三角函数应用题练习及答案
- 格式:doc
- 大小:157.00 KB
- 文档页数:10
初中三角函数应用题综合一.解直角三角形的应用(共10小题)1.如图,小明同学用仪器测量一棵大树AB的高度,在C处测得∠ADM=30°,在E处测得∠AFM =60°,CE=10米,仪器高度CD=1.5米,求这棵树AB的高度.(结果精确到0.1,参考数据:≈1.41,≈1.73,≈2.24)2.如图,小明家A和地铁口B两地恰好处在东西方向上,且相距3km,学校C在他家A正北方向的4km处,公园D与地铁口B和学校C的距离分别5km和km.(1)若∠BDA=10°,求∠ADC的大小;(2)计算公园D与小明家A的距离.3.如图,A、B两地间有一座山,汽车原来从A地到B地需要经折线ACB绕山行驶.为加快城乡对接,建立全域美丽乡村,某地区对A、B两地间的公路进行改建,在这座山打一条隧道,使汽车可以直接沿AB行驶.已知AC=80千米,∠A=30°,∠B=45°.求:(1)开通隧道前,汽车从A地到B地需要行驶多少千米;(2)开通隧道后汽车从A地到B地大约少行驶多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)4.如图,数学兴趣小组利用硬纸板自制的Rt△DEF来测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DE=1m,EF=0.6m,测得边DF离地面的高度AC=0.8m,CD=6m,求树高AB.5.如图是小朋友玩的“滚铁环”游戏的示意图,⊙O向前滚动时,铁棒DE保持与OE垂直.⊙O与地面接触点为A,若⊙O的半径为25cm,∠AOE=53°.(1)求点E离地面AC的距离BE的长;(2)设人站立点C与点A的距离AC=53cm,DC⊥AC,求铁棒DE的长.(参考数据:sin53°≈0.8,cos53°≈0.6)6.某中学数学活动小组设计了如图检测公路上行驶的校车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于30米,在l上点D的同侧取点A,B,使∠CAD=30°,∠CBD=45°.(1)求AB的长(精确到0.1米,参考数据:≈1.73,≈1.41);(2)已知本路段对校车限速为40千米/小时,若测得校车从A到B用时2秒,这辆校车是否超速?说明理由.7.为了测量旗杆AB的高度,小颖画了如下的示意图,其中CD,EF是两个长度为2m的标杆.(1)如果现在测得∠DEC=30°,EG=4m,求旗杆AB的高度;(参考数据:≈1.41,≈1.73)(2)如果CE的长为x,EG的长为y,请用含x,y的代数式表示旗杆AB的高度.二.解直角三角形的应用−坡度坡角问题(共7小题)8.如图所示,斜坡的坡比i=h:l=1:,则斜坡的坡度是( )A.30°B.60°C.1:D.:19.如图,要测量山高CD,可以把山坡“化整为零”地划分为AB和BC两段,每一段上的山坡近似是“直”的.若量得坡长AB=600m,BC=800m,测得坡角∠BAD=30°,∠CBE=45°,则山高CD为( )A.(300+800)m B.700mC.(300+400)m D.(400+300)m10.如图,河坝横断面迎水坡AB的坡比为1:,坝高BC为4m,则AC的长度为( )A.8m B.4m C.8m D.m11.如图所示,某拦水大坝的横断面为梯形ABCD,AE,DF为梯形的高,其中迎水坡AB的坡角α=45°,坡长AB=10米,背水坡CD的坡度i=1:,则背水坡的坡长CD为( )米.A.20B.20C.10D.2012.为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形ABCD为矩形,DE =10m,其坡度为i1=1:,将步梯DE改造为斜坡AF,其坡度为i2=1:4,求斜坡AF的长度是 米.(结果精确到0.01m,参考数据:≈1.732,≈4.123)13.某校有一露天舞台,纵断面如图所示,AC垂直于地面,AB表示楼梯,AE为舞台面,楼梯的坡角∠ABC=45°,坡长AB=2m,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD,使∠ADC=30°.(1)求舞台的高AC(结果保留根号);(2)求DB的长度(结果保留根号).14.某居民楼MN后有一个坡度为i=1:2.4的小山坡,小区物业准备在小山坡上加装一广告牌PQ (如图所示),已知QA=5.2米,水平地面上居民楼MN距坡底A点的距离AN=1.2米.当太阳光线与水平线成53°角时,测得广告牌PQ落在居民楼上的影子EN长为3米,求广告牌PQ的高.(参考数据:sin53°≈,cos53°≈,tan53°≈)三.解直角三角形的应用−仰角俯角问题(共8小题)15.若从楼顶A点测得点C的俯角为31°,测得点D的俯角为42°,则∠ADC的度数为( )A.31°B.42°C.48°D.59°16.如图,某建筑物的顶部有一块宣传牌CD,小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°,已知斜坡AB的坡角为30°,AB=10米,AE=15米,则宣传牌CD的高度是( )A.B.C.D.17.某通信公司准备逐步在歌乐山上建设5G基站.如图,某处斜坡CB的坡度(或坡比)为i=1:2.4,通讯塔AB垂直于水平地面,在C处测得塔顶A的仰角为45°,在D处测得塔顶A的仰角为53°,斜坡路段CD长26米,则通讯塔AB的高度为( )(参考数据:,,)A.米B.米C.56米D.66米18.某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,则建筑物的高度为 米.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)19.如图,某校数学兴趣小组要测量楼房DC的高度.在点A处测得楼顶D的仰角为30°,再往楼房的方向前进30m至B处,测得楼顶D的仰角为45°,则楼房DC的高度为 m.20.如图,小马同学在数学综合实践活动中,利用所学的数学知识对山坡一棵树的高度进行测量,先测得小马同学离底部C的距离BC为10m,此时测得对树的顶端D的仰角为55°,已知山坡与水平线的夹角为20°,小马同学的观测点A距地面1.6m,求树木CD的高度(精确到0.1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36).21.如图,某中学数学活动小组在学习了“利用三角函数测高”后,选定测量小河对岸一幢建筑物BC 的高度,他们先在斜坡上的D处,测得建筑物顶端B的仰角为30°.且D离地面的高度DE=5m.坡底EA=30m,然后在A处测得建筑物顶端B的仰角是60°,点E,A,C在同一水平线上,求建筑物BC的高.(结果用含有根号的式子表示)22.如图,某人在D处测得山顶C的仰角为37°,向前走100米来到山脚A处,测得山坡AC的坡度为i=1:0.5,求山的高度(不计测角仪的高度,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).参考答案与试题解析一.解直角三角形的应用(共10小题)1.如图,小明同学用仪器测量一棵大树AB的高度,在C处测得∠ADM=30°,在E处测得∠AFM =60°,CE=10米,仪器高度CD=1.5米,求这棵树AB的高度.(结果精确到0.1,参考数据:≈1.41,≈1.73,≈2.24)【解答】解:由题意知,四边形CDBM、CDEF、EFMB是矩形,∴BM=CD=1.5米,CE=DF=10米.在Rt△ADM中,∵tan∠ADM=,∴DM==AM.在Rt△AFM中,∵tan∠AFM=,∴FM==AM.∵DF=DM﹣FM,∴AM﹣AM=10.∴AM=10.AM=5.∴AB=AM+MB=5+1.5≈5×1.73+1.5=8.65+1.5=10.15=10.2(米).答:这棵树AB的高度为10.2米.2.如图,小明家A和地铁口B两地恰好处在东西方向上,且相距3km,学校C在他家A正北方向的4km处,公园D与地铁口B和学校C的距离分别5km和km.(1)若∠BDA=10°,求∠ADC的大小;(2)计算公园D与小明家A的距离.【解答】解:(1)由题意得:BD=5km,CD=5km,∠BAC=90°,AB=3km,CA=4km,∴BC===5(km),∴BC=BD,∵BC2+BD2=52+52=50,CD2=(5)2=50,∴BC2+BD2=CD2,∴△BCD是等腰直角三角形,∴∠CBD=90°,∴∠BDC=45°,∴∠ADC=∠BDC﹣∠BDA=45°﹣10°=35°;(2)过D作DE⊥AB,交AB的延长线于E,如图所示:则∠DEB=90°,∴∠BDE+∠DBE=90°,由(1)得:∠CBD=90°,∴∠DBE+∠CBA=90°,∴∠BDE=∠CBA,在△BDE和△CBA中,,∴△BDE≌△CBA(AAS),∴DE=BA=3km,BE=CA=4km,∴AE=BE+AB=7(km),∴AD===(km).∴公园D与小明家A的距离为km.3.如图,A、B两地间有一座山,汽车原来从A地到B地需要经折线ACB绕山行驶.为加快城乡对接,建立全域美丽乡村,某地区对A、B两地间的公路进行改建,在这座山打一条隧道,使汽车可以直接沿AB行驶.已知AC=80千米,∠A=30°,∠B=45°.求:(1)开通隧道前,汽车从A地到B地需要行驶多少千米;(2)开通隧道后汽车从A地到B地大约少行驶多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)【解答】解:(1)如图,过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,AC=80千米,∴CD=AC•sin30°=80×=40(千米),BC===40(千米),∴AC+BC=80+40≈1.41×40+80=136.4(千米).∴开通隧道前,汽车从地到地大约要走136.4千米.(2)∵cos30°=,AC=80千米,∴AD=AC•cos30°=80×=40(千米),∵tan45°=,CD=40(千米),∴BD===40(千米),∴AB=BD+AD=40+40≈40+40×1.73=109.2(千米).∴汽车从A地到B地比原来少走的路程为:AC+BC﹣AB=136.4﹣109.2=27.2(千米).∴开通隧道后,汽车从A地到B地大约可以少走27.2千米.4.如图,数学兴趣小组利用硬纸板自制的Rt△DEF来测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DE=1m,EF=0.6m,测得边DF离地面的高度AC=0.8m,CD=6m,求树高AB.【解答】解:方法一:在Rt△EDF中,DE=1m,EF=0.6m,∴tan∠EDF===,在Rt△BCD中,CD=6m,∵tan∠BDC=tan∠EDF,∴=,∴BC=3.6m,∵AC=0.8m,∴AB=AC+BC=3.6+0.8=4.4(m),答:树高AB为4.4m;方法二:由题意得:∠BCD=∠DEF=90°,∠CDB=∠EDF,∴△DCB∽△DEF,∴,∵DE=1m,EF=0.6m,CD=6m,∴=,解得:BC=3.6,∵AC=0.8m,∴AB=AC+BC=3.6+0.8=4.4(m),答:树高AB为4.4m.5.如图是小朋友玩的“滚铁环”游戏的示意图,⊙O向前滚动时,铁棒DE保持与OE垂直.⊙O与地面接触点为A,若⊙O的半径为25cm,∠AOE=53°.(1)求点E离地面AC的距离BE的长;(2)设人站立点C与点A的距离AC=53cm,DC⊥AC,求铁棒DE的长.(参考数据:sin53°≈0.8,cos53°≈0.6)【解答】解:过E作与AC平行的直线,与OA、FC分别相交于H、N.(1)在Rt△OHE中,∠OHE=90°,OE=25cm,∠AOE=53°,∴HO=OE×cos53°=15cm,EH=20cm,EB=HA=25﹣15=10(cm),所以铁环钩离地面的高度为10cm;(2)∵铁环钩与铁环相切,∴∠EOH+∠OEH=∠OEH+∠DEN=90°,∠DEN=∠EOH,∴DE==,在Rt△DEN中,∠DNE=90°,EN=BC=AC﹣AB=53﹣20=33(cm),DE===55(cm),∴铁环钩的长度DE为55cm.6.某中学数学活动小组设计了如图检测公路上行驶的校车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于30米,在l上点D的同侧取点A,B,使∠CAD=30°,∠CBD=45°.(1)求AB的长(精确到0.1米,参考数据:≈1.73,≈1.41);(2)已知本路段对校车限速为40千米/小时,若测得校车从A到B用时2秒,这辆校车是否超速?说明理由.【解答】解:(1)由题意得:在Rt△ADC中,AD==≈51.9(米),在Rt△BDC中,BD===30(米),∴AB=AD﹣BD≈51.9﹣30=21.9(米),答:AB的长为21.9米;(2)不超速,理由:∵汽车从A到B用时2秒,∴速度为21.9÷2=10.95(米/秒),∵10.95×3600=39420(米/时),∴该车速度为39.42千米/小时,∵39.42千米/小时<40千米/小时,∴这辆校车在AB路段不超速.7.