高中物理-法拉第电磁感应定律及其应用学案
- 格式:doc
- 大小:270.91 KB
- 文档页数:12
法拉第电磁感应定律-优质课教案一、教学目标1. 让学生了解法拉第电磁感应定律的发现过程,感受科学研究的艰辛与快乐。
2. 通过实验和理论分析,使学生掌握法拉第电磁感应定律的内容及其应用。
3. 培养学生的观察能力、动手能力和思维能力,提高学生的科学素养。
二、教学重点与难点1. 教学重点:法拉第电磁感应定律的内容及其应用。
2. 教学难点:法拉第电磁感应定律的数学表达式和能量转化。
三、教学方法1. 采用问题驱动法,引导学生思考和探索法拉第电磁感应定律。
2. 利用实验演示,让学生直观地感受电磁感应现象。
3. 运用讨论法,培养学生的团队合作精神和批判性思维。
四、教学准备1. 实验器材:电磁感应实验装置、电流表、电压表、导线、开关等。
2. 教学课件:法拉第电磁感应定律的相关图片、视频和动画。
3. 教学资料:法拉第电磁感应定律的历史背景、发现过程和相关论文。
五、教学过程1. 导入新课:通过展示法拉第电磁感应实验的动画,引起学生的兴趣。
提问:“你们知道法拉第电磁感应定律吗?它是什么时候发现的?由谁发现的?”2. 探究法拉第电磁感应定律:1. 让学生回顾电磁感应现象,引导学生思考电磁感应的本质。
2. 介绍法拉第电磁感应定律的发现过程,让学生了解科学家们的研究艰辛。
3. 讲解法拉第电磁感应定律的内容,引导学生理解感应电流的方向和大小。
3. 实验演示:1. 演示电磁感应实验,让学生亲眼观察到感应电流的产生。
2. 引导学生运用法拉第电磁感应定律解释实验现象。
4. 数学表达式与能量转化:1. 讲解法拉第电磁感应定律的数学表达式,让学生掌握计算感应电流的方法。
2. 探讨电磁感应过程中的能量转化,使学生理解能量守恒定律。
5. 课堂小结:对本节课的内容进行总结,强调法拉第电磁感应定律的重要性及其在实际应用中的价值。
6. 课后作业:布置一些有关法拉第电磁感应定律的练习题,巩固所学知识。
7. 教学反思:在课后对教学过程进行反思,总结优点和不足,为今后的教学提供改进方向。
<<法拉第电磁感应定律>>学案【学习目标】 (1)、知道感应电动势及决定感应电动势大小的因素。
(2)、知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、t∆∆Φ。
(3)、理解法拉第电磁感应定律内容、数学表达式。
(4)、知道E =BLv 如何推得。
(5)、会用tnE ∆∆Φ=解决问题。
【学习重点】法拉第电磁感应定律【学习难点】磁通量的变化及磁通量的变化率的理解 【学习过程】 一、课前预习:1、在电磁感应现象中,产生感应电流的条件是什么?2、恒定电流中学过,电路中存在持续电流的条件是什么?3、在发生电磁感应的情况下,用什么方法可以判定感应电流的方向?4、比较图(a )与图(b ),我们不难得出结论:图(b )中的虚线部分相当于图(a )的 的作用:使电路两端产生 ,从而让电路内出现电流. ( 电池、 电动势)二、新课1、问题1:既然会判定感应电流的方向,那么,怎样确定感应电流的强弱呢?2、问题2:如图所示,在螺线管中插入一个条形磁铁,问①、在条形磁铁向下插入螺线管的过程中,电路中是否有电流?为什么? ②、有感应电流,是谁充当电源?③、上图中若电路是断开的,有无感应电流?有无感应电动势?3、产生感应电动势的条件是什么?4、比较产生感应电动势的条件和产生感应电流的条件,你有什么发现?(一)小结 : 叫做感应电动势产生感应电动势的那部分 就 电源5、(阅读课本P15第三段)分析影响感应电动势大小的因素,回答下列问题; (1)(猜测) 感应电动势大小跟什么因素有关? (2)观察下列现象、回答问题①、将条形磁铁迅速和缓慢的插入拔出螺线管,比较表针偏转的最大幅度。
②、迅速和缓慢移动导体棒,比较表针偏转的最大幅度。
问题1、在实验中,电流表指针偏转原因是什么?问题2:电流表指针偏转程度跟感应电动势的大小有什么关系? 问题3:影响感应电动势大小的因素是什么?(二)结论:电动势的大小与磁通量的变化 有关,磁通量的变化越 电动势越大,磁通量的变化越 电动势越小。
法拉第电磁感应定律-优质课教案第一章:引言1.1 课程背景法拉第电磁感应定律是电磁学的基础之一,对于理解现代科技的发展具有重要意义。
本课程旨在帮助学生深入理解法拉第电磁感应定律的原理和应用,提高学生的科学素养。
1.2 教学目标通过本章的学习,学生能够:(1)了解法拉第电磁感应定律的发现过程;(2)理解法拉第电磁感应定律的表述;(3)掌握法拉第电磁感应定律的基本应用。
1.3 教学内容本章主要介绍法拉第电磁感应定律的背景、发现过程和表述。
1.4 教学方法采用讲解、案例分析和互动讨论相结合的方式进行教学。
第二章:法拉第电磁感应定律的发现2.1 课程背景法拉第电磁感应定律的发现是电磁学发展史上的重要里程碑,了解其发现过程对于理解定律的重要性具有重要意义。
2.2 教学目标通过本章的学习,学生能够:(1)了解法拉第电磁感应定律的发现过程;(2)理解法拉第的实验方法和思维方式。
2.3 教学内容本章主要介绍法拉第电磁感应定律的发现过程,包括法拉第的实验方法和思维方式。
2.4 教学方法采用讲解和案例分析相结合的方式进行教学。
第三章:法拉第电磁感应定律的表述3.1 课程背景法拉第电磁感应定律的表述是理解和学习电磁学的基础,掌握其表述对于进一步学习电磁学的其他内容至关重要。
3.2 教学目标通过本章的学习,学生能够:(1)掌握法拉第电磁感应定律的表述;(2)理解法拉第电磁感应定律的各种形式。
3.3 教学内容本章主要介绍法拉第电磁感应定律的表述,包括各种形式。
3.4 教学方法采用讲解和互动讨论相结合的方式进行教学。
第四章:法拉第电磁感应定律的基本应用4.1 课程背景法拉第电磁感应定律在生产和生活中有着广泛的应用,了解其基本应用对于理解电磁学的实际意义具有重要意义。
4.2 教学目标通过本章的学习,学生能够:(1)掌握法拉第电磁感应定律的基本应用;(2)了解法拉第电磁感应定律在生产和生活中的应用。
4.3 教学内容本章主要介绍法拉第电磁感应定律的基本应用,包括在生产和生活中的应用。
高中物理《法拉第电磁感应定律》教案一、教学目标1.了解法拉第电磁感应定律的基本概念和实验方法。
