2实验二 凝集、沉淀反应
- 格式:ppt
- 大小:1.83 MB
- 文档页数:22
实验二沉淀反应一、实验目的1、了解沉淀的生成、溶解和沉淀的转化条件,掌握沉淀平衡,同离子效应以及溶度积原理。
2、学习离子分离操作和同离子效应和电动离心机的使用。
二、实验的内容1、沉淀的生成和溶解①查表得:PbI2的ksp为7.1×10-9取1d 0.1mol/L的Pb(NO3)2+9d水,取1d+9d水,配成1×10-3mol/L的Pb(NO3)2溶液取1d 0.1mol/L的kI+9d水,取其中1d+9d水,再取1d+1d 水+首先配好的1×10-3mol/L的Pb(NO3)2溶液2d→不出现黄色沉淀,溶液无变化。
计算:Q=【pb2+】·【I-】2=25/8×10-11﹤ksp计算值也不应该有沉淀。
反应方程:pb2++ 2I-≒pbI2实验结论:1、计算结果与实际相符,Q﹤ksp,不出现沉淀2、没看到pbI2黄色沉淀,不等于不存在pbI2,溶液中还是存在少量的pbI2②查表得:pbs的ksp=8×10-28 pbcro4ksp=2.8×10-13取1d 0.1mol/L的Na2S+1d0.1mol/L的k2cro4,稀释至2.5mL 取1d上述溶液+1d 0.1mol/L的Pb(NO3)2→有棕黄色的混合沉淀出现。
计算:Q﹙pbs﹚=【S2-】【pb2+】=4×10-6﹥其kspQ﹙pbcro4﹚=【S2-】【cro42-】=4×10-6﹥其ksp反应方程:pb2++ S2-≒pbs pb2++ cro42-≒pbcro4实验结论:只要Q﹥ksp,就会出现沉淀,在同一溶液中也不会因沉淀的ksp的大小而出现沉淀的先后,而是同时沉淀。
如随着某离子的加入,Q先达到某个沉淀的ksp,后达到另一个沉淀的ksp,这是才会出现沉淀的先后之分。
2、沉淀的溶解和转化1d 0.1mol/L Pb(NO3)2+2d 0.1mol/L NaCL→Pbcl2↓(白色)+2d 0.1mol/L kI溶液→pbI2↓(黄色) {离心,去掉上清液→稀释至0.5mL}+饱和Na2so4晶体→ pbso4↓(白色) +0.1mol/L k2cro4→pbcro4↓(黄色)+2~3d 0.1mol/L k2S→pbs↓(黑色) {离心,取上清液,颜色为粉红色}★查表得:ksp(Pbcl2)=1.6×10-5 ksp(pbI2)=7.1×10-9 ksp(pbso4)=1.6×10-8ksp(pbcro4)=2.8×10-13 ksp(pbs)=8×10-28★计算:例Pbcl2转化为pbI2的过程:Pbcl2+ 2I-≒pbI2+2cl-K°=【cl-】2/【I-】2=【pb2+】【cl-】2/【pb2+】【I-】2= ksp (Pbcl2)/ ksp(pbI2)=1.6/7.1×104K°值越大,沉淀转化的越完全,对同一类型的沉淀来说,溶度积越大的沉淀越易转化成溶度积小的沉淀对ksp小→ksp大的方向进行的特例:ksp(pbI2)/ ksp(pbso4)=【pb2+】【cl-】2/【pb2+】【so42-】推出→【so42-】min=0.16/7.1 因此Na2so4晶体或饱和Na2so4溶液满足此条件。
对流免疫电泳实验报告【篇一:实验十一免疫电泳】免疫电泳技术抗原与抗体的结合在沉淀反应中,呈一定的分子比例。
不同抗原和抗体之间的分子比例是不同的,但只有在分子比例合适时,才出现可见的沉淀。
所以沉淀能否出现并不完全反映抗原和抗体是否存在和发生结合。
抗原结合多个抗体分子,称抗原为多价;抗体一般只能结合两个抗原分子(igm类抗体分子通常可以结合5个抗原分子)的抗原决定法簇,故为二价。