为了测量旗杆AB的高度,小颖画了如下的示意图,其中CD,EF是两个长度为2m的标杆.(1)如果现在测得∠DEC=30°,EG=4m,求旗杆AB的高度;(参考数据:≈1.41,≈1.73)(2)如果CE的长为x,EG的长为y,请用含x,y的代数式表示旗杆AB的高度.【解答】解:(1)由题意得:∠ABC=∠DCE=∠FEG=90°,在Rt△DCE中,CE===2m,∵∠DEC=∠AEB,∴△DEC∽△AEB,∴=,∴=,∵∠FGE=∠AGB,∴△FGE∽△AGB,∴=,∴=,∴=,∴EB=(8+12)m,∴=,∴AB=8+4≈14.92m,答:旗杆AB的高度为14.92米;(2)由(1)得:△DEC∽△AEB,∴=,∴=,由(1)得:△FGE∽△AGB,∴=,∴=,∴=,∴EB=,∴=,∴AB=,答:旗杆AB的高度为m.二.解直角三角形的应用−坡度坡角问题(共7小题)8.如图所示,斜坡的坡比i=h:l=1:,则斜坡的坡度是( )A.30°B.60°C.1:D.:1【解答】解:∵斜坡的坡比i=h:l=1:,∴斜坡的坡度为1:,故选:C.9.如图,要测量山高CD,可以把山坡“化整为零”地划分为AB和BC两段,每一段上的山坡近似是“直”的.若量得坡长AB=600m,BC=800m,测得坡角∠BAD=30°,∠CBE=45°,则山高CD为( )A.(300+800)m B.700mC.(300+400)m D.(400+300)m【解答】解:由题意可知,四边形BFDE为矩形,∴DE=BF,在Rt△BAF中,∠BAF=30°,AB=600m,则BF=AB=300(m),∴DE=300m,在Rt△CBE中,∠CBE=45°,BC=800m,∴CE=BC=400(m),∴CD=CE+DE=(300+400)m,故选:C.10.如图,河坝横断面迎水坡AB的坡比为1:,坝高BC为4m,则AC的长度为( )A.8m B.4m C.8m D.m【解答】解:∵迎水坡AB的坡比为1:=,BC=4m,∴AC=BC=4(m),故选:B.11.如图所示,某拦水大坝的横断面为梯形ABCD,AE,DF为梯形的高,其中迎水坡AB的坡角α=45°,坡长AB=10米,背水坡CD的坡度i=1:,则背水坡的坡长CD为( )米.A.20B.20C.10D.20【解答】解:由题意得:四边形AEFD是矩形,∴DF=AE,∵迎水坡AB的坡角α=45°,坡长AB=10米,∴DF=AE=10×sin45°=10(米),∵背水坡CD的坡度i=1:,∴tan C=i===,∴∠C=30°,∴CD=2DF=2AE=20(米),故选:A.12.为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形ABCD为矩形,DE =10m,其坡度为i1=1:,将步梯DE改造为斜坡AF,其坡度为i2=1:4,求斜坡AF的长度是 20.62 米.(结果精确到0.01m,参考数据:≈1.732,≈4.123)【解答】解:∵DE的坡度为i1=1:,∴tan∠DEC==,∴∠DEC=30°,∴DC=DE=5(m),∵四边形ABCD为矩形,∴AB=CD=5m,∵斜坡AF的坡度为i2=1:4,AB=5m,∴BF=4AB=20(m),在Rt△ABF中,AF==≈20.62(m),∴斜坡AF的长度约为20.62米,故答案为:20.62.13.某校有一露天舞台,纵断面如图所示,AC垂直于地面,AB表示楼梯,AE为舞台面,楼梯的坡角∠ABC=45°,坡长AB=2m,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD,使∠ADC=30°.(1)求舞台的高AC(结果保留根号);(2)求DB的长度(结果保留根号).【解答】解:(1)在Rt△ABC中,AB=2m,∠ABC=45°,∴AC=BC=AB•sin45°=2×=(m),答:舞台的高AC为m;(2)在Rt△ADC中,∠ADC=30°,则CD===,∴BD=CD﹣BC=(﹣)m,答:DB的长度为(﹣)m.14.某居民楼MN后有一个坡度为i=1:2.4的小山坡,小区物业准备在小山坡上加装一广告牌PQ (如图所示),已知QA=5.2米,水平地面上居民楼MN距坡底A点的距离AN=1.2米.当太阳光线与水平线成53°角时,测得广告牌PQ落在居民楼上的影子EN长为3米,求广告牌PQ的高.(参考数据:sin53°≈,cos53°≈,tan53°≈)【解答】解:过点E作EF⊥PQ于点F,延长PQ交BA于点G,则QG⊥BA,∴设QG=x米,∵山坡的坡度为i=1:2.4,∴AG=2.4x米,由勾股定理得:x2+(2.4x)2=5.22,解得:x=2,则QG=2米,AG=2.4x=4.8米,∴EF=NG=4.8+1.2=6(m),在Rt△PEF中,∠PEF=53°,EF=6m,则PF=EF•tan∠PEF=6×tan53°≈6×=8(m),∵FQ=EN﹣QG=3﹣2=1(m),∴PQ=8+1=9(m).答:信号塔PQ的高约为9m.三.解直角三角形的应用−仰角俯角问题(共8小题)15.若从楼顶A点测得点C的俯角为31°,测得点D的俯角为42°,则∠ADC的度数为( )A.31°B.42°C.48°D.59°【解答】解:由题意得:∠ADB=42°,∠BDC=90°,∴∠ADC=∠BDC﹣∠ADB=90°﹣42°=48°,故选:C.16.如图,某建筑物的顶部有一块宣传牌CD,小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°,已知斜坡AB的坡角为30°,AB=10米,AE=15米,则宣传牌CD的高度是( )A.B.C.D.【解答】解:过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.在Rt△ABF中,∠BAF=30°,AB=10米,∴BF=AB=5(米),AF=BF=5(米).∴BG=AF+AE=(5+15)(米),在Rt△BGC中,∠CBG=45°,∴△BGC是等腰直角三角形,∴CG=BG=(5+15)(米),在Rt△ADE中,∠DAE=60°,AE=15米,∴DE=AE=15(米),∴CD=CG+GE﹣DE=5+15+5﹣15=(20﹣10)(米),即宣传牌CD的高度是(20﹣10)米,故选:A.17.某通信公司准备逐步在歌乐山上建设5G基站.如图,某处斜坡CB的坡度(或坡比)为i=1:2.4,通讯塔AB垂直于水平地面,在C处测得塔顶A的仰角为45°,在D处测得塔顶A的仰角为53°,斜坡路段CD长26米,则通讯塔AB的高度为( )(参考数据:,,)A.米B.米C.56米D.66米【解答】如图,延长AB与水平线交于F,过D作DM⊥CF,M为垂足,过D作DE⊥AF,E为垂足,连接AC,AD,∵斜坡CB的坡度为i=1:2.4,∴==,设DM=5k米,则CM=12k米,在Rt△CDM中,CD=26米,由勾股定理得,CM2+DM2=CD2,即(5k)2+(12k)2=262,解得k=2,∴DM=10(米),CM=24(米),∵斜坡CB的坡度为i=1:2.4,设DE=12a米,则BE=5a米,∵∠ACF=45°,∴AF=CF=CM+MF=(24+12a)米,∴AE=AF﹣EF=24+12a﹣10=(14+12a)米,在Rt△ADE中,DE=12a米,AE=(14+12a)米,∵tan∠ADE==tan53°≈,∴=,解得a=,∴DE=12a=42(米),AE=14+12a=56(米),BE=5a=(米),∴AB=AE﹣BE=56﹣=(米),答:基站塔AB的高为米.故选:B.18.某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,则建筑物的高度为 14.7 米.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)【解答】解:根据题意,得∠ADB=64°,∠ACB=48°在Rt△ADB中,tan64°=,则BD=≈AB,在Rt△ACB中,tan48°=,则CB=≈AB,∴CD=BC﹣BD,即6=AB﹣AB,解得:AB=≈14.7(米),∴建筑物的高度约为14.7米,故答案为:14.7.19.如图,某校数学兴趣小组要测量楼房DC的高度.在点A处测得楼顶D的仰角为30°,再往楼房的方向前进30m至B处,测得楼顶D的仰角为45°,则楼房DC的高度为 (15+15) m.【解答】解:设BC的长为x米.在Rt△CBD中,∠D=90°,∠CBD=45°,∴CD=BC=x米,在Rt△CAD中,∠ACD=90°,∠DAC=30°,∴tan∠CAD===,解得:x=15+15,答:楼房DC的高度为(15+15)米,故答案为:(15+15).20.如图,小马同学在数学综合实践活动中,利用所学的数学知识对山坡一棵树的高度进行测量,先测得小马同学离底部C的距离BC为10m,此时测得对树的顶端D的仰角为55°,已知山坡与水平线的夹角为20°,小马同学的观测点A距地面1.6m,求树木CD的高度(精确到0.1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36).【解答】解:延长DC交BF于F,过A作AH⊥DC于H,则HF=AB=1.6m,AH=BF,在Rt△ACF中,∵∠CBF=20°,BC=10m,∴CF=BC•sin20°≈10×0.34=3.4(m),BF=BC•cos20°≈10×0.94=9.4(m),∴AH=BF=9.4m,在Rt△ADH中,∵∠DAH=55°,∴DH=AH•tan55°≈9.4×1.43≈13.4(m),∴DC=DH+HF﹣CF=13.4+1.6﹣3.4=11.6(m),答:树木CD的高度约为11.6m.21.如图,某中学数学活动小组在学习了“利用三角函数测高”后,选定测量小河对岸一幢建筑物BC 的高度,他们先在斜坡上的D处,测得建筑物顶端B的仰角为30°.且D离地面的高度DE=5m.坡底EA=30m,然后在A处测得建筑物顶端B的仰角是60°,点E,A,C在同一水平线上,求建筑物BC的高.(结果用含有根号的式子表示)【解答】解:过点D作DH⊥BC于点H,如图所示:则四边形DHCE是矩形,DH=EC,DE=HC=5,设建筑物BC的高度为xm,则BH=(x﹣5)m,在Rt△DHB中,∠BDH=30°,∴DH=(x﹣5),AC=EC﹣EA=(x﹣5)﹣30,在Rt△ACB中,∠BAC=60°,tan∠BAC=,∴=解得:x=,答:建筑物BC的高为m.四.解直角三角形的应用−仰角俯角问题(共1小题)22.如图,某人在D处测得山顶C的仰角为37°,向前走100米来到山脚A处,测得山坡AC的坡度为i=1:0.5,求山的高度(不计测角仪的高度,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).【解答】解:设山高BC=x,则AB=x,由tan37°==0.75,得:=0.75,解得x=120,经检验,x=120是原方程的根.答:山的高度是120米.。
三角函数练习题及答案一、填空题1.设函数()f x 是定义在实数集R 上的偶函数,且()()2f x f x =-,当[0,1]x ∈时,3()f x x =,则函数()|cos |()g x x f x π=-在15,22⎡⎤-⎢⎥⎣⎦上所有零点之和为___________.2.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且满足22b a ac -=,则11tan tan A B-的取值范围为___________. 3.如图,在矩形ABCD 中,AB a ,2BC a =,点E 为AD 的中点,将△ABE 沿BE 翻折到△A BE '的位置,在翻折过程中,A '不在平面BCDE 内时,记二面角A DC B '--的平面角为α,则当α最大时,cos α的值为______.4.如图,某城市准备在由ABC 和以C 为直角顶点的等腰直角三角形ACD 区域内修建公园,其中BD 是一条观赏道路,已知1AB =,3BC =,则观赏道路BD 长度的最大值为______.5.已知三棱锥S ABC -中,SA SB SC ==,ABC 是边长为4的正三角形,点E ,F 分别是SC ,BC 的中点,D 是AC 上的一点,且EF SD ⊥,若3FD =,则DE =___________. 6.ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,已知cos cos 1C B c b a+=,则A 的取值范围是___________.7.已知函数()[)[]243,0,3,92sin ,3,156x x y f x x x π⎧⎛⎫-∈⎪ ⎪⎪⎝⎭==⎨⎪∈⎪⎩若存在实数a 、b 、c 、d 满足()()()()f a f b f c f d ===(其中a b c d <<<),则()()a b cd +⋅的取值范围是______.8.