2.掌握法拉第电磁感应定律的数学表达式及其应用。
3.能够通过实验和练习,加深对法拉第电磁感应定律的理解。
二、教学内容1.法拉第电磁感应定律的基本概念和实验方法。
2.电磁感应现象的原理和实际应用。
3.法拉第电磁感应定律的数学表达式及其简单的应用。
三、教学方法1.讲解法拉第电磁感应定律的基本概念和实验方法。
2.应用课堂讨论的方法,加强学生对法拉第电磁感应定律的理解。
3.实验、辅助图像、多媒体演示等多种形式的综合教学方法。
四、教学步骤1.导入1)对电磁感应现象的普遍性和重要性进行简单介绍。
2)放映一段关于法拉第电磁感应实验者视频。
3)由学生自主观察材料和展示设备等,引出电磁感应定律的基本概念。
2.讲解1)分析和讲解法拉第电磁感应定律的基本概念和实验方法。
2)讲解电磁感应现象的原理,并介绍其广泛的应用。
3)引导学生理性思考,探究法拉第电磁感应定律的数学表达式及其应用。
3.实验1)简单实验。
2)指导学生观察、分析实验结果,并理解法拉第电磁感应定律的实验过程与实际应用。
4.巩固1)请同学就法拉第电磁感应定律及其应用,发表个人看法,跟同学进行排名。
2)有关问题的复习和练习等。
五、教学反思1.让学生从实验和观察中了解和掌握法拉第电磁感应定律的基本概念和实验方法。
2.让学生深入了解法拉第电磁感应定律的原理和重要性,并讲解其广泛的应用领域。
3.通过简单的实验和多种形式的综合教学方法,让学生加深对法拉第电磁感应定律的理解。
1.2法拉第电磁感应定律学习目标:1.理解法拉第电磁感应定律的内容、数学表达式.2.会用E =BL v sin θ和E =n ΔΦΔt 解决问题. 习目标:3.掌握电磁感应现象中电路问题的分析方法和解题基本思路.4.综合应用法拉第电磁感应定律解决电磁感应中的图像问题.重点:理解法拉第电磁感应定律的内容、数学表达式.难点:用E =BL v sin θ和E =n ΔΦΔt 解决问题.预习新课:1.感应电动势由电磁感应产生的电动势,叫感应电动势.产生感应电动势的那部分导体相当于电源,导体本身的电阻相当于电源内阻.当电路断开时,无(填“有”或“无”)感应电流,但有(填“有”或“无”)感应电动势.2.法拉第电磁感应定律(1)内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)表达式:E =n ΔΦΔt. 3.对感应电动势的理解(1)磁通量的变化常由B 的变化或S 的变化引起.①当ΔΦ仅由B 的变化引起时,E =nS ΔB Δt .②当ΔΦ仅由S 的变化引起时,E =nB ΔS Δt. (2)E =n ΔΦΔt 或E =BL v .计算的是Δt 时间内平均感应电动势,当Δt →0时,E =n ΔΦΔt 的值才等于瞬时感应电动势.深度思考(1)感应电动势的大小与Φ或ΔΦ的大小有没有关系?(2)Φ、ΔΦ、ΔΦΔt与线圈匝数有关吗?感应电动势E 与线圈匝数有关吗? 答案 (1)E 的大小与Φ或ΔΦ的大小没有关系.(2)Φ、ΔΦ、ΔΦΔt均与某一面积相联系,与线圈匝数无关;n 匝线圈时相当于n 个单匝线圈的串联,所以感应电动势E 与线圈匝数有关.4.闭合电路中电源电动势E 、内电压U 内、外电压(路端电压)U 外三者之间的关系为E =U 内+U 外,其中电源电动势E 的大小等于电源未接入电路时两极间的电势差.一、电磁感应中的电路问题在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势.若回路闭合,则产生感应电流,所以电磁感应问题常与电路知识综合考查.解决与电路相联系的电磁感应问题的基本方法是:(1)明确哪部分导体或电路产生感应电动势,该导体或电路就是电源,其他部分是外电路.(2)用法拉第电磁感应定律确定感应电动势的大小,用楞次定律确定感应电动势的方向.(3)画等效电路图.分清内外电路,画出等效电路图是解决此类问题的关键.(4)运用闭合电路欧姆定律、串并联电路特点、电功率、电热等公式联立求解.例1 用相同导线绕制的边长为L 或2L 的四个闭合导线框,以相同的速度匀速进入右侧匀强磁场,如图1所示.在每个线框进入磁场的过程中,M 、N 两点间的电压分别为U a 、U b 、U c 和U d .下列判断正确的是( )图1A .U a <U b <U c <U dB .U a <U b <U d <U cC .U a =U b <U c =U dD .U b <U a <U d <U c解析 U a =34Bl v ,U b =56Bl v ,U c =34·B ·2L v =32Bl v ,U d =46B ·2L ·v =43Bl v ,故选B.答案 B例2 如图2所示,有一范围足够大的匀强磁场,磁感应强度B =0.2 T ,磁场方向垂直纸面向里.在磁场中有一半径r =0.4 m 的金属圆环,磁场与圆环面垂直,圆环上分别接有灯L 1、L 2,两灯的电阻均为R 0=2 Ω.一金属棒MN 与圆环接触良好,棒与圆环的电阻均忽略不计.图2(1)若棒以v 0=5 m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径的瞬时MN 中的电动势和流过灯L 1的电流;(2)撤去金属棒MN ,若此时磁场随时间均匀变化,磁感应强度的变化率为ΔB Δt =4π T/s ,求回路中的电动势和灯L 1的电功率.解析 (1)等效电路如图所示.MN 中的电动势E 1=B ·2r ·v 0=0.8 VMN 中的电流I =E 1R 0/2=0.8 A 流过灯L 1的电流I 1=I 2=0.4 A(2)等效电路如图所示回路中的电动势E 2=ΔB Δt·πr 2 =0.64 V回路中的电流I ′=E 22R 0=0.16 A 灯L 1的电功率P 1=I ′2R 0=5.12×10-2 W答案 (1)0.8 V 0.4 A (2)0.64 V 5.12×10-2W二、电磁感应中的图像问题1.对于图像问题,搞清物理量之间的函数关系、变化范围、初始条件、斜率的物理意义等,往往是解题的关键.2.解决图像问题的一般步骤(1)明确图像的种类,即是B -t 图像还是Φ-t 图像,或者E -t 图像、I -t 图像等.(2)分析电磁感应的具体过程.(3)用右手定则或楞次定律确定感应电流的方向.