第三章材料的冲击韧性及低温韧性
- 格式:ppt
- 大小:1.08 MB
- 文档页数:33
材料的冲击韧性和低温脆性冲击韧性是指材料在受到冲击或者动态载荷时,能够吸收能量并延展变形的能力。
冲击韧性的高低取决于材料的组织结构和成分,具体包括塑性变形的能力、断裂韧性和强度等。
一般来说,高韧性的材料能够吸收更多的冲击能量,从而具有较好的抗冲击性能。
低温脆性是指材料在低温环境下失去延展性和韧性而表现出脆性断裂的现象。
低温脆性的主要原因与材料的晶体结构和化学成分有关。
低温下,材料的原子和分子运动减慢,晶格结构受到约束而不能发生足够的塑性变形。
当应力超过了材料的极限时,材料会发生断裂而失去韧性。
冲击韧性和低温脆性在一些情况下有着密切的关系。
一些材料在低温下,由于低温脆性的影响,其冲击韧性会明显降低。
例如,常用的金属材料如碳钢和铸铁,在低温下会变脆,从而导致其冲击韧性下降。
这对一些低温环境下工作的设备和结构会带来安全隐患。
为了提高材料的冲击韧性和抵抗低温脆性的能力,通常采取以下几种方法:1.合金化:通过加入合适的合金元素来调节材料的组织结构和晶体缺陷,从而改善材料的冲击韧性和低温脆性。
例如,在铝合金中添加适量的锂可以提高其低温强度和塑性。
2.热处理:通过热处理过程来改变材料的晶体结构和组织形态,从而提高材料的冲击韧性和低温韧性。
热处理包括淬火、回火等工艺,可以使材料得到均匀细小的晶粒和相关的析出相,从而提高其延展性和韧性。
3.添加增强相:通过向材料中添加纳米颗粒、纤维等增强相,可以改善材料的力学性能,包括冲击韧性和低温脆性。
这些增强相可以阻碍位错移动和晶格滑移,从而增加材料的塑性变形能力。
4.提高材料的变形能力:通过控制材料的加工过程和热处理工艺,使材料得到均匀细小的晶粒和相关的析出相,从而增加其变形能力。
这样,材料在受到冲击时能够承受更大的变形而不发生断裂。
综上所述,冲击韧性和低温脆性是材料力学性能的两个重要指标,对于材料在不同温度和应力条件下的可靠性和安全性具有重要影响。
通过合金化、热处理、添加增强相和提高材料的变形能力等方法,可以提高材料的冲击韧性和低温脆性,从而满足不同工程应用和环境条件下的需求。
绪论1、简答题什么是材料的性能?包括哪些方面?[提示]材料的性能定量地反映了材料在给定外界条件下的行为;解:材料的性能是指材料在给定外界条件下所表现出的可定量测量的行为表现。
包括力学性能(拉、压、、扭、弯、硬、磨、韧、疲)物理性能(热、光、电、磁)化学性能(老化、腐蚀)。
第一章单向静载下力学性能1、名词解释:弹性变形塑性变形弹性极限弹性比功包申格效应弹性模量滞弹性内耗韧性超塑性韧窝解:弹性变形:材料受载后产生变形,卸载后这部分变形消逝,材料恢复到原来的状态的性质。
塑性变形:微观结构的相邻部分产生永久性位移,并不引起材料破裂的现象。
弹性极限:弹性变形过度到弹-塑性变形(屈服变形)时的应力。
弹性比功:弹性变形过程中吸收变形功的能力。
包申格效应:材料预先加载产生少量塑性变形,卸载后再同向加载,规定残余应力(弹性极限或屈服强度)增加;反向加载,规定残余应力降低的现象。
弹性模量:工程上被称为材料的刚度,表征材料对弹性变形的抗力。
实质是产生100%弹性变形所需的应力。
滞弹性:快速加载或卸载后,材料随时间的延长而产生的附加弹性应变的性能。
内耗:加载时材料吸收的变形功大于卸载是材料释放的变形功,即有部分变形功倍材料吸收,这部分被吸收的功称为材料的内耗。
韧性:材料断裂前吸收塑性变形功和断裂功的能力。
超塑性:在一定条件下,呈现非常大的伸长率(约1000%)而不发生缩颈和断裂的现象。
韧窝:微孔聚集形断裂后的微观断口。
2、简答(1)材料的弹性模量有那些影响因素?为什么说它是结构不敏感指标?解:键合方式和原子结构,共价键、金属键、离子键E高,分子键E低原子半径大,E小,反之亦然。
晶体结构,单晶材料在弹性模量在不同取向上呈各向异性,沿密排面E大,多晶材料为各晶粒的统计平均值;非晶材料各向E同性。
