π期间是这个电压的正半周,这时B1次级上端为正下端为负,二极管D1正向导通,电源电压加到负载R1上,负载R1中有电流通过;π~2π期间是这个电压的负半周,这时B1次级上端为负下端为正,二极管D1反向截止,没有电压加到负载R1上,负载R1中没有电流通过。
在2π~3π、3π~4π等后续周期中重复上述过程,这样电源负半周的波形被“削”掉,得到一个单一方向的电压,波形如图2-3-3(b)所示。
由于这样得到的电压波形大小还是随时间变化,我们称其为脉动直流。
设B1次级电压为E,理想状态下负载R1两端的电压可用下面的公式求出:整流二极管D1承受的反向峰值电压为:由于半波整流电路只利用电源的正半周,电源的利用效率非常低,所以半波整流电路仅在高电压、小电流等少数情况下使用,一般电源电路中很少使用。
精密整流电路
把交流电变为单向脉动电,称为整流,若能把微弱的交流电转换成单向脉动电,则称为精密整流或精密检波,此电路必须由精密二极管(由运放和二极管组成)来实现。
一. 精密二极管电路
1. 普通二极管整流存在的问题:见图8.4.1
Δ有死区电压S i管为0.5V,小信号时呈指数关系,见图(a) U o=U i-U D,即0<U i<U D,二极管截止,U-o=0,故小信号整流(或称检波)误差答,甚至无法工作。
2. 精密整流二极管电路见图8.4.2
Δ二极管D接在电压跟随器反馈支路中
ΔD导通时,(开环增益)
与上面普通二极管导通时U o=U i-U D相比,U D的影响减小到
如果死区电压U D=0.5V,则,可见U i’只要大于5μV使D导通,就有输出。
Δ工作原理分析见图(b)传输特性。
当U i>0,U o’>0,D通i L>0,U o=U i
当U i<0,U o’<0,D止i L=0,U o=0
二. 精密半波正路电路见图8.4.3
U i>0,U A<0,D2通,D1止,R1为D2提供电路,R f中无电流流过,U o=0
U i<0,U A>0,D1通,D2止,
三. 精密全波整流(绝对值电路) 见图8.4.4
ΔA1为半波精密整流
U i>0,U A<0,D1通,D2止,U o1= -2U i
U i<0,U A>0,D1止,D2通,U o1=0
ΔA2为反相求和:U o= -(U i+U o1)。
精密全波整流电路图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计.图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益图2优点是匹配电阻少,只要求R1=R2图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点.图5 和 图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K图8的电阻匹配关系为R1=R2图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称.图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性.图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡.精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态.结论:虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种.图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波.图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了.图3的优势在于高输入阻抗.其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高.两个单运放型虽然可以实现整流的目的,但是输入\输出特性都很差.需要输入\输出都加跟随器或同相放大器隔离.各个电路都有其设计特色,希望我们能从其电路的巧妙设计中,吸取有用的.例如单电源全波电路的设计,复合反馈电路的设计,都是很有用的设计思想和方法,如果能把各个图的电路原理分析并且推导每个公式,会有受益的.最后的结论供大家在电路设计的时候参考.。
常见的整流电路介绍整流电路是将交流电转换成直流电的电路,在电子设备中经常被使用。
本文将介绍常见的整流电路及其原理、特点和应用。
一、单相半波整流电路1. 基本原理单相半波整流电路是一种简单的整流电路,由一个二极管和负载组成。