(4)用法拉第电磁感应定律E =n ΔΦΔt或E =Bl v 求感应电动势的大小. (5)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式.(6)根据函数关系画图像或判断图像,注意分析斜率的意义及变化.例3 在竖直方向的匀强磁场中,水平放置一圆形导体环.规定导体环中电流的正方向如图3甲所示,磁场向上为正.当磁感应强度B 随时间t 按图乙变化时,下列能正确表示导体环中感应电流变化情况的是 ( )图3解析 根据法拉第电磁感应定律有:E =n ΔΦΔt =nS ΔB Δt ,因此在面积、匝数不变的情况下,感应电动势与磁场的变化率成正比,即与B -t 图像中的斜率成正比,由图像可知:0~2 s ,斜率不变,故形成的感应电流不变,根据楞次定律可知感应电流方向顺时针即为正值,2 s ~4 s 斜率不变,电流方向为逆时针,整个过程中的斜率大小不变,所以感应电流大小不变,故A 、B 、D 错误,C 正确.答案 C例4 匀强磁场的磁感应强度B =0.2 T ,磁场宽度l =4 m ,一正方形金属框边长ad =l ′ =1 m ,每边的电阻r =0.2 Ω,金属框以v =10 m/s 的速度匀速穿过磁场区,其平面始终保持与磁感线方向垂直,如图4所示.求:图4(1)画出金属框穿过磁场区的过程中,各阶段的等效电路图.(2)画出金属框穿过磁场区的过程中,金属框内感应电流的i -t 图线;(要求写出作图依据)(3)画出ab 两端电压的U -t 图线.(要求写出作图依据)解析 如图a 所示,线框的运动过程分为三个阶段:第Ⅰ阶段cd 相当于电源;第Ⅱ阶段cd 和ab 相当于开路时两并联的电源;第Ⅲ阶段ab 相当于电源,分别如图b 、c 、d 所示.在第Ⅰ阶段,有I 1=E r +3r=Bl ′v 4r =2.5 A. 感应电流方向沿逆时针方向,持续时间为t 1=l ′v =110 s =0.1 s.ab 两端的电压为U 1=I 1·r =2.5×0.2 V =0.5 V在第Ⅱ阶段,有I 2=0,ab 两端的电压U 2=E =Bl ′v =2 Vt 2=l -l ′v =4-110 s =0.3 s在第Ⅲ阶段,有I 3=E 4r =2.5 A感应电流方向为顺时针方向ab 两端的电压U 3=I 3·3r =1.5 V ,t 3=0.1 s 规定逆时针方向为电流正方向,故i -t 图像和ab 两端U -t 图像分别如图甲、乙所示.答案 见解析课堂练习:1.(电磁感应中的电路问题)粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框一边a 、b 两点间的电势差绝对值最大的是( )答案 B 解析 在磁场中的线框与速度垂直的边等效为切割磁感线产生感应电动势的电源.四个选项中的感应电动势大小均相等,回路电阻也相等,因此电路中的电流相等,B 中a 、b两点间电势差为路端电压,为电动势的34倍,而其他选项则为电动势的14倍.故B 正确.2.(电磁感应中的图像问题)如图5所示,两条平行虚线之间存在匀强磁场,虚线间的距离为L ,磁场方向垂直纸面向里,abcd 是位于纸面内的梯形线圈,ad 与bc 间的距离也为L ,t =0时刻bc 边与磁场区域边界重合.现令线圈以恒定的速度v 沿垂直于磁场区域边界的方向穿过磁场区域,取沿a —b —c —d —a 方向为感应电流正方向,则在线圈穿越磁场区域的过程中,感应电流I 随时间t 变化的图线可能是 ( )图5答案 B 解析 由于bc 进入磁场时,根据右手定则判断出其感应电流的方向是沿adcba 的方向,其方向与电流的正方向相反,故是负的,所以A 、C 错误;当逐渐向右移动时,切割磁感线的条数在增加,故感应电流在增大;当bc 边穿出磁场区域时,线圈中的感应电流方向变为abcda ,是正方向,故其图像在时间轴的上方,所以B 正确,D 错误.3.(电磁感应中的电路问题)如图6所示,在磁感应强度B =2 T 的匀强磁场中,有一个半径r =0.5 m 的金属圆环.圆环所在的平面与磁感线垂直,OA 是一个金属棒,它沿着顺时针方向以20 rad/s 的角速度绕圆心O 匀速转动.A 端始终与圆环相接触,OA 棒的电阻R =0.1 Ω,图中定值电阻R 1=100 Ω,R 2=4.9 Ω,电容器的电容C =100 pF.圆环和连接导线的电阻忽略不计,则:图6(1)电容器的带电荷量是多少?(2)电路中消耗的电功率是多少?答案 (1)4.9×10-10 C (2)5 W解析 (1)等效电路如图所示导体棒OA 产生的感应电动势为:E =BL v =Brω·r 2=5 V .I =E R +R 2=1 A. 则q =CU C =CIR 2=4.9×10-10 C.(2)电路中消耗的电功率P 消=I 2(R +R 2)=5 W ,或P 消=IE =5 W.作业:题组一 电磁感应中的图像问题1.如图1甲所示,一个闭合线圈固定在垂直纸面的匀强磁场中,设磁场方向向里为磁感应强度B 的正方向,线圈中的箭头为电流I 的正方向.线圈及线圈中感应电流I 随时间变化的图线如图乙所示,则磁感应强度B 随时间变化的图线可能是 ( )图1答案 CD2.在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向,如图2甲所示,当磁场的磁感应强度B 随时间t 如图乙变化时,图中正确表示线圈中感应电动势E 变化的是 ( )图2答案 A 解析 在第1 s 内,由楞次定律可判定电流为正,其产生的感应电动势E 1=ΔΦ1Δt 1=ΔB 1Δt 1S ,在第2 s 和第3 s 内,磁场B 不变化,线圈中无感应电流,在第4 s 和第5 s 内,B 减小,由楞次定律可判定,其电流为负,产生的感应电动势E 2=ΔΦ2Δt 2=ΔB 2Δt 2S ,由于ΔB 1=ΔB 2,Δt 2=2Δt 1,故E 1=2E 2,由此可知,A 选项正确.3.如图3甲所示,光滑导轨水平放置在竖直方向的匀强磁场中,匀强磁场的磁感应强度B 随时间的变化规律如图乙所示(规定向下为正方向),导体棒ab 垂直导轨放置,除电阻R 的阻值外,其余电阻不计,导体棒ab 在水平外力F 的作用下始终处于静止状态.