化学成分,微观组织温度,温度升高,E下降加载条件、负载时间。
对金属、陶瓷类材料的E没有影响。
高聚物的E随负载时间延长而降低,发生松弛。
《材料性能学》课程教学大纲课程名称(英文):材料性能学(Properties of Materials)课程类型:学科基础课总学时: 72 理论学时: 60 实验(或上机)学时: 12学分:4.5适用对象:金属材料工程一、课程的性质、目的和任务本课程为金属材料工程专业的一门专业基础课,内容包括材料的力学性能和物理性能两大部分。
力学性能以金属材料为主,系统介绍材料的静载拉伸力学性能;其它载荷下的力学性能,包括扭转、弯曲、压缩、缺口、冲击及硬度等;断裂韧性;变动载荷下、环境条件下、高温条件下的力学性能;摩擦、磨损性能以及其它先进材料的力学性能等。
物理性能概括介绍常用物理性能如热学、电学、磁学等的基本参数及物理本质,各种影响因素,测试方法及应用。
通过本课程的学习,使学生掌握材料各种主要性能指标的宏观规律、物理本质及工程意义,了解影响材料性能的主要因素,了解材料性能测试的原理、方法和相关仪器设备,基本掌握改善或提高材料性能指标、充分发挥材料潜能的主要途径,初步具备合理的选材和设计,开发新型材料所必备的基础知识和基本技能。
在学习本课程之前,学生应学完物理化学、材料力学、材料科学基础、钢的热处理等课程。
二、课程基本要求根据课程的性质与任务,对本课程提出下列基本要求:1.要求学生在学习过程中打通与前期材料力学、材料科学基础等课程的联系,并注重建立与同期和后续其它专业课程之间联系以及在生产实际中的应用。
2.能够从各种机器零件最常见的服役条件和失效现象出发,了解不同失效现象的微观机理,掌握工程材料(金属材料为主)各种力学性能指标的宏观规律、物理本质、工程意义和测试方法,明确它们之间的相互关系,并能大致分析出各种内外因素对性能指标的影响。
3.掌握工程材料常用物理性能的基本概念及影响各种物性的因素,熟悉其测试方法及其分析方法,初步具备有合理选择物性分析方法,设计其实验方案的能力。
三、课程内容及学时分配总学时72,课堂教学60学时,实验12学时。
绪论二、单项选择题1、下列不是材料力学性能的是()A、强度B、硬度C、韧性D、压力加工性能2、属于材料物理性能的是()A、强度B、硬度C、热膨胀性D、耐腐蚀性三、填空题1、材料的性能可分为两大类:一类叫_ _,反映材料在使用过程中表现出来的特性,另一类叫_ _,反映材料在加工过程中表现出来的特性。
2、材料在外加载荷(外力)作用下或载荷与环境因素(温度、介质和加载速率)联合作用下所表现的行为,叫做材料_ 。
四、简答题1、材料的性能包括哪些方面?2、什么叫材料的力学性能?常用的金属力学性能有哪些?第一章材料单向静拉伸的力学性能一、名词解释弹性极限:强度:屈服强度:抗拉强度:塑性变形:韧性:二、单项选择题1、根据拉伸实验过程中拉伸实验力和伸长量关系,画出的力——伸长曲线(拉伸图)可以确定出金属的()A、强度和硬度B、强度和塑性C、强度和韧性D、塑性和韧性2、试样拉断前所承受的最大标称拉应力为()A、抗压强度B、屈服强度C、疲劳强度D、抗拉强度3、拉伸实验中,试样所受的力为()A、冲击B、多次冲击C、交变载荷D、静态力4、常用的塑性判断依据是()A、断后伸长率和断面收缩率B、塑性和韧性C、断面收缩率和塑性D、断后伸长率和塑性5、工程上所用的材料,一般要求其屈强比()A、越大越好B、越小越好C、大些,但不可过大D、小些,但不可过小6、工程上一般规定,塑性材料的δ为()A、≥1%B、≥5%C、≥10%D、≥15%7、形变强化是材料的一种特性,是下列()阶段产生的现象。
A、弹性变形;B、冲击变形;C、均匀塑性变形;D、屈服变形。
8、在拉伸过程中,在工程应用中非常重要的曲线是()。
A、力—伸长曲线;B、工程应力—应变曲线;C、真应力—真应变曲线。
9、空间飞行器用的材料,既要保证结构的刚度,又要求有较轻的质量,一般情况下使用()的概念来作为衡量材料弹性性能的指标。
A、杨氏模数;B、切变模数;C、弹性比功;D、比弹性模数。