已知函数()sin 2sin 23f x x x a π⎛⎫=+++ ⎪⎝⎭同时满足下述性质:①若对于任意的()()()123123,0,,4,x x x f x f x f x π⎡⎤∈+⎢⎥⎣⎦恒成立;②236f a π⎛⎫- ⎪⎝⎭,则a 的值为_________.9.意大利著名画家、数学家、物理学家达芬奇在他创作《抱银貂的女子》时思考过这样一个问题:固定项链的两端,使其在重力的作用下自然下垂,那么项链所形成的曲线是什么?这就是著名的悬链线问题,连接重庆和湖南的世界第一悬索桥——矮寨大桥就采用了这种方式设计.经过计算,悬链线的函数方程为()e e cos 2x xh x -+=,并称其为双曲余弦函数.若()()cos sin cos cos sin cos h h m θθθθ+≥-对0,2πθ⎡⎤∀∈⎢⎥⎣⎦恒成立,则实数m 的取值范围为______.10.已知函数()()sin 3cos 0f x x x ωωω=>,若函数()f x 的图象在区间[]0,2π上的最高点和最低点共有6个,下列说法正确的是___________. ①()f x 在[]0,2π上有且仅有5个零点; ②()f x 在[]0,2π上有且仅有3个极大值点; ③ω的取值范围是3137,1212⎡⎫⎪⎢⎣⎭;④()f x 在06,π⎡⎤⎢⎥⎣⎦上为单递增函数.二、单选题11.已知向量a 与b 的夹角为120︒,且2a b ⋅=-,向量c 满足()()101c a b λλλ=+-<<,且a c b c ⋅=⋅,记向量c 在向量a 与b 方向上的投影分别为x 、y .现有两个结论:①若13λ=,则2a b =;②22x y xy ++的最大值为34.则正确的判断是( ) A .①成立,②成立 B .①成立,②不成立 C .①不成立,②成立 D .①不成立,②不成立12.已知,a b Z ∈,满足)98sin 50sin 50a b -︒︒=,则a b +的值为( )A .1B .2C .3D .413.在ABC 中,,E F 分别是,AC AB 的中点,且32AB AC =,若BEt CF <恒成立,则t 的最小值为( ) A .34B .78C .1D .5414.在ABC 中,60BAC ∠=,3BC =,且有2CD DB =,则线段AD 长的最大值为( ) AB .2 C1 D.15.已知三棱锥A BCD -中,4AB BC BD CD AD =====,二面角A BD C --的余弦值为13,点E 在棱AB 上,且3BE AE =,过E 作三棱锥A BCD -外接球的截面,则所作截面面积的最小值为( ) A .103πB .3πC .3π D16.已知函数()3sin()(0,||)f x x ωϕωϕπ=+><,(4)(2)6f f =-,且()f x 在[2,4]上单调.设函数()()1g x f x =-,且()g x 的定义域为[5,8]-,则()g x 的所有零点之和等于( ) A .0B .4C .12D .1617.已知函数2log ,0,(),0,x x f x x x >⎧=⎨-≤⎩函数()g x 满足以下三点条件:①定义域为R ;②对任意x ∈R ,有()()2g x g x π+=;③当[0,]x π∈时,()sin g x x =.则函数()()y f x g x =-在区间[4,4]ππ-上零点的个数为( ) A .6B .7C .8D .918.函数()sin()(0)6f x x πωω=+>在区间52[,]63ππ-上单调递增,且存在唯一05[0,]6x π∈,使得0()1f x =,则ω的取值范围为( ) A .11[,]52B .21[,]52C .14[,]55D .24[,]5519.在锐角ABC 中,三内角,,A B C 的对边分别为,,a b c ,且2sin a b C =,则tan tan tan A B C ++的最小值为( )A .2B .4C .6D .820.若函数()()11,0sin ,0133,1x x x f x x x x ππ⎧-++≤⎪=-<<⎨⎪-≥⎩,满足()()()()()f a f b f c f d f e ====且a 、b 、c 、d 、e 互不相等,则a b c d e ++++的取值范围是( )A .340,log 9⎛⎫ ⎪⎝⎭B .390,log 4⎛⎫ ⎪⎝⎭C .340,log 3⎛⎫ ⎪⎝⎭D .330,log 4⎛⎫ ⎪⎝⎭三、解答题21.将函数2sin 3y x =+的图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再将所得的图象向右平移3π个单位长度后得到函数()f x 的图象. (1)写出函数()f x 的解析式;(2)若,36x ππ⎡⎤∈-⎢⎥⎣⎦时,22()2()()1g x f x mf x m =-+-,求()g x 的最小值min ()g x .22.如图,一幅壁画的最高点A 处离地面4米,最低点B 处离地面2米.正对壁画的是一条坡度为1:2的甬道(坡度指斜坡与水平面所成角α的正切值),若从离斜坡地面1.5米的C 处观赏它.(1)若C 对墙的投影(即过C 作AB 的垂线垂足为投影)恰在线段AB (包括端点)上,求点C 离墙的水平距离的范围;(2)在(1)的条件下,当点C 离墙的水平距离为多少时,视角θ(ACB ∠)最大? 23.设函数()f x a b =⋅,其中向量(2cos ,1)a x =,(cos ,3sin 2)=+b x x m ; 求:(1)函数的最小正周期和单调递增区间;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求实数m 的值,使函数()f x 的值域恰为17,22⎡⎤⎢⎥⎣⎦.24.已知向量33cos ,sin 22x a x ⎛⎫= ⎪⎝⎭,cos ,sin 22x x b ⎛⎫- ⎪⎝=⎭,0,2x π⎡⎤∈⎢⎥⎣⎦.(1)用含x 的式子表示a b ⋅及a b +; (2)求函数的()f x a b a b =⋅-+值域. 25.在①ABC ∆面积2ABC S ∆=,②6ADC π∠=这两个条件中任选一个,补充在下面问题中,求AC .如图,在平面四边形ABCD 中,34ABC π∠=,BAC DAC ∠=∠,______,24CD AB ==,求AC .26.已知向量a ,b 满足2sin 64a x x π⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,cos 24b x x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,函数()()f x a b x R =⋅∈.(1)求()f x 的单调区间;(2)已知数列()2*11224n n a n f n N ππ⎛⎫=-∈ ⎪⎝⎭,求{}n a 的前2n 项和2n S . 27.已知向量()cos sin ,sin a m x m x x ωωω=-,()cos sin ,2cos b x x n x ωωω=--,设函数()()2n f x a b x R =⋅+∈的图象关于点,112π⎛⎫⎪⎝⎭对称,且()1,2ω∈ (I )若1m =,求函数()f x 的最小值;(II )若()4f x f π⎛⎫≤ ⎪⎝⎭对一切实数恒成立,求()y f x =的单调递增区间.28.已知在ABC ∆中,,,a b c 分别为角A,B,C 的对应边,点D 为BC 边的中点,ABC ∆的面积为23sin AD B. (1)求sin sin BAD BDA ∠⋅∠的值; (2)若6,22BC AB AD ==,求b .29.函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图象相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式;(2)设π(0,)2α∈,则()22f α=,求α的值30.函数f (x )=A sin (2ωx +φ)(A >0,ω>0,|φ|<2π)的部分图象如图所示 (1)求A ,ω,φ的值;(2)求图中a ,b 的值及函数f (x )的递增区间; (3)若α∈[0,π],且f (α)=2,求α的值.【参考答案】一、填空题1.7 2.⎛ ⎝⎭341 56.(0,]3π7.()135,2168.0 9.1⎡⎤⎣⎦10.②③二、单选题 11.C 12.B 13.B 14.C 15.B 16.C 17.A 18.B 19.D 20.C 三、解答题21.(1)2()2sin 233f x x π⎛⎫=-+ ⎪⎝⎭;(2)22min21,47()1,4128(32312m m m g x m m m m m ⎧-+≤⎪⎪=-<<+⎨⎪⎪-++≥+⎩ 【解析】(1)根据函数图象的变换规律即可求得()f x 的解析式;(2)令()t f x =可求得则()[1,3f x ∈+,设22()21M t t mt m =-+-,[1,3t ∈,通过定区间讨论对称轴4mt =的三种情况()M t 的单调性,进而可确定最小值的情况. 【详解】(1)将函数2sin 3y x =+的图象上所有点的横坐标缩短到原来的12倍,可得2sin 23y x =+得图象,再向右平移3π个单位长度得2()2sin 232sin 2333f x x x ππ⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭. (2)∵,36x ππ⎡⎤∈-⎢⎥⎣⎦,242,333x πππ⎡⎤-∈--⎢⎥⎣⎦,则()[1,3f x ∈+, 令()t f x =,则设22()21M t t mt m =-+-,[1,3t ∈+, ①当14m≤,即4m ≤时,函数()M t在[1,3上单调递增, ∴22min ()(1)211M t M m m m m ==-+-=-+;②当134m<<412m <<+ 函数()M t 在1,4m ⎛⎫ ⎪⎝⎭上单调递减,在,34m ⎛ ⎝上单调递增,∴2min 7()148m M t M m ⎛⎫==- ⎪⎝⎭;③当34m≥+12m ≥+()M t在[1,3+上单调递减,∴2min ()(3(323M t M m m ==-++∴综上有22min21,47()1,4128(32312m m m g x m m m m m ⎧-+≤⎪⎪=-<<+⎨⎪⎪-++≥+⎩. 【点睛】本题考查三角函数图象的变换,考查二次函数在三角函数中的应用,考查定区间动轴的最值取值情况,难度较难.22.(1)点C 离墙的水平距离的范围为:1~5m m ;(2)当点C 离墙的水平距离为1m 时,视角θ(ACB ∠)最大. 【解析】 【分析】(1)如图所示:设(02),BF x x CF y =≤≤=,利用平行线成比例定理,结合锐角三角函数正切的定义进行求解即可;(2)利用两角和的正切公式、结合正切的定义,求出tan θ的表达式,利用换元法、基本不等式进行求解即可. 【详解】(1)如图所示:设(02),BF x x CF y =≤≤=,显然有1tan tan 2FGD α∠==,因此有2(2)tan DFFG x FGD==+∠,由//GE DF ,可得: 1.52(2)22(2)CE CG x y DF GF x x +-=⇒=++,化简得:21y x =+,因为02x ≤≤,所以15y ≤≤,即点C 离墙的水平距离的范围为:1~5m m ;(2)222tan tan 2tan tan()21tan tan 21x xBCF ACF y y yBCF ACF x x BCF ACF y x x y yθ-+∠+∠=∠+∠===--∠⋅∠-+-⋅,因为21y x =+,所以有12y x -=,代入上式化简得: 2222228tan 11522()5622y y y y y x x y y yθ===---+-⋅++-, 因为15y ≤≤,所以有55562564y y y y+-≥⋅=(当且仅当55y y =时取等号,即1y =时,取等号),因此有0tan 2θ<≤,因此当点C 离墙的水平距离为1m 时,视角θ(ACB ∠)最大. 【点睛】本题考查两角和的正切公式的应用,考查了基本不等式的应用,考查了平行线成比例定理,考查了数学建模能力,考查了数学运算能力.23.(1)T π=,,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k z ∈;(2)12.【解析】 【分析】(1)由数量积的坐标运算可得2()2cos 32f x x x m =+,然后将其化为基本型,即可求出周期和单调递增区间 (2)由02x π≤≤,可得()3m f x m ≤≤+,和题目条件对应即可求出m【详解】(1)∵2()2cos 32f x a b x x m =⋅=+1cos22x x m =++2sin 216x m π⎛⎫=+++ ⎪⎝⎭,∴函数()f x 的最小正周期T π=, 可知,当222262k x k πππππ-≤+≤+,k Z ∈时,函数单调递增,解得:36k x k ππππ-≤≤+,故函数的单调递增区间为,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k z ∈.