规定a →b 的方向为电流的正方向,水平向右的方向为外力的正方向,则在0~2t 0时间内,能正确反映流过导体棒ab 的电流与时间或外力与时间关系的图线是 ( )图3答案 D解析在0~t0时间内磁通量为向上减少,t0~2t0时间内磁通量为向下增加,两者等效,且根据B-t图线可知,两段时间内磁通量的变化率相等,根据楞次定律可判断0~2t0时间内均产生由b到a的大小不变的感应电流,选项A、B均错误;在0~t0可判断所受安培力的方向水平向右,则所受水平外力方向向左,大小F=BIL随B的减小呈线性减小;在t0~2t0时间内,可判断所受安培力的方向水平向左,则所受水平外力方向向右,大小F=BIL随B的增加呈线性增加,选项D正确.4.如图4所示的区域内有垂直于纸面向里的匀强磁场,磁感应强度为B.一个电阻为R、半径为L、圆心角为45°的扇形闭合导线框绕垂直于纸面的O轴匀速转动(O轴位于磁场边界),周期为T0,则线框内产生的感应电流的图像为(规定电流顺时针方向为正) ()图4答案 A解析(1)正确利用法拉第电磁感应定律,在本题中由于扇形导线框匀速转动,因此导线框进入磁场的过程中产生的感应电动势是恒定的.(2)注意线框在进入磁场和离开磁场时,有感应电流产生,当完全进入时,由于磁通量不变,故无感应电流产生.故A正确.5.如图5所示,在0≤x≤2L的区域内存在着匀强磁场,磁场方向垂直于xy坐标系平面(纸面)向里.具有一定电阻的矩形线框abcd位于xy坐标系平面内,线框的ab边与y 轴重合,bc边长为L.设线框从t=0时刻起在外力作用下由静止开始沿x轴正方向做匀加速运动,则线框中的感应电流i(取逆时针方向的电流为正)随时间t变化的函数图像可能是图中的()图5答案 D解析线圈的ab边刚进入磁场时,产生逆时针方向的电流,随着速度的增加,感应电流逐渐增大;线圈全部进入磁场后,无感应电流;当线圈的ab边离开磁场时,此时cd 边切割磁感线,产生顺时针方向的电流,且随速度的增加而增大.因为线圈此时的速度不为零,所以电流是从某一值增大.选项D正确.6.如图6所示,宽度为d的有界匀强磁场,方向垂直于纸面向里.在纸面所在平面内有一对角线长也为d的正方形闭合线圈ABCD,沿AC方向垂直磁场边界匀速穿过该磁场区域.规定逆时针方向为感应电流的正方向,t=0时C点恰好进入磁场,则从C点进入磁场开始到A点离开磁场为止,闭合线圈中感应电流随时间的变化图像正确的是()图6答案 A解析线圈在进磁场的过程中,根据楞次定律可知,感应电流的方向为CBADC方向,即为正值,在出磁场的过程中,根据楞次定律知,感应电流的方向为ABCDA,即为负值.在线圈进入磁场直到进入一半的过程中,切割的有效长度均匀增大,感应电动势均匀增大,则感应电流均匀增大,在线圈继续运动至全部进入磁场的过程中,切割的有效长度均匀减小,感应电动势均匀减小,则感应电流均匀减小;在线圈出磁场直到离开一半的过程中,切割的有效长度均匀增大,感应电流均匀增大,在线圈全部出磁场的过程中,切割的有效长度均匀减小,感应电流均匀减小.故A正确,B、C、D错误.7.如图7甲所示,固定在水平桌面上的光滑金属框架cdef处于方向竖直向下的匀强磁场中,金属杆ab与金属框架接触良好.在两根导轨的端点d、e之间连接一电阻,其他部分电阻忽略不计.现用一水平向右的外力F作用在金属杆ab上,使金属杆由静止开始向右在框架上滑动,运动中杆ab 始终垂直于框架.图乙为一段时间内金属杆受到的安培力F 安随时间t 的变化关系,则图中可以表示外力F 随时间t 变化关系的图像是( )图7答案 D 解析 ab 切割磁感线产生感应电动势E =BL v ,感应电流为I =BL v R ,安培力F 安=B 2L 2v R ,所以v ∝F 安,再由题图乙知v ∝t ,金属杆的加速度为定值.又由牛顿第二定律得F -F 安=ma ,即F =F 安+ma ,可知D 项正确.题组二 电磁感应中的电路问题8.如图8所示,用粗细相同的铜丝做成边长分别为L 和2L 的两只闭合正方形线框a 和b ,以相同的速度从磁感应强度为B 的匀强磁场区域中匀速地拉到磁场外,不考虑线框的重力,若闭合线框的电流分别为I a 、I b ,则I a ∶I b 为 ( )图8 A .1∶4B .1∶2C .1∶1D .不能确定答案 C 解析 产生的电动势为E =Bl v ,由闭合电路欧姆定律得I =Bl v R,又L b =2L a ,由电阻定律知R b =2R a ,故I a ∶I b =1∶1.9.如图9所示,两个相同导线制成的开口圆环,大环半径为小环半径的2倍,现用电阻不计的导线将两环连接在一起,若将大环放入一均匀变化的磁场中,小环处在磁场外,a 、b 两点间电压为U 1,若将小环放入这个磁场中,大环在磁场外,a 、b 两点间电压为U 2,则 ( )图9A.U 1U 2=1 B.U 1U 2=2 C.U 1U 2=4 D.U 1U 2=14答案 B 解析 根据题意设小环的电阻为R ,则大环的电阻为2R ,小环的面积为S ,则大环的面积为4S ,且ΔBΔt =k ,当大环放入一均匀变化的磁场中时,大环相当于电源,小环相当于外电路,所以E 1=4kS ,U 1=E 1R +2R R =43kS ;当小环放入磁场中时,同理可得U 2=E 2R +2R 2R =23kS ,故U 1U 2=2.选项B 正确.10.如图10所示,竖直平面内有一金属圆环,半径为a ,总电阻为R (指拉直时两端的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面,与环的最高点A 用铰链连接长度为2a 、电阻为R2的导体棒AB ,AB 由水平位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,则这时AB 两端的电压大小为( )图10A.Ba v 3B.Ba v 6C.2Ba v 3D .Ba v答案 A解析 摆到竖直位置时,AB 切割磁感线的瞬时感应电动势E ′=B ·2a ·(12v )=Ba v .由闭合电路欧姆定律有U AB =E ′R 2+R 4·R 4=13Ba v ,故选A.11.如图11所示,在宽为L =0.5 m 的平行导轨上垂直放置一个有效电阻为r =0.6 Ω的直导体棒ab ,在导轨的两端分别连接两个阻值为R 1=4 Ω、R 2=6 Ω的电阻,其他电阻不计.整个装置处在垂直导轨向里的匀强磁场中,磁感应强度B =0.1 T .