只有在彼此的结合价饱和时,才出现大量的抗原-抗体复合物沉淀。
当抗原与抗体的比例合适时,即二者结合价彼此饱和,就可形成网状结构的大分子抗原-抗体复合物沉淀,称为等价带。
若比例不合适时,抗体或抗原过量,则虽有抗原、抗体的结合,但不能大量形成网状结构的大分子复合物,沉淀量很少,甚至不出现沉淀。
在抗原、抗体数量关系曲线中,抗体过剩区域称为抗体过剩带,抗原过剩区域称为抗原过剩带。
如图1所示,在等价带的反应液中加入过量的抗原或抗体,沉淀复合物就会有部分溶解,甚至全部溶解的现象。
这是由于新加入的抗原或抗体竞争地结合相应的抗体或抗原,使网状大分子结构破坏,形成小分子复合物,致使沉淀出现溶解,沉淀量减少甚至完全消失。
在沉淀反应中,由于抗原过量而不出现沉淀的现象,称为前带现象。
此时不能误认为无沉淀就是无抗原存在,为了检测就必须稀释抗原。
抗体过量时,称为后带现象,同理需要稀释抗体进行检测。
图1的位置抗原与抗体的结合是依赖于两者分子结构的互补性,故其特异性高。
这种结合也是相当稳定的。
在一定条件下(过酸、过碱或浓盐存在下),二者可以分开,即结合是可逆的。
解离后的抗原、抗体的活性一般保持不变。
双向免疫扩散测定法原理双向扩散法(double diffusion)又称琼脂扩散法,是利用琼脂凝胶为介质的一种沉淀反应。
琼脂或琼脂糖凝胶是多孔的网状结构,大分子物质可以自由通过,这种分子的扩散作用可使分别处于两处的抗原和相应的抗体通过扩散相遇,形成抗原-抗体复合物,比例合适时出现沉淀。
实验二细胞凝集反应和细胞膜通透性的观察报告(1)实验二细胞凝集反应和细胞膜通透性的观察一、实验目的1、了解细胞糖被的特点和功能,了解植物凝集素的作用2、了解细胞膜的渗透性及各类物质进入细胞的速度二、实验原理1、细胞膜表面的有分支状糖外被,细胞间的联系、细胞的生长和分化、免疫反应、肿瘤的发生等都和细胞表面的分支状糖分子有关。
凝集素(lectin)是一类含糖并能与糖分子专一结合的蛋白质,它具有凝集细胞和刺激细胞分裂的作用。
凝集素使细胞凝集是由于它与细胞表面的糖分子连接,在细胞表面间形成“桥”的结果,加入与凝集素互补的糖可以抑制细胞的凝集。
2、细胞膜是细胞与外界环境进行物质交换的结构。
可选择性地让某些物质进出细胞,各种物质出入细胞的方式是不同的,水是生物界最普遍的溶剂,水分子可以按照物质浓度梯度从渗透压低的一侧通过细胞膜向渗透压高的一侧扩散,以至于在高渗环境中,动物细胞会失水而收缩;在低渗环境中,动物细胞会吸水膨胀直至破裂。
本实验将红细胞分别放于各种等渗溶液中,由于红细胞膜对不同溶质的通透性不同,使得不同溶质透入细胞的速度相差很大,有些溶质甚至不能透入细胞。
当溶质分子进入细胞后可引起渗透压升高,水分子随即进入细胞,使细胞膨胀,当膨胀到一定程度时,红细胞膜会发生破裂,血红素溢出,此时,原来不透明的红细胞悬液突然变成红色透明的血红蛋白溶液,这种现象称为红细胞溶血。
由于各种溶质进入细胞的速度不同,所以不同的溶质诱导红细胞溶血的时间不同,相反可通过测量溶血时间来估计细胞膜对各种物质通透性的大小。
三、实验材料、器具和试剂1、器材与仪器:显微镜、载玻片、盖玻片、直管、5ml量筒、滴管、天平、离心管2、材料与试剂:土豆块茎,鸡(采血)、5mmol/LNaCl、65 mmol/LNaCl、0.15 mol/LNaCl、0.8 mol/L甲醇、0.8 mol/L丙三醇、2% Triton X-100、氯仿、PBS缓冲液、生理盐水四、实验步骤(一)细胞凝集反应1、2%鸡血红细胞悬液制备:以无菌方法抽取鸡静脉血液(加抗凝剂),用生理盐水洗5次,每次2000rpm离心5 min,最后按沉淀压积的红细胞体积,用生理盐水配成2%红细胞悬液待用。