(2)∵02x π≤≤,∴72666x πππ≤+≤, ∴1sin 2126x π⎛⎫-≤+≤ ⎪⎝⎭,∴()3m f x m ≤≤+, 又17()22f x ≤≤, 故12m =. 【点睛】本题考查的是三角函数的图象及其性质,解决这类问题时首先应把函数化成三角函数基本型.24.(1)cos 2x a b ⋅=;2cos a b x +=,0,2x π⎡⎤∈⎢⎥⎣⎦(2)()3,12f x ⎡⎤∈--⎢⎥⎣⎦【解析】(1)根据平面向量数量积的坐标表示以及三角恒等变换公式可得a b ⋅,根据a b +=2||a b +可求得结果;(2)利用二倍角的余弦公式化为关于cos x 的二次函数可求得结果. 【详解】(1)因为向量33cos ,sin 22x x a ⎛⎫= ⎪⎝⎭,cos ,sin 22x x b ⎛⎫=- ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦, 所以23||cos 1a =,2||cos 12x b ==, 所以333coscos sin sin cos()cos 2222222x a x x b x x xx -=+==⋅, ()2222212cos 2121cos 24cos a a b b x a b x x =+⋅+=++++==,2cos a b x +=,0,2x π⎡⎤∈⎢⎥⎣⎦;(2)()2cos22cos 2cos 2cos 1x x x f x x =-=--,又0,2x π⎡⎤∈⎢⎥⎣⎦,∴[]cos 0,1x ∈,()3,12f x ⎡⎤∈--⎢⎥⎣⎦.【点睛】本题考查了平面向量的数量积的坐标运算,考查了求平面向量的模,考查了二倍角的余弦公式,考查了整体换元化为二次函数求值域,属于基础题. 25.见解析 【解析】选择①:利用三角形面积公式和余弦定理可以求接求出AC 的长;选择②:在ABC ∆,ACD ∆中,分别运用正弦定理,可以求接求出AC 的长; 【详解】 解:选择①:113sin 2sin 2224ABC S AB BC ABC BC π∆=⋅⋅⋅∠=⋅⋅⋅=所以BC = 由余弦定理可得2222cos AC AB BC AB BC ABC =+-⋅⋅∠482220⎛=+-⨯⨯= ⎝⎭所以AC == 选择②设BAC CAD θ∠=∠=,则04πθ<<,4BCA πθ∠=-,在ABC ∆中sin sin AC ABABC BCA =∠∠,即23sin sin 44AC ππθ=⎛⎫- ⎪⎝⎭所以sin 4AC θ=- ⎪⎝⎭在ACD ∆中,sin sin AC CD ADC CAD=∠∠,即4sin sin 6AC πθ=所以2sin AC θ=.所以2sin sin 4θθ=- ⎪⎝⎭2sin cos θθ=, 又04πθ<<,所以sin θ=,所以2sin AC θ==【点睛】本题考查了正弦定理、余弦定理、三角形面积公式,考查了数学运算能力.26.(1)单调增区间为7,1212k k ππππ⎡⎤--⎢⎥⎣⎦,k Z ∈,单调减区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2))22n n +【解析】 【分析】(1)由向量数量积的坐标运算可得()2sin 222sin 23f x a b x x x π⎛⎫=⋅=-=+ ⎪⎝⎭, 再利用三角函数单调区间的求法即可得解;(2)由题意可得()()22222221234212n S n n ⎤=-+-+⋅⋅⋅+--⎦,又()()2221241n n n --=-+,则)2442434n S n n =--⨯-⨯-⋅⋅⋅-+,再利用等差数列求和公式即可得解.【详解】解:(1)向量a ,b 满足2sin 4a x x π⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,cos 4b x x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,函数()2sin 222sin 23f x a b x x x π⎛⎫=⋅=-=+ ⎪⎝⎭, 由2222232k x k πππππ-≤+≤+,可得71212k x k ππππ-≤≤-,k Z ∈, 解得()f x 的单调增区间为7,1212k k ππππ⎡⎤--⎢⎥⎣⎦,k Z ∈; 单调减区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈.(2)因为22112sin 2244n n a n f n n ππππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,所以()()22222221234212n S n n ⎤=-+-+⋅⋅⋅+--⎦, 又()()2221241n n n --=-+,)2442434n S n n --⨯-⨯-⋅⋅⋅-+,所以())2234122n n n S n n --+==+.【点睛】本题考查了三角函数单调区间的求法及数列中捆绑求和,属中档题.27.(Ⅰ)1()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【解析】 【分析】化简()f x 解析式可得()()22n f x x ωϕ=-+;根据图象关于,112π⎛⎫ ⎪⎝⎭可求得n ;(Ⅰ)若1m =,则()()21f x x ωϕ=-+,从而可得函数最小值;(Ⅱ)利用4x π=为对称轴,,112π⎛⎫ ⎪⎝⎭为对称中心可得()*642T T k k N π=+⋅∈,根据周期和ω的范围可求得ω;将,112π⎛⎫ ⎪⎝⎭代入解析式可求得()314f x x π⎛⎫=-+ ⎪⎝⎭,将34x π-整体放入正弦函数的单调递增区间中,解出x 的范围即可. 【详解】由题意得:()()22cos sin 2sin cos 2n f x m x x n x x ωωωω=--++()sin 2cos 2222n n n x m x x ωωωϕ=-+=-+ 其中cos ϕ=sin ϕ=图象关于点,112π⎛⎫⎪⎝⎭对称 12n ∴=,解得:2n =()()21f x x ωϕ∴=-+(Ⅰ)若1m =,则()()21f x x ωϕ=-+()min 1f x ∴=(Ⅱ)()4f x f π⎛⎪≤⎫ ⎝⎭对一切实数恒成立 ()max 4f x f π⎛⎫∴= ⎪⎝⎭()*412642T T k k N πππ∴-==+⋅∈,即:()()*223212T k N k ππω==∈+ ()3212k ω∴=+,又()1,2ω∈ 32ω∴=()2sin3cos31f x x m x ∴=-+,又图象关于点,112π⎛⎫⎪⎝⎭对称2sin cos 111244f m πππ⎛⎫∴=-+= ⎪⎝⎭,解得:2m =()2sin 32cos31314f x x x x π⎛⎫∴=-+=-+ ⎪⎝⎭令232242k x k πππππ-+≤-≤+,k Z ∈,解得:2212343k k x ππππ-+≤≤+,k Z ∈ ()f x ∴的单调递增区间为:()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【点睛】本题考查三角函数图象与性质的综合应用问题,涉及到根据三角函数的性质求解函数解析式的求解、三角函数最值的求解、单调区间的求解问题.28.(1)13; (2【解析】 【分析】(1)先由ABC ∆的面积为23sin AD B 且D 为BC 的中点,得到ABD ∆的面积;再由三角形的面积公式和正弦定理即可求出结果;(2)根据(1)的结果和6BC AB =,可求出sin BDA ∠和sin BAD ∠;再由余弦定理,即可求出结果. 【详解】(1)由ABC ∆的面积为23sin AD B 且D 为BC 的中点可知:ABD ∆的面积为26sin AD B , 由三角形的面积公式可知:21sin 26sin AD AB BD B B ⋅⋅=, 由正弦定理可得:3sin sin 1BAD BDA ∠⋅∠=, 所以1sin sin 3BAD BDA ∠⋅∠=,(2)6BC AB = ,又因为D 为中点,所以BC 2BD 6AB ==,即BD 3AB =, 在ABD ∆中由正弦定理可得sin sin BD ABBAD BDA=∠∠,所以sin 3sin BAD BDA ∠=∠由(1)可知1sin sin 3BAD BDA ∠⋅∠=所以1sin ,sin 13BDA BAD ∠=∠=,()0,BAD π∠∈ ∴ ,2BAD π∠=在直角ABD ∆中13AD BDA =∠=,所以1,3AB BD ==.BC 2BD =,BC 6∴=在ABC ∆中用余弦定理,可得22212cos 13621633,3b ac ac B b =+-=+-⨯⨯⨯=∴=【点睛】本题主要考查解三角形,熟记正弦定理和余弦定理以及面积公式,即可求解,属于常考题型.29.(1)()2sin(2) 1.6f x x π=-+;(2)3π.【解析】 【详解】(1)由三角函数性质得,最大值为A+1=3,∴A=2, 周期2222πππωω⨯==⇒=,∴f (x )=2sin (2x-6π)+1(2)π(0,)2α∈,f (2α)=2∴2sin (22α⨯-6π)+1=2,得sin (α-6π)=12,α=3π30.(1)π2,1,6A ωϕ===;(2)7π,112a b =-=,递增区间为()πππ,π36k k k Z ⎡⎤-+∈⎢⎥⎣⎦;(3)π24或7π24. 【解析】 【分析】(1)利用函数图像可直接得出周期T 和A ,再利用=2Tπω,求出ω,然后利用待定系数法直接得出ϕ的值.(2)通过第一问求得的值可得到()f x 的函数解析式,令()=0f x ,再根据a 的位置确定出a 的值;令0x =得到的函数值即为b 的值;利用正弦函数单调增区间即可求出函数的单调增区间.(3)令()f α=0απ,即可求得α的取值.【详解】解:(1)由图象知A =2,34T =512π-(-3π)=912π, 得T =π, 即22πω=2,得ω=1, 又f (-3π)=2sin[2×(-3π)+φ]=-2, 得sin (-23π+φ)=-1,即-23π+φ=-2π+2k π, 即ω=6π+2k π,k ∈Z , ∵|φ|<2π,∴当k =0时,φ=6π,即A =2,ω=1,φ=6π;(2)a =-3π-4T =-3π-4π=-712π,b =f (0)=2sin 6π=2×12=1,∵f (x )=2sin (2x +6π), ∴由2k π-2π≤2x +6π≤2k π+2π,k ∈Z ,得k π-3π≤x ≤k π+6π,k ∈Z ,即函数f (x )的递增区间为[k π-3π,k π+6π],k ∈Z ;(3)∵f (α)=2sin (2α+6π)即sin (2α+6π) ∵α∈[0,π],∴2α+6π∈[6π,136π], ∴2α+6π=4π或34π,∴α=24π或α=724π.【点睛】关于三角函数图像需记住: 两对称轴之间的距离为半个周期; 相邻对称轴心之间的距离为半个周期;相邻对称轴和对称中心之间的距离为14个周期.关于正弦函数单调区间要掌握:当2,222x k k ππωϕππ⎡⎤+∈-+⎢⎥⎣⎦时,函数单调递增;当32+,222x k k ππωϕππ⎡⎤+∈+⎢⎥⎣⎦时,函数单调递减.。