当直导体棒在导轨上以v =6 m/s 的速度向右运动时,求:直导体棒两端的电压和流过电阻R 1和R 2的电流大小.图11答案 0.24 V 0.06 A 0.04 A解析 由题意可画出如图所示的等效电路图,则感应电动势E =BL v =0.1×0.5×6 V =0.3 VR 外=R 1R 2R 1+R 2=2.4 Ω.U ab =ER 外R 外+r =0.3×2.42.4+0.6 V =0.24 V ,I 1=U ab R 1=0.06 A ,I 2=U abR 2=0.04 A.12.如图12所示,半径为R 的圆形导轨处在垂直于圆平面的匀强磁场中,磁感应强度为B ,方向垂直于纸面向里.一根长度略大于导轨直径的导体棒MN 以恒定速率v 在圆导轨上从左端滑到右端,电路中的定值电阻为r ,其余电阻不计.导体棒与圆形导轨接触良好.求:图12(1)在滑动过程中通过电阻r 的电流的平均值;(2)MN 从左端到右端的整个过程中,通过r 的电荷量; (3)当MN 通过圆形导轨中心时,通过r 的电流是多少?答案 (1)πBR v 2r (2)πBR 2r (3)2BR v r解析 (1)计算平均电流,应该用法拉第电磁感应定律先求出平均感应电动势.整个过程磁通量的变化为ΔΦ=BS =B πR 2,所用的时间Δt =2R v ,代入公式E =ΔΦΔt =πBR v2,平均电流为I =Er =πBR v2r .(2)电荷量的计算应该用平均电流,q =I Δt =B πR 2r .(3)当MN 通过圆形导轨中心时,切割磁感线的有效长度最大,l =2R ,根据导体切割磁感线产生的电动势公式E =Bl v ,得E =B ·2R v ,此时通过r 的电流为I =E r =2BR vr .13.把总电阻为2R 的均匀电阻丝焊接成一半径为a 的圆环,水平固定在竖直向下的磁感应强度为B 的匀强磁场中,如图13所示,一长度为2a ,电阻等于R ,粗细均匀的金属棒MN 放在圆环上,它与圆环始终保持良好的接触,当金属棒以恒定速度v 向右移动经过环心O 时,求:图13(1)棒上电流的大小和方向及棒两端的电压U MN ;(2)圆环消耗的热功率和在圆环及金属棒上消耗的总热功率.答案 (1)4Ba v 3R N →M 23Ba v (2)8(Ba v )29R 8(Ba v )23R解析 (1)金属棒MN 切割磁感线产生的感应电动势为E =Bl v =2Ba v .外电路的总电阻为R 外=R ·R R +R =12R金属棒上电流的大小为I =ER 外+R =2Ba v 12R +R =4Ba v 3R,电流方向从N 到M 金属棒两端的电压为电源的路端电压U MN =IR 外=23Ba v .(2)圆环消耗的热功率为外电路的总功率P 外=I 2R 外=8(Ba v )29R圆环和金属棒上消耗的总热功率为电路的总功率P 总=IE =8(Ba v )23R .。
第2讲 法拉第电磁感应定律 自感 涡流一、法拉第电磁感应定律 1.感应电动势(1)概念:在电磁感应现象中产生的电动势。
(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。
(3)方向判断:感应电动势的方向用楞次定律或右手定则判断。
2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。
(2)公式:E =n ΔΦΔt,其中n 为线圈匝数。
(3)感应电流与感应电动势的关系:遵守闭合电路的欧姆定律,即I =ER +r 。
3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E =Blv 。
(2)v ∥B 时,E =0。
二、自感、涡流 1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感。
(2)自感电动势①定义:在自感现象中产生的感应电动势叫作自感电动势。
②表达式:E =L ΔIΔt。
(3)自感系数L①相关因素:与线圈的大小、形状、匝数以及是否有铁芯有关。
②单位:亨利(H),1 mH =10-3H,1 μH=10-6H 。
2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水的漩涡,所以叫涡流。
授课提示:对应学生用书第196页命题点一 对法拉第电磁感应定律的理解及应用 自主探究1.感应电动势的决定因素(1)由E =n ΔΦΔt 知,感应电动势的大小由穿过电路的磁通量的变化率ΔΦΔt 和线圈匝数n 共同决定,磁通量Φ较大或磁通量的变化量ΔΦ较大时,感应电动势不一定较大。
(2)ΔΦΔt 为单匝线圈产生的感应电动势大小。
2.法拉第电磁感应定律的三个特例(1)回路与磁场垂直的面积S 不变,磁感应强度发生变化,则ΔΦ=ΔB·S,E =n ΔBΔt S 。
(2)磁感应强度B 不变,回路与磁场垂直的面积发生变化,则ΔΦ=B·ΔS,E =nB ΔSΔt。
(3)磁通量的变化是由面积和磁场变化共同引起时,则ΔΦ=Φ末-Φ初,E =n B 2S 2-B 1S 1Δt ≠n ΔB·ΔSΔt。
第四节 法拉第电磁感应定律1.教学目标1.理解法拉第电磁感应定律的内容及数学表达式。
2.知道公式E =Blv 的推导过程。
3.会用E =n ΔΦΔt和E =Blv 解决问题。
分析前面几节的内容是从感应电流的角度来认识电磁感应现象的。
本节是从感应电流进一步深入到感应电动势来理解的,即研究“决定感应电动势大小的因素”。
教科书在这个问题的处理上并没有通过实验探究,而是以陈述事实的方式,引入法拉第电磁感应定律,即教科书用“在法拉第、纽曼、韦伯等人工作的基础上,人们认识到……感应电动势……成正比”的表述给出了电磁感应定律。
教科书之所以这样处理,是力图通过这一物理规律的教学,充分体现人类认识事物的一种真实图景。
也就是说,物理学中多数定律的得出,并不一定是直接归纳的结果,而是在分析了很多间接的实验事实后被“悟”出来的,并且定律的正确往往也是由它的推论的正确性来证实的。
3.教学重点难点本节教学的重点和难点都是对法拉第电磁感应定律的理解与应用。
导入新课:教学任务1:温故知新,通过问题和图片导入新课。
师生活动:问题导入:【问题1】 每日一题见课件。