其原理是利用二极管的导通特性,将正半周的交流电信号变为正向的脉冲信号,从而得到直流输出。
2. 特点•简单可靠,成本低。
•效率较低,只有50%左右。
•输出波形脉动大,需要进一步滤波处理。
3. 应用•小功率电子设备,如手机充电器、电子闹钟等。
•LED驱动电源。
二、单相全波整流电路1. 基本原理单相全波整流电路使用两个二极管和一个中心点连接的负载。
通过二极管的导通,将正负半周的交流电信号分别变为正向的脉冲信号,从而得到直流输出。
•输出频率加倍,脉动较小。
•效率较高,可达到70-75%。
•需要较大的滤波电容减小输出脉动。
3. 应用•电子设备中的直流电源。
•无线通信设备。
三、三相整流电路1. 基本原理三相整流电路是在三相交流电系统中使用的整流电路。
它由变压器、整流桥和滤波电路组成。
通过变压器将三相交流电压降低后,再经过整流桥进行整流处理,最后通过滤波电路得到稳定的直流输出。
2. 特点•输出稳定,脉动小。
•效率较高,可达到80-85%。
•外形大,适用于大功率应用。
3. 应用•机电设备中的直流电源。
•工业电焊设备。
四、有源整流电路1. 基本原理有源整流电路通过使用晶体管等有源元件,实现交流电到直流电的转换。
它不同于传统的无源整流电路,能够实现更高的效率和更小的输出波动。
•高效率,可达90%以上。
•输出稳定性良好。
•需要较高的设计和控制要求。
3. 应用•高要求的精密仪器。
•通信系统。
五、整流电路的滤波处理1. 滤波电容滤波电容是整流电路中常见的滤波元件,用于减小输出脉动。
它能够对高频信号进行滤波,使得输出电压更加平稳。
2. LC滤波LC滤波是使用电感和电容构建的滤波电路,可以进一步减小输出脉动。
(C)L-C电感滤波(D)π型滤波或叫C-L-C滤波图1 无源滤波电路的基本形式为电感对直流的阻抗小,交流的阻抗大,因此能够得到较好的滤波效果而直流损失小。
电感滤波缺点是体积大,成本高. 桥式整流电感滤波电路如图2所示。
电感滤波的波形图如图2所示。
根据电感的特点,当输出电流发生变化时,L中将感应出一个反电势,使整流管的导电角增大,其方向将阻止电流发生变化。
图2电感滤波电路在桥式整流电路中,当u2正半周时,D1、D3导电,电感中的电流将滞后u2不到90°。
当u2超过90°后开始下降,电感上的反电势有助于D1、D3继续导电。
当u2处于负半周时,D2、D4导电,变压器副边电压全部加到D1、D3两端,致使D1、D3反偏而截止,此时,电感中的电流将经由D2、D4提供。
由于桥式电路的对称性和电感中电流的连续性,四个二极管D1、D3;D2、D4的导电角θ都是180°,这一点与电容滤波电路不同。
图3电感滤波电路波形图已知桥式整流电路二极管的导通角是180°,整流输出电压是半个半个正弦波,其平均值约为。
电感滤波电路,二极管的导通角也是180°,当忽略电感器L的电阻时,负载上输出的电压平均值也是。
如果考虑滤波电感的直流电阻R,则电感滤波电路输出的电压平均值为要注意电感滤波电路的电流必须要足够大,即RL不能太大,应满足wL>>RL,此时IO(AV)可用下式计算由于电感的直流电阻小,交流阻抗很大,因此直流分量经过电感后的损失很小,但是对于交流分量,在wL和上分压后,很大一部分交流分量降落在电感上,因而降低了输出电压中的脉动成分。
电感L愈大,RL愈小,则滤波效果愈好,所以电感滤波适用于负载电流比较大且变化比较大的场合。
采用电感滤波以后,延长了整流管的导电角,从而避免了过大的冲击电流。
电容滤波原理详解1.空载时的情况当电路采用电容滤波,输出端空载,如图4(a)所示,设初始时电容电压uC为零。
三种输出整流滤波电路图
1、正激式整流电路:
T1 为开关变压器,其初极和次极的相位同相。
D1 为整流二极管,D2 为续流二极管,R1、C1、 R2、C2 为削尖峰电路。
L1 为续流电感,C4、L2、C5 组成π 型滤波器。
2、反激式整流电路:
T1 为开关变压器,其初极和次极的相位相反。
D1 为整流二极管,R1、C1 为削尖峰电路。
L1 为续流电感,R2 为假负载,C4、L2、C5 组成π 型滤波器。
3、同步整流电路:
工作原理:当变压器次级上端为正时,电流经C2、R5、R6、R7 使 Q2 导通,电路构成回路, Q2 为整流管。
Q1 栅极由于处于反偏而
截止。
当变压器次级下端为正时,电流经 C3、R4、R2 使 Q1 导通,Q1 为续流管。
Q2 栅极由于处于反偏而截止。
L2 为续流电感,C6、L1、C7 组成π 型滤波器。
R1、C1、R9、C4 为削尖峰电路。