三角函数练习题附答案一、填空题1.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且满足22b a ac -=,则11tan tan A B-的取值范围为___________. 2.设函数()sin f x x π=,()21g x x x =-+,有以下四个结论.①函数()()y f x g x =+是周期函数: ②函数()()y f x g x =-的图像是轴对称图形: ③函数()() y f x g x =⋅的图像关于坐标原点对称: ④函数()()f x yg x =存在最大值 其中,所有正确结论的序号是___________.3.法国著名的军事家拿破仑.波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.在三角形ABC 中,角60A =,以,,AB BC AC 为边向外作三个等边三角形,其外接圆圆心依次为123,,O O O ,若三角形123O O O ABC 的周长最小值为___________4.已知四棱锥P ABCD -的顶点均在球O 的球面上,底面ABCD 是正方形,AB =120APB ∠=︒,当AD AP ⊥时,球O 的表面积为______.5.在ABC 中,设a ,b ,c 分别为角A ,B ,C 对应的边,记ABC 的面积为S ,且sin 2sin 4sin b B c C a A +=,则2Sa 的最大值为________.6.已知函数()()sin 0f x x x ωωω=>,若函数()f x 的图象在区间[]0,2π上的最高点和最低点共有6个,下列说法正确的是___________. ①()f x 在[]0,2π上有且仅有5个零点; ②()f x 在[]0,2π上有且仅有3个极大值点; ③ω的取值范围是3137,1212⎡⎫⎪⎢⎣⎭;④()f x 在06,π⎡⎤⎢⎥⎣⎦上为单递增函数.7.已知函数()2sin 16f x x πω⎛⎫=-- ⎪⎝⎭,其中0>ω,若()f x 在区间(4π,23π)上恰有2个零点,则ω的取值范围是____________.8.已知函数()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 的图象关于直线3x π=对称,且在3,164ππ⎛⎫⎪⎝⎭上单调,则ω的最大值是______.9.如图,在边长为2的正方形ABCD 中,M ,N 分别为边BC ,CD 上的动点,以MN 为边作等边PMN ,使得点A ,P 位于直线MN 的两侧,则PN PB ⋅的最小值为______.10.已知函数()cos()(0,0,0)f x A x A ωϕωϕπ=->><<的部分图像如图所示,设函数()266g x f x f x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()g x 的值域为___________.二、单选题11.已知函数()()2212sin 2,2212,x a x af x x a x a x a π⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥=⎝⎭⎨⎣⎦⎪-+++≥⎩,若函数()f x 在[)0,∞+内恰有5个零点,则a 的取值范围是( ) A .75,42⎛⎫ ⎪⎝⎭B .7,24⎛⎫ ⎪⎝⎭C .75,2,342⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭D .75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭12.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1213.已知函数()|sin |(0)f x x ωω=>在区间,53ππ⎡⎤⎢⎥⎣⎦上单调递减,则实数ω的取值范围为( ) A .5,32⎡⎤⎢⎥⎣⎦B .30,2⎛⎤ ⎥⎝⎦C .8,33⎡⎤⎢⎥⎣⎦D .50,4⎛⎤ ⎥⎝⎦14.在三棱锥P ABC -中,顶点P 在底面的射影为ABC 的垂心O (O 在ABC 内部),且PO 中点为M ,过AM 作平行于BC 的截面α,过BM 作平行于AC 的截面β,记α,β与底面ABC 所成的锐二面角分别为1θ,2θ,若PAM PBM θ∠=∠=,则下列说法错误的是( )A .若12θθ=,则AC BC =B .若12θθ≠,则121tan tan 2θθ⋅= C .θ可能值为6πD .当θ取值最大时,12θθ=15.《九章算术》卷五“商功”:今有刍甍,下广3丈,袤4丈;上袤2丈,无广;高1丈.其描述的是下图的一个五面体,底面ABCD 是矩形,4AB =,3BC =,2EF =,//EF 底面ABCD 且EF 到底面ABCD 的距离为1.若DE AE BF CF ===,则该刍甍中点F 到平面EBC 的距离为( )A .15B .35C 10D 2516.已知函数()()()sin 010f x x ωϕω=+<<,若存在实数1x 、2x ,使得()()122f x f x -=,且12x x π-=,则ω的最大值为( ) A .9B .8C .7D .517.在棱长为2的正方体1111ABCD A B C D -中,N 为BC 的中点.当点M 在平面11DCC D 内运动时,有//MN 平面1A BD ,则线段MN 的最小值为( ) A .1B 6C 2D 318.已知函数()2sin 1,022sin 1,02x x f x x x ππ⎧-≥⎪⎪=⎨⎪--<⎪⎩,()11x g x x -=+,则关于x 的方程()()f x g x =在区间[]8,6-上的所有实根之和为( ) A .10-B .8-C .6-D .4-19.已知函数2log ,0,(),0,x x f x x x >⎧=⎨-≤⎩函数()g x 满足以下三点条件:①定义域为R ;②对任意x ∈R ,有()()2g x g x π+=;③当[0,]x π∈时,()sin g x x =.则函数()()y f x g x =-在区间[4,4]ππ-上零点的个数为( ) A .6B .7C .8D .920.已知函数()()sin 302f x x πϕϕ⎛⎫=-<≤ ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π上单调递增,现有如下三个结论:①ϕ的最小值为3π; ②当ϕ取得最大值时,将函数()f x 的图像向左平移18π个单位后,再把曲线上各点的横坐标伸长到原来的2倍,得到函数()g x 的图像,则132g π⎛⎫= ⎪⎝⎭;③函数()f x 在[]0,2π上有6个零点. 则上述结论正确的个数为( ) A .0B .1C .2D .3三、解答题21.已知函数2211()cos sin cos sin 22f x x x x x =+-.(1)求()f x 的单调递增区间;(2)求()f x 在区间,82ππ⎡⎤-⎢⎥⎣⎦的最大值和最小值.22.已知函数()()()()2cos +2cos 02f x x x x πϕϕϕϕ⎛⎫=+++<< ⎪⎝⎭.(1)求()f x 的最小正周期;(2)若13f π⎛⎫= ⎪⎝⎭,求当()2f x =时自变量x 的取值集合.23.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的最大值是2,函数()f x 的图象的一条对称轴是3x π=,且与该对称轴相邻的一个对称中心是7,012π⎛⎫⎪⎝⎭. (1)求()f x 的解析式;(2)已知DBC △是锐角三角形,向量,,,2124233B B m f f n f f B ππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+=++ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,且3,sin 5m n C ⊥=,求cos D . 24.已知函数22cos 3sin 2f x xx a 的最小值为0.(1)求a 的值及函数()y f x =图象的对称中心;(2)若关于x 的方程()0f x m -=在区间70,6π⎡⎤⎢⎥⎣⎦上有三个不相等的实数根1x ,2x ,3x ,求m的取值范围及()123tan 2x x x ++的值. 25.已知函数()sin 2coscos 2sin33f x x x ππ=+.(1)若对任意,63x ππ⎡⎤∈⎢⎥⎣⎦,都有4f x m π⎛⎫- ⎪⎝⎭成立,求实数m 的取值范围;(2)设函数()1226g x f x π⎛⎫=- ⎪⎝⎭()g x 在区间[],3ππ-内的所有零点之和.26.如图,半圆的直径2AB =,O 为圆心,C ,D 为半圆上的点.(Ⅰ)请你为C 点确定位置,使ABC ∆的周长最大,并说明理由; (Ⅱ)已知AD DC =,设ABD θ∠=,当θ为何值时, (ⅰ)四边形ABCD 的周长最大,最大值是多少 (ⅱ)四边形ABCD 的面积最大,最大值是多少?27.已知函数()sin cos cos 63f x x x x a ππ⎛⎫⎛⎫=-+-++ ⎪ ⎪⎝⎭⎝⎭的最大值为1.(1)求常数a 的值;(2)求函数()f x 的单调递增区间; (3)求使()0f x <成立的实数x 的取值集合. 28.已知函数()2cos (sin cos )f x x x x =+,x ∈R . (1)求函数()f x 的最小正周期;(2)求函数()f x 在区间ππ,44⎡⎤-⎢⎥⎣⎦上的最小值和最大值,并求出取得最值时的x 的值.29.为丰富市民的文化生活,市政府计划在一块半径为200m ,圆心角为0120的扇形地上建造市民广场,规划设计如图:内接梯形ABCD 区域为运动休闲区,其中A ,B 分别在半径OP ,OQ 上,C ,D 在圆弧PQ 上,CD //AB ;上,CD //AB ;OAB ∆区域为文化展区,AB 长为3域,且CD 长不得超过200m.(1)试确定A ,B 的位置,使OAB ∆的周长最大?(2)当OAB ∆的周长最长时,设2DOC θ∠=,试将运动休闲区ABCD 的面积S 表示为θ的函数,并求出S 的最大值.30.已知函数()()()2331?0f x cos x sin x cos x ωωωω=>,()12 1()3f x f x ==-,,且12min 2x x π-=.(1)求()f x 的单调递减区间; (2)若()237,,,sin 33235,25f ππβπαβαβ⎛⎫⎛⎫∈-=+=- ⎪ ⎪⎝⎭⎝⎭,求2f α⎛⎫⎪⎝⎭的值.【参考答案】一、填空题1.⎛ ⎝⎭2.②④ 3.64.28π56.②③7.742ω<<或91322ω<≤.8.139.14- 10.9[,4]4-二、单选题 11.D 12.A 13.A 14.C 15.C 16.A 17.B 18.B 19.A 20.C 三、解答题21.(1)3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈;(2)()max f x =,()min 12f x =- 【解析】【分析】(1)直接利用三角函数的恒等变换,把三角函数变形成正弦型函数.进一步求出函数的单调区间.(2)直接利用三角函数的定义域求出函数的最值. 【详解】 解:(1)2211()cos sin cos sin 22f x x x x x =+-11()cos 2sin 222f x x x ∴=+()24f x x π⎛⎫∴=+ ⎪⎝⎭ 令222242k x k πππππ-+≤+≤+,()k Z ∈解得388k x k ππππ-+≤≤+,()k Z ∈ 即函数的单调递增区间为3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈(2)由(1)知n ()224f x x π⎛⎫=+ ⎪⎝⎭ ,82x ππ⎡⎤∈-⎢⎥⎣⎦ 520,44x ππ⎡⎤∴+∈⎢⎥⎣⎦所以当242x ππ+=,即8x π=时,()max f x =当5244x ππ+=,即2x π=时,()min 12f x =- 【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的单调性的应用,利用函数的定义域求三角函数的值域.属于基础型.22.(1)π;(2)12x x k ππ⎧=-+⎨⎩或()4x k k Z ππ⎫=+∈⎬⎭【解析】 【分析】(1)由辅助角公式可得()f x 2sin 2216x πϕ⎛⎫=+++ ⎪⎝⎭,再求周期即可;(2)由13f π⎛⎫= ⎪⎝⎭求出12πϕ=,再解方程2sin 2123x π⎛⎫++= ⎪⎝⎭即可.【详解】解:(1)()()()()2cos 2cos f x x x x ϕϕϕ=++++()()2cos21x x ϕϕ=++++2sin 2216x πϕ⎛⎫=+++ ⎪⎝⎭,则()f x 的最小正周期为2T ππω==.(2)因为13f π⎛⎫= ⎪⎝⎭,所以2sin 221136ππϕ⎛⎫⨯+++= ⎪⎝⎭,即()526k k Z πϕπ+=∈, 解得()5212k k Z ππϕ=-∈. 因为02πϕ<<,所以12πϕ=.因为()2f x =,所以2sin 2123x π⎛⎫++= ⎪⎝⎭,即1sin 232x π⎛⎫+= ⎪⎝⎭,则2236x k πππ+=+或()52236x k k Z πππ+=+∈, 解得12x k ππ=-+或()4x k k Z ππ=+∈.故当()2f x =时,自变量x 的取值集合为12x x k ππ⎧=-+⎨⎩或()4x k k Z ππ⎫=+∈⎬⎭.【点睛】本题考查了三角恒等变换,重点考查了解三角方程,属中档题.23.(1)()2sin 26f x x π⎛⎫=- ⎪⎝⎭;(2【解析】(1)根据函数的最值、周期、对称轴待定系数即可求解;(2)由(1)所求,可化简向量坐标,根据向量垂直得到角B ,再利用()cos cosD A B =-+求解. 【详解】(1)设()f x 的最小正周期为T , 依题意得71234T ππ-=,∴T π=,∴22πωπ==. ∵()f x 图象的一条对称轴是3x π=,∴2,32k k Z ππϕπ+=+∈, ∴,6k k Z πϕπ=-+∈.∵||2ϕπ<,∴6πϕ=-. 又∵()f x 的最大值是2,∴2A =,从而()2sin 26f x x π⎛⎫=- ⎪⎝⎭.(2)∵()(),2sin ,3,2cos ,2cos 2m n m B n B B ⊥==,∴4sin cos 22sin 22m n B B B B B ⋅=⋅+=+4sin 203B π⎛⎫=+= ⎪⎝⎭∴2,3B k k Z ππ+=∈,∴:,62kB k Z ππ=-+∈, 又∵B 是锐角,∴3B π=.∵3sin 5C =,∴4cos 5C =,∴cos cos()(cos cos sin sin )D B C B C B C =-+=--=.即cosD =. 【点睛】本题考查三角函数解析式的求解,涉及向量垂直的转换,余弦函数的和角公式.