沉淀反应和凝集反应的异同点一、引言沉淀反应和凝集反应是化学中常见的反应类型,它们在实验室和工业生产中都有广泛应用。
这两种反应都是由于物质之间的相互作用而发生的,但是它们在本质上有很大的区别。
本文将从不同角度比较沉淀反应和凝集反应的异同点。
二、定义沉淀反应是指在两种溶液中加入适量反应物后,产生难溶性固体沉淀的化学反应。
凝集反应则是指在介质中存在着一定浓度的胶体颗粒,在加入适量凝集剂后,颗粒聚集形成较大的团块或者沉淀。
三、化学基础1. 反应类型沉淀反应属于双离子交换反应,即两种带电离子交换配位基团而形成新物质。
凝集反应则属于胶体物理学范畴。
2. 反应机制沉淀反应通常是由于配位基团之间形成了较弱的键而发生的。
而凝集剂通常会与胶体颗粒表面上带电离子相互作用,使得颗粒聚集形成较大的团块或者沉淀。
四、实验操作1. 反应条件沉淀反应通常需要控制反应物浓度、温度和pH等因素。
而凝集反应则需要控制凝集剂浓度、介质pH和温度等因素。
2. 实验方法沉淀反应通常采用滴定法或者比色法进行分析,如Mohr滴定法、Fajans滴定法和Gravimetric分析法等。
凝集反应则通常采用光散射或者电泳等技术进行分析。
五、应用领域1. 工业生产沉淀反应常用于废水处理、金属提取和药物合成等工业生产中。
而凝集反应则广泛应用于纸浆造纸、矿物选矿和废水处理等领域。
2. 生命科学在生命科学领域,沉淀反应被广泛用于蛋白质纯化和酶活性检测等方面。
而凝集反应则被广泛用于细胞分离和药物输送系统的设计等方面。
六、总结通过以上比较可以看出,沉淀反应和凝集反应在反应类型、反应机制、实验操作和应用领域等方面都有很大的不同。
虽然它们都是由于物质之间的相互作用而发生的,但是它们所涉及的化学基础和实验方法都有很大的差别。
因此,在实际应用中需要根据需求选择合适的反应类型和方法。
实验二沉淀反应一、实验目的1、了解沉淀的生成、溶解和沉淀的转化条件,掌握沉淀平衡,同离子效应以及溶度积原理。
2、学习离子分离操作和同离子效应和电动离心机的使用。
二、实验的内容1、沉淀的生成和溶解①查表得:PbI2的ksp为7.1×10-9取1d 0.1mol/L的Pb(NO3)2+9d水,取1d+9d水,配成1×10-3mol/L的Pb(NO3)2溶液取1d 0.1mol/L的kI+9d水,取其中1d+9d水,再取1d+1d 水+首先配好的1×10-3mol/L的Pb(NO3)2溶液2d→不出现黄色沉淀,溶液无变化。
计算:Q=【pb2+】·【I-】2=25/8×10-11﹤ksp计算值也不应该有沉淀。
反应方程:pb2++ 2I-≒pbI2实验结论:1、计算结果与实际相符,Q﹤ksp,不出现沉淀2、没看到pbI2黄色沉淀,不等于不存在pbI2,溶液中还是存在少量的pbI2②查表得:pbs的ksp=8×10-28 pbcro4ksp=2.8×10-13取1d 0.1mol/L的Na2S+1d0.1mol/L的k2cro4,稀释至2.5mL 取1d上述溶液+1d 0.1mol/L的Pb(NO3)2→有棕黄色的混合沉淀出现。
计算:Q﹙pbs﹚=【S2-】【pb2+】=4×10-6﹥其kspQ﹙pbcro4﹚=【S2-】【cro42-】=4×10-6﹥其ksp反应方程:pb2++ S2-≒pbs pb2++ cro42-≒pbcro4实验结论:只要Q﹥ksp,就会出现沉淀,在同一溶液中也不会因沉淀的ksp的大小而出现沉淀的先后,而是同时沉淀。