学生作答,其他学生补充。
【问题2】 对比两图,观察有何异同?引入新课:在电磁感应现象中,产生感应电流的那部分导体就相当于电源,其所在电路就是内电路,电源的电动势就是感应电动势。
在电磁感应现象中,不论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就有感应电动势,有感应电动势是电磁感应现象的本质。
因此研究感应电动势比研究感应电流更有意义。
那么感应电动势的大小跟哪些因素有关?这节课要研究感应电动势的大小跟哪些因素有关的问题。
推进新课教学任务2:探究感应电动势的大小跟哪些因素有关。
问题导入:【问题1】上节课我们用实验探究的方法找到了感应电流方向的规律,这节课我们是否可以再用同样的器材来探究感应电动势的大小跟哪些因素有关?【问题2】怎样判断感应电动势的大小?如果不能直接测量,可以用测量哪些量来代替电动势?【问题3】感应电流的方向跟磁通量的变化量有关,那么感应电动势的大小是否也跟磁通量的变化有关,用实验的方法怎样来研究这个问题?学生活动:【学生分组实验探究】将条形磁铁插入线圈中。
物理教案-法拉第电磁感应定律引言法拉第电磁感应定律是电磁学的重要基础知识之一,也是物理学中的经典定律之一。
它描述了导体中的电流受到磁场作用时所产生的感应电动势。
法拉第电磁感应定律为我们理解电磁现象提供了关键的线索,具有广泛的应用。
本教案将介绍法拉第电磁感应定律的基本原理、实验方法和应用。
1. 法拉第电磁感应定律的基本原理法拉第电磁感应定律表明,当导体中的磁通量发生变化时,该导体两端将产生感应电动势,从而产生感应电流。
其基本原理可以用以下公式表示:ε = -dΦ/dt其中,ε表示感应电动势,Φ表示磁通量,dt表示时间的微小变化。
该公式说明了感应电动势与磁通量的变化率成正比,方向由洛仑兹力规定。
2. 法拉第电磁感应定律的实验方法为了验证法拉第电磁感应定律,我们可以进行简单的实验。
2.1 实验材料和器材•导线圈•磁铁•电源•电流表•万用表•开关2.2 实验步骤1.将导线圈绕成规则的圆圈,确保导线的两端分别与电源的正负极相连。
2.将磁铁靠近导线圈的一个边,使磁铁的磁场通过导线圈的中心。
3.打开电源,观察电流表的变化。
4.移动磁铁,观察电流表的变化。
2.3 实验结果和分析在实验过程中,当磁铁的磁场通过导线圈时,电流表会显示出电流的变化。
当磁铁移动时,电流表上的电流方向也会发生变化。
这一现象符合法拉第电磁感应定律的预测。
3. 法拉第电磁感应定律的应用法拉第电磁感应定律具有广泛的应用,以下是其中一些典型的应用案例:3.1 发电机发电机是利用法拉第电磁感应定律原理制造的设备。
通过转动导线圈在磁场中产生感应电动势,从而产生电流。
发电机已成为我们日常生活中不可或缺的设备,广泛用于发电厂、家庭发电以及移动设备的充电等。
3.2 电感和电感传感器电感是利用法拉第电磁感应原理制造的元件,能够在电路中储存能量。
电感传感器则是利用电感的特性,常用于测量和控制电流、检测金属和非金属材料、测量物体的位置和速度等。
3.3 变压器变压器也是利用法拉第电磁感应定律原理制造的设备。
法拉第电磁感应定律知识点:法拉第电磁感应定律一、电磁感应定律1.感应电动势在电磁感应现象中产生的电动势叫作感应电动势,产生感应电动势的那部分导体相当于电源.2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:E =n ΔΦΔt,其中n 为线圈的匝数. (3)在国际单位制中,磁通量的单位是韦伯(Wb),感应电动势的单位是伏(V).二、导线切割磁感线时的感应电动势1.导线垂直于磁场方向运动,B 、l 、v 两两垂直时,如图甲所示,E =Bl v .图甲 图乙2.导线的运动方向与导线本身垂直,但与磁感线方向夹角为θ时,如图乙所示,E =Bl v sin_θ.3.导体棒切割磁感线产生感应电流,导体棒所受安培力的方向与导体棒运动方向相反,导体棒克服安培力做功,把其他形式的能转化为电能.技巧点拨一、对电磁感应定律的理解1.磁通量Φ、磁通量的变化量ΔΦ及磁通量的变化率ΔΦΔt 的比较:2.公式E=nΔΦΔt的理解感应电动势的大小E由磁通量变化的快慢,即磁通量变化率ΔΦΔt决定,与磁通量Φ、磁通量的变化量ΔΦ无关.二、导线切割磁感线时的感应电动势1.导线切割磁感线时感应电动势表达式的推导如下图所示,闭合电路一部分导线ab处于匀强磁场中,磁感应强度为B,ab的长度为l,ab以速度v匀速垂直切割磁感线.则在Δt内穿过闭合电路磁通量的变化量为ΔΦ=BΔS=Bl vΔt根据法拉第电磁感应定律得E=ΔΦΔt=Bl v.2.对公式的理解(1)当B、l、v三个量的方向互相垂直时,E=Bl v;当有任意两个量的方向互相平行时,导线将不切割磁感线,E=0.(2)当l垂直B且l垂直v,而v与B成θ角时,导线切割磁感线产生的感应电动势大小为E =Bl v sin θ.(3)若导线是弯折的,或l与v不垂直时,E=Bl v中的l应为导线在与v垂直的方向上的投影长度,即有效切割长度.图甲中的有效切割长度为:L =cd sin θ;图乙中的有效切割长度为:L =MN ;图丙中的有效切割长度为:沿v 1的方向运动时,L =2R ;沿v 2的方向运动时,L =R .3.导体转动切割磁感线产生的电动势如下图所示,导体棒在磁场中绕A 点在纸面内以角速度ω匀速转动,磁感应强度为B ,则AC 在切割磁感线时产生的感应电动势为E =Bl v =Bl ·ωl 2=12Bl 2ω.三、E =n ΔΦΔt与E =Bl v 的比较 1.区别:E =n ΔΦΔt研究的是整个闭合回路,适用于计算各种电磁感应现象中Δt 内的平均感应电动势;E =Blv 研究的是闭合回路的一部分,即做切割磁感线运动的导体,只适用于计算导体做切割磁感线运动产生的感应电动势,可以是平均感应电动势,也可以是瞬时感应电动势.2.联系:E =Bl v 是由E =n ΔΦΔt在一定条件下推导出来的,该公式可看成法拉第电磁感应定律的一个推论.例题精练1.(2021•北京模拟)英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场。
高中物理电磁感应教学教案:法拉第电磁感应定律一、引言法拉第电磁感应定律是高中物理电磁感应内容中的重要部分。