属综合基础题.24.(1)1,,2212k ππ⎛⎫- ⎪⎝⎭,k Z ∈;(2)[)3,4, 【解析】(1)由题得()2sin 216f x x a π⎛⎫=+++ ⎪⎝⎭,求出a 的值即得函数()y f x =图象的对称中心;(2)作出函数()y f x =在70,6x π⎡⎤∈⎢⎥⎣⎦上的大致图象,求出123523x x x π++=即得解.【详解】(1)()cos 2212sin 216x x a x a f x π⎛⎫=++=+++ ⎪⎝⎭,由已知可得()2110a ⨯-++=,∴1a =,()2sin 226f x x π⎛⎫=++ ⎪⎝⎭,令26x k ππ+=可得()y f x =图象的对称中心为,2212k ππ⎛⎫-⎪⎝⎭,k Z ∈. (2)()y f x =在70,6x π⎡⎤∈⎢⎥⎣⎦上的大致图象如图所示,由图可得[)3,4m ∈,所以123x x π+=,2343x x π+=,所以123523x x x π++=,所以()1235tan 2tan3x x x π++==【点睛】本题主要考查三角恒等变换和三角函数的图象和性质,考查三角函数图象的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力. 25.(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)2π【解析】(1)首先根据两角和的正弦公式得到()sin 23f x x π⎛⎫=+ ⎪⎝⎭,从而得到4f x π⎛⎫- ⎪⎝⎭的解析式,根据正弦函数的性质求出其值域,从而得到参数的取值范围; (2)首先求出()g x 的解析式,根据正弦函数的对称性即可解答. 【详解】解:(1)因为()sin 2coscos 2sin33f x x x ππ=+()sin 23f x x π⎛⎫∴=+ ⎪⎝⎭, 所以sin 2sin 24436f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.又,63x ππ⎡⎤∈⎢⎥⎣⎦,所以2,662x πππ⎡⎤-∈⎢⎥⎣⎦, 故1sin 2,162x π⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,即min 142f x π⎛⎫-= ⎪⎝⎭,12m, 所以实数m 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.(2)由(1)得()1313322sin 22sin 26263g x f x x x πππ⎡⎤⎛⎫⎛⎫=-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦令()0g x =,得3sin x =3sin x =[],3ππ-上有4个零点 这4个零点从小到大不妨设为1x ,2x ,3x ,4x ,则由对称性得1222x x π+=-,34322x x π+=, 从而所有零点和为12342x x x x π+++=. 【点睛】本题考查两角和的正弦公式的应用,三角函数的性质的应用,属于基础题.26.(Ⅰ)点C 是半圆的中点,理由见解析; (Ⅱ)(ⅰ)6πθ=时,最大值5(ⅱ)6πθ=时,最大面积是334【解析】(Ⅰ)设BC a =,AC b =,AB c =,法一:依题意有222+=a b c ,再利用基本不等式求得2a b c +,从而得出结论;法二:由点C 在半圆上,AB 是直径,利用三角函数求出cos a c α=⋅,sin b c α=⋅,再利用三角函数的性质求出结论;(Ⅱ)(ⅰ)利用三角函数值表示四边形ABCD 的周长p ,再求p 的最大值;(ⅱ)利用三角函数值表示出四边形ABCD 的面积s ,再结合基本不等式求s 的最大值. 【详解】(Ⅰ)点C 在半圆中点位置时,ABC ∆周长最大.理由如下: 法一:因为点C 在半圆上,且AB 是圆的直径, 所以2ACB π∠=,即ABC ∆是直角三角形,设BC a =,AC b =,AB c =,显然a ,b ,c 均为正数,则222+=a b c , 因为222a b ab +≥,当且仅当a b =时等号成立,所以()()2222222a b a b ab a b +≥++=+,所以()2222a b a b c +≤+=, 所以ABC ∆的周长为()21222a b c c ++≤+=+,当且仅当a b =时等号成立,即ABC ∆为等腰直角三角形时,周长取得最大值,此时点C 是半圆的中点. 法二:因为点C 在半圆上,且AB 是圆的直径, 所以2ACB π∠=,即ABC ∆是直角三角形,设BC a =,AC b =,AB c =,02ABC παα⎛⎫∠=<< ⎪⎝⎭,则cos a c α=⋅,sin b c α=⋅,a b c ++cos sin c c c αα=⋅+⋅+()2cos sin 2αα=++22sin 24πα⎛⎫=++ ⎪⎝⎭,因为02πα<<,所以3444πππα<+<, 所以当42ππα+=,即4πα=时, ABC ∆周长取得最大值222+,此时点C 是半圆的中点.(Ⅱ)(ⅰ)因为AD DC =,所以ABD DBC θ∠=∠=, 所以sin AD DC AB θ==⋅,cos2CB AB θ=⋅, 设四边形ABCD 的周长为p , 则p AD DC CB AB =+++2sin cos22AB AB θθ=++()2214sin 212sin 254sin 2θθθ⎛⎫=+-+=-- ⎪⎝⎭,显然0,4πθ⎛⎫∈ ⎪⎝⎭,所以当6πθ=时,p 取得最大值5;(ⅱ)过O 作OE BC ⊥于E ,设四边形ABCD 的面积为s ,四边形AOCD 的面积为1s ,BOC ∆的面积为2s ,则 121122s s s AC OD BC OE =+=⋅+⋅ 11sin 21cos 2sin 222AB AB θθθ=⋅+⋅ sin 2cos2sin 2θθθ=+⋅()sin 21cos2θθ=+, 所以()222sin 21cos2s θθ=+()()221cos 21cos 2θθ=-+()()31cos21cos2θθ=-+()()331cos 21cos 23θθ=-+()()()2231cos 21cos 211cos 232θθθ-++⎡⎤≤+⎢⎥⎣⎦()()()231cos 21cos 211cos 232θθθ-++⎡⎤=+⎢⎥⎣⎦()()()2231cos 21cos 21cos 21232θθθ⨯-++⎡⎤++⎢⎥≤⎢⎥⎢⎥⎢⎥⎣⎦()()()431cos 21cos 221cos 2134θθθ-++++⎡⎤=⎢⎥⎣⎦ 413273216⎛⎫==⎪⎝⎭; 当且仅当()31cos21cos2θθ-=+,即1cos 22θ=时,等号成立, 显然04πθ⎛⎫∈ ⎪⎝⎭,,所以202πθ⎛⎫∈ ⎪⎝⎭,,所以此时6πθ=,所以当6πθ=时,s =,即四边形ABCD 【点睛】本题考查解三角形的应用问题,考查三角函数与基本不等式的应用,需要学生具备一定的计算分析能力,属于中档题.27.(1)1a =-(2)22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(3)422|,3k x k k Z x πππ-+<<∈⎧⎫⎨⎬⎩⎭【解析】(1)化简()f x ,求最大值,即可求解;(2)应用整体思想,结合正弦函数的递增区间,即可得出结论; (3)运用正弦函数图像,即可求解. 【详解】 解:()sin cos cos sincoscos sinsin cos 6633f x x x x x x a ππππ=-++++11cos cos cos 22x x x x x a =-+++cos x x a =++12cos 2x x a ⎫=++⎪⎪⎝⎭2sin 6x a π⎛⎫=++ ⎪⎝⎭. (1)函数()f x 的最大值为21a +=,所以1a =-. (2)由22,262k x k k Z πππππ-+≤+≤+∈,解得222,33k x k k Z ππππ-+≤≤+∈, 所以()f x 的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. (3)由(1)知()2sin 16f x x π⎛⎫=+- ⎪⎝⎭.因为()0f x <,即2sin 106x π⎛⎫+-< ⎪⎝⎭.所以1sin 62x π⎛⎫+< ⎪⎝⎭,所以722,666k x k k Z πππππ-+<+<+∈. 所以422,3k x k k Z πππ-+<<∈, 所以使()0f x <成立的x 的取值集合为422|,3k x k k Z x πππ-+<<∈⎧⎫⎨⎬⎩⎭. 【点睛】本题考查三角函数恒等变换,化简解析式,考查三角函数的性质以及三角不等式,属于中档题.28.(1)π;(2)()()min max ππ,0,,148x f x x f x =-===.【解析】(1) 函数()f x 解析式去括号后利用二倍角的正弦、余弦公式化简,整理后再利用两角和与差的正弦函数公式化为一个角的正弦函数,找出w 的值,代入周期公式即可求出最小正周期;(2)根据x 的范围求出这个角的范围,利用正弦函数的值域即可确定出()f x 的值域,进而求出()f x 的最小值与最大值.. 【详解】(1)()()π2cos sin cos sin2cos21214f x x x x x x x ⎛⎫=+=++=++ ⎪⎝⎭,因此,函数()f x 的最小正周期πT =. (2) 因为ππ44x -≤≤ 所以ππ3π2444x -≤+≤,sin 24x π⎡⎤⎛⎫∴+∈⎢⎥ ⎪⎝⎭⎣⎦,即()1f x ⎡⎤∈⎣⎦, 所以当244x ππ+=-,即4x π=-时,()min 0f x =,当242x ππ+=,即8x π=时,()max 1f x =.所以4x π=-时,()min 0f x =,8x π=时,()max 1f x .【点睛】此题考查了两角和与差的正弦函数公式,二倍角的正弦、余弦函数公式,正弦函数的定义域与值域,熟练掌握公式是解本题的关键,是中档题.29.(1)OA 、OB 都为50m ;(2)8sin 64sin cos S θθθθ=-+;0,6πθ⎛⎤∈ ⎥⎝⎦;最大值为2625(8m +. 【解析】 【分析】对于(1),设OA m =,OB n =,m ,n (0,200)∈,在△OAB 中,利用余弦定理可得22222cos3AB OA OB OA OB π=+-⋅⋅,整理得222m n mn =++,结合基本不等式即可得出结论;对于(2),当△AOB 的周长最大时,梯形ACBD 为等腰梯形,过O 作OF ⊥CD 交CD 于F ,交AB 于E ,则E 、F 分别为AB ,CD 的中点,利用已知可表示出相关线段;然后利用梯形的面积公式可知,625(83cos 8sin 64sin cos 3)S θθθθ=-+- ,0,6πθ⎛⎤∈ ⎥⎝⎦,令()83cos 8sin 64sin cos 3f θθθθθ=-+-,0,6πθ⎛⎤∈ ⎥⎝⎦,,结合导数,确定函数的单调性,即可求出S 的最大值. 【详解】解:(1)设OA m =,OB n =,m ,n (0,200)∈,在OAB ∆中,22222cos3AB OA OB OA OB π=+-⋅⋅, 即222(503)m n mn =++.所以22222()3(503)()()()44m n m n mn m n m n +=+-+-=+.所以m n 100+,当且仅当m n 50==时,m n +取得最大值, 此时OAB ∆周长取得最大值.答:当OA 、OB 都为50m 时,OAB ∆的周长最大. (2)当AOB ∆的周长最大时,梯形ABCD 为等腰梯形.如上图所示,过O 作OF CD ⊥交CD 于F ,交AB 于E ,则E 、F 分别为AB 、CD 的中点, 所以DOE θ∠=.由CD 200,得0,6πθ⎛⎤∈ ⎥⎝⎦.在ODF ∆中,DF 200sin θ=,OF 200cos θ=. 又在AOE ∆中,OE OAcos253π==,故EF 200cos 25θ=-.所以1(503400sin )(200cos 25)2S θθ=-625(38sin )(8cos 1)θθ=-625(838sin 64sin cos 3)θθθθ=-+,0,6πθ⎛⎤∈ ⎥⎝⎦.令()838sin 64sin cos 3f θθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦,()838cos 64cos 216sin 64cos 26f πθθθθθθ'⎛⎫=--+=-++ ⎪⎝⎭,0,6πθ⎛⎫∈ ⎪⎝⎭.又16sin 6y πθ⎛⎫=-+ ⎪⎝⎭及cos 2y θ=在0,6πθ⎛⎤∈ ⎥⎝⎦上均为单调递减函数,故()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.因1()164062f π⎫'=-⨯>⎪⎪⎝⎭,故()0f θ'>在0,6πθ⎛⎤∈ ⎥⎝⎦上恒成立, 于是,()f θ在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递增函数.