如随着某离子的加入,Q先达到某个沉淀的ksp,后达到另一个沉淀的ksp,这是才会出现沉淀的先后之分。
2、沉淀的溶解和转化1d 0.1mol/L Pb(NO3)2+2d 0.1mol/L NaCL→Pbcl2↓(白色)+2d 0.1mol/L kI溶液→pbI2↓(黄色) {离心,去掉上清液→稀释至0.5mL}+饱和Na2so4晶体→ pbso4↓(白色) +0.1mol/L k2cro4→pbcro4↓(黄色)+2~3d 0.1mol/L k2S→pbs↓(黑色) {离心,取上清液,颜色为粉红色}★查表得:ksp(Pbcl2)=1.6×10-5 ksp(pbI2)=7.1×10-9 ksp(pbso4)=1.6×10-8ksp(pbcro4)=2.8×10-13 ksp(pbs)=8×10-28★计算:例Pbcl2转化为pbI2的过程:Pbcl2+ 2I-≒pbI2+2cl-K°=【cl-】2/【I-】2=【pb2+】【cl-】2/【pb2+】【I-】2= ksp (Pbcl2)/ ksp(pbI2)=1.6/7.1×104K°值越大,沉淀转化的越完全,对同一类型的沉淀来说,溶度积越大的沉淀越易转化成溶度积小的沉淀对ksp小→ksp大的方向进行的特例:ksp(pbI2)/ ksp(pbso4)=【pb2+】【cl-】2/【pb2+】【so42-】推出→【so42-】min=0.16/7.1 因此Na2so4晶体或饱和Na2so4溶液满足此条件。
常见抗原抗体反应种类引言:抗原抗体反应是生物学研究中的重要领域,它涉及到免疫系统的功能与调节机制。
在这篇文章中,我们将介绍一些常见的抗原抗体反应种类,包括沉淀反应、凝集反应、中和反应、荧光反应和免疫组化。
一、沉淀反应沉淀反应是指当抗原与抗体结合后,形成可见的沉淀物。
这种反应通常发生在溶液中,例如在免疫沉淀试验中。
通过加入沉淀剂,如聚乙二醇,可以促使抗原和抗体结合形成沉淀物。
沉淀反应的结果可以通过肉眼观察或显微镜观察来确定。
二、凝集反应凝集反应是指抗原与抗体结合后,形成可见的凝集物。
这种反应通常发生在液体中,如血清凝集试验中。
当抗原与抗体结合后,它们会形成凝集物,这些凝集物可以通过肉眼观察或显微镜观察来确定。
凝集反应在临床诊断中具有重要的应用价值,可以用于检测特定疾病的诊断和监测。
三、中和反应中和反应是指抗体与抗原结合后,阻止抗原的活性或入侵机体。
这种反应通常发生在体内,例如针对病毒或细菌的中和抗体。
当中和抗体与病原体结合后,它们可以阻止病原体进入或感染宿主细胞。
中和反应是免疫系统中重要的防御机制,对于预防病毒感染和细菌感染具有重要意义。
四、荧光反应荧光反应是指通过使用荧光标记的抗体来检测特定抗原。
在荧光免疫分析中,荧光染料被标记在抗体上,当这些荧光标记的抗体与目标抗原结合时,可以通过荧光显微镜观察到荧光信号。
荧光反应在生物医学研究中具有广泛的应用,可以用于检测抗原的存在和定位。
五、免疫组化免疫组化是指通过使用特异性抗体来检测组织中的特定分子。
在免疫组化实验中,组织样本被固定和切片,然后与特异性抗体结合。
通过使用染色剂或荧光标记的二抗来检测抗原-抗体结合,可以观察到抗原在组织中的位置和表达水平。
免疫组化广泛应用于疾病诊断和医学研究领域。
结论:抗原抗体反应是免疫系统中重要的功能机制,涉及到多种反应类型。
沉淀反应、凝集反应、中和反应、荧光反应和免疫组化是常见的抗原抗体反应种类。
这些反应不仅在基础科学研究中有重要应用,也在临床诊断和医学研究中具有广泛的应用前景。