掌握和理解该定律对于学生深入了解电磁学原理具有重要意义。
本教案旨在通过设计合理的实验和讲解,帮助学生全面理解法拉第电磁感应定律的原理和应用。
二、教学目标1. 知识目标:- 理解法拉第电磁感应定律的基本概念;- 掌握法拉第电磁感应定律的公式及其在实际问题中的应用;- 理解互感和自感现象,并能运用相关公式进行计算。
2. 能力培养:- 培养学生分析问题、提出假设并进行实验验证的能力;- 培养学生观察与总结、归纳与演绎的科学思维能力;- 培养学生运用数学方法分析物理问题的能力。
3. 情感态度价值观培养:- 培养学生对创新精神和科技进步的认识;- 提高学生对物理实践探究、科技发展的兴趣和热情。
三、教学过程1. 导入引导学生通过实际观察和思考,回归物理现象的本质,提出与电磁感应相关的问题。
例如:“当我们用一个磁铁靠近线圈时,为什么会在线圈中产生电流?”引发学生对法拉第电磁感应定律的思考。
2. 概念讲解通过简明扼要地介绍法拉第电磁感应定律的基本原理和公式:当闭合回路内的磁通量发生变化时,在回路中产生感应电动势,并且这个感应电动势的方向遵循右手螺旋定则。
同时,结合示意图和具体实例进行讲解,帮助学生更好地理解。
3. 实验设计与操作将学生分成小组进行实验,每个小组使用相同材料和器材。
将一个线圈连接到示波器或万用表上,并固定在一块水平木板上。
然后,在线圈附近移动磁铁并记录读数。
通过改变磁铁与线圈之间的距离、磁铁位置以及移动速度等条件来探究影响电流大小的因素,并记录实验数据。
4. 数据分析与讨论小组讨论和总结实验数据,进行数据分析并根据法拉第电磁感应定律进行计算。
比较不同条件下的实验结果,归纳出影响感应电流大小的因素。
教师引导学生思考相关问题,如“当磁铁靠近线圈时,为什么会有电流?”“当磁铁离开线圈时,为什么会产生电流?”等。
高中物理-法拉第电磁感应定律及其应用学案A层学案一、基本概念1、感应电动势:在电磁感应现象中产生的电动势叫感应电动势,产生感应电动势的那部分导体相当于电源。
只要穿过回路的磁通量发生改变,在回路中就会产生感应电动势。
2、法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一回路的磁通量的变化率成正比。
公式为3、自感现象(1)自感现象:由于导体本身电流发生变化而产生的电磁感应现象叫自感现象。
(2)自感电动势的方向:根据楞次定律判定。
自感电动势总要阻碍导体中电流的变化,当导体中的电流增大时,自感电动势与原电流方向相反;当导体中的电流减小时,自感电动势与原电流方向相同(1)、自感现象的四个要点和三个状态要点一:电感线圈产生感应电动势的原因是通过线圈本身的电流变化引起穿过自身的磁通量变化。
要点二:自感电流总是阻碍导体中原电流的变化,当自感电流是由于原电流的增强引起的(如通电),自感电流的方向与原电流方向相反;当自感电流是由于原电流的减少引起时(如断电),自感电流的方向与原电流方向相同;要点三:自感电动势的大小取决于自感系数和导体本身电流变化的快慢。
其具体关系为:E L t∆I∆。
其中,自感系数L的大小是由线圈本身的特性决定的。
=/线圈越粗、越长、匝数越密,它的自感系数就越大;线圈中加入铁芯,自感系数增大。
要点四:自感现象的解释。
图1的电路断电时,线圈中产生的自右向左的自感电流,是从稳定时的电流IL 开始减小的。
若R R RA L L>(为线圈的直流电阻),在电键S闭合稳定后,流过电灯的自右向左的电流IA 小于流过线圈的自右向左的电流IL,在S断开的瞬间,才可以看到电灯更亮一下后才熄灭。
若R RA L≤,在S断开的瞬间,电灯亮度是逐渐减弱的。
三个状态:理想线圈(无直流电阻的线圈)的三个状态分别是指线圈通电瞬间、通电稳定状态和断电瞬间状态。
在通电开始瞬间应把线圈看成断开,通电稳定时可把理想线圈看成导线或被短路来分析问题。
断电时线圈可视为一瞬间电流源(自感电动势源),它可以使闭合电路产生电流。
二、基础题型例1 如果闭合电路中的感应电动势很大,那一定是因为()A.穿过闭合电路的磁通量很大B.穿过闭合电路的磁通量变化很大C.穿过闭合电路的磁通量的变化很快D.闭合电路的电阻很小解析:选C.根据法拉第电磁感应定律,感应电动势取决于穿过闭合电路的磁通量的变化率.即磁通量的变化快慢与磁通量大小、磁通量变化量大小、电路电阻无必然联系,所以C项正确,A、B、D错误.即时练习1、穿过一个单匝线圈的磁通量始终保持每秒均匀地减少2 Wb,则( ) A.线圈中感应电动势每秒增加2 VB.线圈中感应电动势每秒减少2 VC.线圈中无感应电动势D.线圈中感应电动势大小不变答案:D2、如图所示,在竖直向下的匀强磁场中,将一水平放置的金属棒ab以水平初速度0v抛出,设在整个过程中棒的方向不变且不计空气阻力,则在金属棒运动过程中产生的感应电动势大小变化情况是()A.越来越大B.越来越小C.保持不变D.无法判断解析:选C.金属棒水平抛出后,在垂直于磁场方向上的速度不变,由E=Blv知,电动势也不变,故C正确.3、一根直导线长0.1 m,在磁感应强度为0.1 T的匀强磁场中以10 m/s的速度匀速运动,则导线中产生的感应电动势的说法错误的是()A.一定为0.1 V B.可能为零C.可能为0.01 V D.最大值为0.1 V答案 A解析当公式E=BLv中B、L、v互相垂直而导体切割磁感线运动时感应电动势最大:Em=BLv=0.1×0.1×10 V=0.1 V,考虑到它们三者的空间位置关系,B、C、D正确,A错.4、(2013.北京理综.17)如图,在磁感应强度为B、方向垂直纸面向里的匀强磁场中,金属杆MN在平行金属导轨上以速度V向右匀速滑动, MN中产生的感应电动势为El ;若磁感应强度增为2B,其他条件不变,MN中产生的感应电动势变为E2。
则通过电阻R的电流方向及E1与E2之比El: E2分别为()A.C→a,2:1B.a→c,2:1C.a→c,1:2D.c→a,1:2【答案】C【解析】据右手定则可直接判断出感应电流的方向为a→c,由导体棒切割磁感线产生的感应电动势的表达式E BLv可知若磁感应强度增为2B,其他条件不变,MN中产生的感应电动势变为原来的2倍,本题选C。
例2 当线圈中电流改变时,线圈中会产生自感电动势,自感电动势方向与原电流方向( C )A.总是相反B.总是相同C.电流增大时,两者方向相反D.电流减小时,两者方向相同即时练习1、线圈的自感系数大小的下列说法中,正确的是( B )A.通过线圈的电流越大,自感系数也越大B.线圈中的电流变化越快,自感系数也越大C.插有铁芯时线圈的自感系数会变大D.线圈的自感系数与电流的大小、电流变化的快慢、是否有铁芯等都无关2、一个线圈中的电流均匀增大,这个线圈的()A.自感系数均匀增大B.磁通量均匀增大C.自感系数、自感电动势均匀增大D.自感系数、自感电动势、磁通量都不变3、如图2所示电路,多匝线圈的电阻和电池的内电阻可以忽略,两个电阻器的阻值都是R.电键S原来打开着,电流I0=ε/2R,今合下电键将一个电阻器短路,于是线圈中有自感电动势产生,这自感电动势( D )A.有阻碍电流的作用,最后电流由I0减小为零B.有阻碍电流的作用,最后总小于I0C .有阻碍电流增大作用,因而电流保持为I 0不变D .有阻碍电流增大作用,但电流最后还是要增大到2I 0判断灯亮度情况的变化问题例3 如图2所示的电路中A A 12和是完全相同的灯泡,线圈L 的电阻可以忽略。
下列说法中正确的是( )A. 合上电键S 接通电路时,A 2先亮,A 1后亮,最后一样亮B. 合上电键S 接通电路时,A A 21和始终一样亮C. 断开电键S 切断电路时,A 2立即熄灭,A 1过一会才熄灭D. 断开电键S 切断电路时,A A 21和都过一会才熄灭解析 自感线圈具有阻碍电流变化的作用,当电流增加时,它阻碍电流增加;当电流减小时,它阻碍电流减小,但阻碍并不是阻止。
闭合电键时,L 中电流从无到有,L 将阻碍这一变化,使L 中电流不能迅速增大;而无电感的电路,电流能够瞬时达到稳定值。
故A 1灯后亮,A 2灯先亮,最后两灯电流相等,一样亮。
断开电键时,L 中产生自感电动势与自身的电流方向相同,该自感电流通过A A 12、,使A A 12、过一会儿才熄灭,故选项A 、D 正确。
即时练习1、如图3电路(a)、(b)中,电阻R 和自感线圈L 的电阻值都是很小.接通S ,使电路达到稳定,灯泡A 发光( AD )A .在电路(a)中,断开S,A 将渐渐变暗B.在电路(a)中,断开S,A将先变得更亮,然后渐渐变暗C.在电路(b)中,断开S,A将渐渐变暗D.在电路(b)中,断开S,A将先变得更亮,然后渐渐变暗2、如图4所示电路,电感线圈L的自感系数足够大,其直流电阻忽略不计,LA、LB 是两个相同的灯泡,则( D )A.S闭合瞬间,LA不亮,LB很亮;S断开瞬间,LA、LB立即熄灭B.S闭合瞬间,LA很亮,LB逐渐亮;S断开瞬间,LA逐渐熄灭,LB立即熄灭C.S闭合瞬间,LA、LB同时亮,然后LA熄灭,LB亮度不变;S断开瞬间,LA亮一下才熄灭,LB立即熄灭;D.S闭合瞬间.A、B同时亮,然后A逐渐变暗到熄灭,B 变得更亮;S断开瞬间,A亮一下才熄灭,B立即熄灭3、如图5所示,L A和LB是两个相同的小灯泡,L是一个自感系数相当大的线圈,其电阻值与R相同。
由于存在自感现象,在电键S闭合和断开时,灯LA和LB先后亮暗的顺序是( A )A.接通时,LA先达最亮,断开时,L A后暗B.接通时,LB先达最亮,断开时,LB后暗C.接通时,LA先达最亮,断开时,LA先暗D.接通时,LB先达最亮,断开时,L B先暗4、如图所示,电灯A和B与固定电阻的阻值均为R,L是自感系数较大的线圈,当S1闭合、S2断开且电路稳定时A、B亮度相同;再闭合S2,待电路稳定后将S1断开;下列说法中正确的是( A )A.B灯立即熄灭B.A灯将比原来更亮一些后再熄灭C.有电流通过B灯,方向为c→dD.有电流通过A灯,方向为b→a5、如图所示,L是自感系数很大的线圈,其自身的直流电阻几乎为零。
A和B是两个相同的小灯泡,下列说法正确的是()A.当闭合开关S后,灯泡A亮度一直保持不变B.当闭合开关S后,灯泡B逐渐变亮,最后亮度不变C.再断开开关S后,灯泡A逐渐变暗,直到不亮D.再断开开关S后,灯泡B由暗变亮再逐渐熄灭电磁感应中的图像问题例4 如图1,一个边长为l的正方形虚线框内有垂直于纸面向里的匀强磁场;一个边长也为l的正方形导线框所在平面与磁场方向垂直;虚线框对角线ab 与导线框的一条边垂直,ba的延长线平分导线框.在t=0时, 使导线框从图示位置开始以恒定速度沿ab方向移动,直到整个导线框离开磁场区域.以i表示导线框中感应电流的强度,取逆时针方向为正.图2中表示i-t 关系的图示中,可能正确的是()图2解析:从正方形线框下边开始进入到下边完全进入过程中,线框切割磁感线的有效长度逐渐增大,所以感应电流也逐渐拉增大,A项错误;从正方形线框下边完全进入至下边刚穿出磁场边界时,切割磁感线有效长度不变,故感应电流不变,B项错;当正方形线框下边离开磁场,上边未进入磁场的过程比正方形线框上边进入磁场过程中,磁通量减少的稍慢,故这两个过程中感应电动势不相等,感应电流也不相等,D项错,故正确选项为C。
即使练习1 矩形导线框abcd固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直地面向里,磁感应强度B随时间变化的规律如图所示。
若规定顺时针方向为感应电流I的正方向,图7中正确的是()图7解析:0-1s内B垂直纸面向里均匀增大,则由楞次定律及法拉第电磁感应定律可得线圈中产生恒定的感应电流,方向为逆时针方向,排除A、C选项;2s-3s内,B垂直纸面向外均匀增大,同理可得线圈中产生的感应电流方向为顺时针方向,排除B选项,D正确。
处理有关图像变换的问题,首先要识图,即读懂已知图像表示的物理规律或物理过程,然后再根据所求图像与已知图像的联系,进行图像间的变换。
2 如图8所示,一对平行光滑轨道放置在水平面上,两轨道间距l=0.20 m,电阻R=1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B=0.5 T的匀强磁场中,磁场方向垂直轨道面向下。
现在一外力F沿轨道方向拉杆,使之做匀加速运动,测得力F与时间t 的关系如图9所示。
求杆的质量m和加速度a。
解析:导体杆在轨道上做初速度为零的加速直线运动,用v表示瞬时速度,t 表示时间,则杆切割磁感线产生的感应电动势为:,闭合回路中的感应电流为:,由安培力公式和牛顿第二定律得:,得:。