所以当6πθ=时,()f θ有最大值,此时S 有最大值为625(8+.答:当6πθ=时,梯形ABCD 面积有最大值,且最大值为2625(8m +.【点睛】本题主要考查了余弦定理、基本不等式以及导数的应用,在(2)中得到()8sin 64sin cos f θθθθθ=-+()16sin 64cos 26f πθθθ'⎛⎫=-++ ⎪⎝⎭,结合函数在公共区间上,减函数+减函数等于减函数,从而确定()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.属于难题.30.(1) 单调递减区间为7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2) 15. 【解析】 【分析】(1)根据题意求出函数()f x 的解析式,然后可求出它的单调递减区间.(2)结合条件求出()424sin ,cos 3525πβαβ⎛⎫-=+=- ⎪⎝⎭,然后由()2sin 12sin 1233f αππααββ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦可得结果.【详解】(1)()2()1f x cos x sin x x ωωω=221sin xcos x x ωωω=+221)1sin x cos x ωω=--221sin x x ωω=-2(2)13sin x πω=+-. ∵1(2)13sin x πω-≤+≤,∴32(2)113sin x πω-≤+-≤,∴()f x 的最大值为1,最小值为3-. 又()()121,3f x f x ==-,且12min 2x x π-=,∴函数()f x 的最小正周期为22ππ⨯=,∴1ω=,∴()2(2)13f x sin x π=+-.由3222,232k x k k Z πππππ+≤+≤+∈, 得7,1212k x k k Z ππππ+≤≤+∈, ∴()f x 的单调递减区间为7[,],1212k k k Z ππππ++∈. (2)由(1)得3212335f sin βππβ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭,∴4sin 35πβ⎛⎫-= ⎪⎝⎭.∵2,33ππβ⎛⎫∈ ⎪⎝⎭, ∴0,33ππβ⎛⎫-∈ ⎪⎝⎭,∴3cos 35πβ⎛⎫- ⎪⎝⎭.∵()7sin 25αβ+=-且2,,33ππαβ⎛⎫∈ ⎪⎝⎭, ∴24,33ππαβ⎛⎫+∈ ⎪⎝⎭,∴()24cos 25αβ+==-. ∴()2sin 12sin 1233f αππααββ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦()()2sin cos cos sin 133ππαββαββ⎡⎤⎛⎫⎛⎫=+--+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦7324421255255⎡⎤⎛⎫=⨯-⨯--⨯- ⎪⎢⎥⎝⎭⎣⎦15=. 【点睛】(1)解答有关三角函数性质的有关问题时,首项把函数解析式化为(x)Asin(x )f ωϕ=+的形式,然后再结合正弦函数的相关性质求解,解题时注意系数,A ω对结果的影响.(2)对于三角变换中的“给值求值”问题,在求解过程中注意角的变换,通过角的“拆”、“拼”等手段转化为能应用条件中所给角的形式,然后再利用整体思想求解.。
三角函数练习题含答案一、填空题1.如图,点C 为某沿海城市的高速公路出入口,直线BD 为海岸线,512BAC π∠=,BD AB ⊥,BC 是以A 为圆心,半径为1km 的圆弧型小路.该市拟修建一条从C 通往海岸的观光专线CP PQ -(新建道路PQ ,对道路CP 进行翻新),其中P 为BC 上异于B C ,的一点,PQ 与AB 平行,设012PAB θθ5π⎛⎫∠=<<⎪⎝⎭,新建道路PQ 的单位成本是翻新道路CP 的单位成本的2倍.要使观光专线CP PQ -的修建总成本最低,则θ的值为____________.2.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且满足22b a ac -=,则11tan tan A B-的取值范围为___________. 3.已知球O 的表面积为16π,点,,,A B C D 均在球O 的表面上,且,64ACB AB π∠=则四面体ABCD 体积的最大值为___________.4.已知三棱锥S ABC -中,SA SB SC ==,ABC 是边长为4的正三角形,点E ,F 分别是SC ,BC 的中点,D 是AC 上的一点,且EF SD ⊥,若3FD =,则DE =___________. 5.已知向量a ,b ,c 满足0a b c ++=,()()0a b a c -⋅-=,||9b c -=,则||||||a b c ++的最大值是___________.6.已知(sin )21,22f x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,那么(cos1)f =________.7.在三棱锥P ABC -中,4AB BC ==,8PC =,异面直线PA ,BC 所成角为π3,AB PA ⊥,AB BC ⊥,则该三棱锥外接球的表面积为______.8.已知函数()cos()(0,0,0)f x A x A ωϕωϕπ=->><<的部分图像如图所示,设函数()266g x f x f x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()g x 的值域为___________.9.已知直线y m =与函数3()sin (0)42f x x πωω⎛⎫=++> ⎪⎝⎭的图象相交,若自左至右的三个相.邻交点...A ,B ,C 满足2AB BC =,则实数m =______. 10.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b =,2B C =,则a c +的取值范围为________.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1212.已知函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω在区间[0,]π上有且仅有4条对称轴,给出下列四个结论:①()f x 在区间(0,)π上有且仅有3个不同的零点; ②()f x 的最小正周期可能是2π; ③ω的取值范围是131744⎡⎫⎪⎢⎣⎭,;④()f x 在区间0,15π⎛⎫⎪⎝⎭上单调递增. 其中所有正确结论的序号是( ) A .①④B .②③C .②④D .②③④13.已知点P 是曲线e 3xy =+α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .0,6π⎛⎤⎥⎝⎦B .,62ππ⎡⎫⎪⎢⎣⎭C .,63ππ⎡⎤⎢⎥⎣⎦D .0,3π⎛⎤ ⎥⎝⎦14.已知,a b Z ∈,满足)98sin 50sin 50a b -︒︒=,则a b +的值为( )A .1B .2C .3D .415.在ABC ∆中,已知3sin sin ,2A C +=设2sin sin ,t A C =则91()()44t t --( )A .1B .27764C .1693192D .9816.已知函数()sin sin()f x x x π=+,现给出如下结论:①()f x 是奇函数;②()f x 是周期函数;③()f x 在区间(0,)π上有三个零点;④()f x 的最大值为2.其中所有正确结论的编号为( ) A .①③B .②③C .②④D .①④17.在三棱锥S ABC -中,侧棱SA ,SB ,SC 两两垂直,且2SA SB SC +==.设SA x =,该三棱锥的表面积为函数()y f x =,以下判断正确的是( ) A .()f x 为常数 B .()f x 有极小值 C .()f x 有极大值D .()f x 是单调函数18.如图是某市夏季某一天从6时到14时的温度变化曲线,若该曲线近似地满足函数()sin y A x B ωϕ=++,则该市这一天中午12时天气的温度大约是( )A .25C ︒B .26C ︒ C .27C ︒D .28C ︒19.已知1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过点1F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若2ABF 是钝角三角形,则该双曲线离心率的取值范围是( ) A .(21,)+∞B .(12,)+∞C .(1,12)D .(31,)+∞20.已知函数22sin sin ,[1,1]()22,(1,)x x a a x f x x ax a x ⎧++-∈-=⎨-+∈+∞⎩若关于x 的不等式()0f x 对任意[1,)x ∈-+∞恒成立,则实数a 的范围是( )A .[0,2]B .(,0][2,)-∞+∞C .(,0][1,2]-∞D .[0,1][2,)⋃+∞三、解答题21.若函数()y f x =的图像上存在两个不同的点关于y 轴对称,则称函数()y f x =图像上存在一对“偶点”.(1)写出函数()sin f x x =图像上一对“偶点”的坐标;(不需写出过程) (2)证明:函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”;(3)若函数()2()x h x e mx m =--∈R 图像上有且只有一对“偶点”,求m 的取值范围. 22.已知()sin ,2cos a x x =,()2sin ,sin b x x =,()f x a b =⋅ (1)求()f x 的解析式,并求出()f x 的最大值;(2)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的最小值和最大值,并指出()f x 取得最值时x 的值.23.如图所示,在平面四边形ABCD 中,1,2,AB BC ACD ==∆为正三角形.(1)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若sin(2)3sin A C C +=,求角B 的大小; (2)求BCD ∆面积的最大值.24.已知(3cos ,sin ),(sin ,0),0a x x b x ωωωω==>,设()(),f x a b b k k R =+⋅+∈. (1)若()f x 图象中相邻两条对称轴间的距离不小于2π,求ω的取值范围; (2)若()f x 的最小正周期为π,且当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的最大值是12,求()f x 的解析式,并说明如何由sin y x =的图象变换得到()y f x =的图象.25.已知函数()()sin 0,2f x t x t πωϕϕ⎛⎫=+>< ⎪⎝⎭,()f x 的部分图像如图所示,点()0,3N ,,02M π⎛⎫- ⎪⎝⎭,,4P t π⎛⎫⎪⎝⎭都在()f x 的图象上.(1)求()f x 的解析式;(2)当,2x ππ⎡⎤∈-⎢⎥⎣⎦时,()33f x m --≤恒成立,求m 的取值范围.26.函数211()sin 2sin cos cos sin 222f x x x πϕϕϕ⎛⎫=⋅+⋅-+ ⎪⎝⎭,22ππϕ⎛⎫-<< ⎪⎝⎭其图像过定点1,64π⎛⎫⎪⎝⎭(1)求ϕ值;(2)将()y f x =的图像左移8π个单位后得到()y g x =,求()g x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最大和最小值及此时对应的x 的取值是多少?27.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 222cos 20C C ++=. (1)求角C 的大小;(2)若2b a =,ABC ∆的面积为2sin sin 2A B ,求sin A 及c 的值. 28.已知函数()f x a b =⋅,其中()3sin ,1a x =-,()1,cos b x =,x ∈R .(1)求函数()y f x =的单调递增区间; (2)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值.29.已知函数()()sin ,f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象如图所示:(1)求函数()f x 的解析式及其对称轴的方程;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,方程()23f x a =-有两个不等的实根12,x x ,求实数a 的取值范围,并求此时12x x +的值.30.已知函数2()2cos 23cos f x x x x =+. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若()f x 在区间,6m π⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,求m 的取值范围.【参考答案】一、填空题1.6π2.23⎛ ⎝⎭33(21)+ 475.3+36.1π-##1π-+7.80π 8.9[,4]4-9.1或2##2或110.( 二、单选题 11.A 12.B 13.A 14.B 15.B 16.A 17.A 18.C 19.B 20.C 三、解答题21.(1)()(),0,0ππ-(2)见解析(3)()1,+∞ 【解析】(1)根据题意即正弦函数的性质即可直接求解;(2)要证:函数数()2x h x e mx =--图象上有且只有一对“偶点”,只需证:())()()y Q x g x g x ==--=在(0,2)上有且只有一个零点,结合导数及函数的性质即可证明;(3)由题意,问题可转化为函数()()y h x h x =--只有一个零点,结合函数的性质及导数可求. 【详解】(1)函数()sin f x x =图像上一对“偶点”的坐标为()(),0,0ππ-, (2)设()()()()()ln 2ln 22Q x g x g x x x x =--=+--+-, 因为()y Q x =的定义域为()2,2-,且()()Q x Q x -=-, 所以函数()y Q x =为奇函数,要证:函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”, 只需证:()y Q x =在()0,2上有且只有一个零点,令()()222204x Q x x-'==-,得x =所以,函数()Q x 在(上为单调减函数,在)2上为单调增函数,(ln 30Q=+-<,4441122ln 40Q e e e ⎛⎫⎛⎫-=-+> ⎪ ⎪⎝⎭⎝⎭,所以函数()Q x 在41e ⎫-⎪⎭上有且只有一个零点,所以函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”,(3)设()()()2x xF x h x h x e e mx -=--=--,()00F =,因为()y F x =的定义域为R ,且()()F x F x -=-, 所以函数()y F x =为奇函数,因为函数()2()x h x e mx m =--∈R 图像上有且只有一对“偶点”, 所以函数()y F x =在()0,∞+有且只有一个零点, ()12x xF x e m e '=+-,()0,x ∈+∞, ①当1m 时,因为()220F x m '>-≥,所以函数()y F x =在()0,∞+上为单调增函数,所以()()00F x F >=, 所以函数()F x 在()0,∞+无零点,②当1m 时,由()212120x x xx xe me F x e m e e-+'=+-==,得:(0ln x m =,所以函数()y F x =在()00,x 上单调减函数,在()0,x +∞上单调增函数, 所以()()000F x F <=, 设()ln H x x x =-,()1xH x x-'=, 所以函数()H x 在()0,1上单调增函数,在()1,+∞上单调减函数, 所以()()110H x H ≤=-<,所以ln x x <,所以(ln ln 22m m m +<<,设()()211x m x e x x =-->,设()()2xM x m x e x '==-, 因为()220xM x e e '=->->,所以函数()M x 在()1,+∞单调增函数,所以()()120M x M e >=->,所以函数()m x 在()1,+∞单调增函数, 所以()()120m x m e >=->,所以当1x >时,21x e x >+,()22222124140m m m F m e m e m e=-->-->, 因为函数()y F x =在()0,x +∞上单调增函数,所以函数()F x 在()0,2x m 上有且仅有一个1x ,使得()10F x =, 综上:m 的取值范围为()1,+∞. 【点睛】本题中综合考查了函数的性质及导数的综合应用,体现了分类讨论思想的应用,试题具有一定的综合性.22.(1)()f x 214x π⎛⎫=-+ ⎪⎝⎭1.(2)0x =时,最小值0.38x π=1. 【解析】 【分析】(1)利用数量积公式、倍角公式和辅助角公式,化简()f x ,再利用三角函数的有界性,即可得答案; (2)利用整体法求出32444x πππ-≤-≤,再利用三角函数线,即可得答案. 【详解】(1)()22sin 2sin cos f x x x x =+1cos2sin2x x =-+214x π⎛⎫=-+ ⎪⎝⎭∴sin 214x π⎛⎫-≤ ⎪⎝⎭,()f x ∴1.(2)由(1)得()214f x x π⎛⎫=-+ ⎪⎝⎭,∵0,2x π⎡⎤∈⎢⎥⎣⎦,32444x πππ∴-≤-≤.sin 214x π⎛⎫≤-≤ ⎪⎝⎭, ∴当244x ππ-=-时,即0x =时,()f x 取最小值0.当242x ππ-=,即38x π=时,()f x 1. 【点睛】本题考查向量数量积、二倍角公式、辅助角公式、三角函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意整体法的应用.23.(1)23B π=;(21. 【解析】 【分析】(1)由正弦和角公式,化简三角函数表达式,结合正弦定理即可求得角B 的大小;(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理及正弦定理用,αβ表示出CD .再根据三角形面积公式表示出∆BCD S ,即可结合正弦函数的图像与性质求得最大值. 【详解】 (1)由题意可得:sin2cos cos2sin 3sin A C A C C +=∴()22sin cos cos 12sin sin 3sin A A C A C C +-=整理得sin (cos cos sin sin )sin A A C A C C -= ∴sin cos()sin A A C C += ∴sin cos sin A B C -= ∴sin 1cos sin 2C c B A a =-=-=- 又(0,)B π∈ ∴23B π=(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理得:22212212cos 54cos AC αα=+-⨯⨯=-, ∵ACD ∆为正三角形, ∴2254cos CD C A α=-=, 在ABC ∆中,由正弦定理得:1sin sin ACβα=, ∴sin sin AC βα=, ∴sin sin CD βα=,∵()222222(cos )1sin sin 54cos sin CD CD CD ββααα=-=-=--2(2cos )α=-,∵BAC β<∠,∴β为锐角,cos 2cos CD βα=-, 12sin sin 233BCD S CD CD ππββ∆⎛⎫⎛⎫=⨯⨯⨯+=+ ⎪ ⎪⎝⎭⎝⎭1cos sin 2CD ββ=+,1cos )sin sin 23πααα⎛⎫=-+=- ⎪⎝⎭, ∵(0,)απ∈∴当56πα=时,()max 1BCD S ∆=. 【点睛】本题考查了三角函数式的化简变形,正弦定理与余弦定理在解三角形中的应用,三角形面积的表示方法,正弦函数的图像与性质的综合应用,属于中档题.24.(1)01ω<≤;(2)()sin 26f x x π⎛⎫=- ⎪⎝⎭;平移变换过程见解析.【解析】 【分析】(1)根据平面向量的坐标运算,表示出()f x 的解析式,结合辅助角公式化简三角函数式.结合相邻两条对称轴间的距离不小于2π及周期公式,即可求得ω的取值范围; (2)根据最小正周期,求得ω的值.代入解析式,结合正弦函数的图象、性质与()f x 的最大值是12,即可求得()f x 的解析式.再根据三角函数图象平移变换,即可描述变换过程.【详解】∵(3cos ,sin ),(sin ,0)a x x b x ωωω== ∴(3cos sin ,sin )a b x x x ωωω+=+∴2()()3sin cos sin f x a b b k x x x k ωωω=+⋅+=++1cos21122cos2222x x k x x k ωωωω-=++=-++ 1sin 262x k πω⎛⎫=-++ ⎪⎝⎭(1)由题意可知222T ππω=≥, ∴1ω≤ 又0>ω, ∴01ω<≤ (2)∵T πω=, ∴1ω=∴1()sin 262f x x k π⎛⎫=-++ ⎪⎝⎭∵,66x ππ⎡⎤∈-⎢⎥⎣⎦,∴2,626x πππ⎡⎤-∈-⎢⎥⎣⎦∴当266x ππ-=即6x π=时max 11()sin 16622f x f k k ππ⎛⎫==++=+= ⎪⎝⎭∴12k =-∴()sin 26f x x π⎛⎫=- ⎪⎝⎭将sin y x =图象上所有点向右平移6π个单位,得到sin 6y x π⎛⎫=- ⎪⎝⎭的图象;再将得到的图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象(或将sin y x =图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 2y x =的图象;再将得到的图象上所有点向右平移12π个单位,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象) 【点睛】本题考查了正弦函数图像与性质的综合应用,根据最值求三角函数解析式,三角函数图象平移变换过程,属于中档题.25.(1)()22sin 33x f x π⎛⎫=+ ⎪⎝⎭;(2)[]1,0-【解析】 【分析】(1)由三角函数图像,求出,,t ωϕ即可; (2)求出函数()f x m -的值域,再列不等式组32m m +≥⎧⎪⎨≤⎪⎩.【详解】解:(1)由()f x 的图象可知34424T πππ⎛⎫=--= ⎪⎝⎭,则3T π=, 因为23T ππω==,0>ω,所以23ω=,故()2sin 3t x f x ϕ⎛⎫=+ ⎪⎝⎭.因为,02M π⎛⎫- ⎪⎝⎭在函数()f x 的图象上,所以sin 023f t ππϕ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭, 所以()3k k Z πϕπ-+=∈,即()3k k Z πϕπ=+∈,因为2πϕ<,所以3πϕ=.因为点(N 在函数()f x 的图象上,所以()0sin 3f t π==解得2t =,故()22sin 33x f x π⎛⎫=+ ⎪⎝⎭.(2)因为,2x ππ⎡⎤∈-⎢⎥⎣⎦,所以22,3333x πππ⎡⎤+∈-⎢⎥⎣⎦,所以2sin 33x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,则()2f x ≤.因为()33f x m -≤-≤,所以()3m f x m ≤+, 所以32m m +≥⎧⎪⎨⎪⎩10m -≤≤.故m 的取值范围为[]1,0-.【点睛】本题考查了利用三角函数图像求解析式,重点考查了三角函数值域的求法,属中档题. 26.(1)0ϕ=(2)当4x π=时,min ()g x =;当8x π=-时,max 1()2g x =【解析】 【分析】(1)先将函数表达式结合降幂公式化简可得()1cos(2)2f x x ϕ=-,结合函数过点1,64π⎛⎫⎪⎝⎭和,22ππϕ⎛⎫∈- ⎪⎝⎭即可求解具体ϕ值;(2)根据函数图像平移法则先求得1()cos 224g x x π⎛⎫=+ ⎪⎝⎭,由,44x ππ⎡⎤∈-⎢⎥⎣⎦求得32,444x πππ⎡⎤+∈-⎢⎥⎣⎦,再结合余弦函数性质即可求解 【详解】(1)11cos 21()sin 2sin cos cos 222x f x x ϕϕϕ+=⋅+⋅- 11sin 2sin cos 2cos 22x x ϕϕ=⋅+⋅ 1cos(2)2x ϕ=- 又图像过点1,64π⎛⎫ ⎪⎝⎭,11cos 423πϕ⎛⎫∴=- ⎪⎝⎭233k ππϕπ∴-=+或2()3k k Z ππ-+∈又,22ππϕ⎛⎫∈- ⎪⎝⎭,0ϕ∴=(2)由(1)知 1()cos 22f x x =, 11()cos 2cos 22824g x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭ 32,444x πππ⎡⎤+∈-⎢⎥⎣⎦当3244x ππ+=时,即4x π=时,min ()4g x = 当204x π+=时,即8x π=-时,max 1()2g x = 【点睛】本题考查三角函数表达式的化简求值,降幂公式的使用,两角差的余弦公式的逆用,在具体区间函数最值的求解,属于中档题27.(1)34C π=(2)sin A =1c = 【解析】 【分析】(1)化简等式,即可求出角C .(2)利用角C 的余弦公式,求出c 与a 的关系式,再由正弦定理求出角A 的正弦值,再结合面积公式求出c 的值. 【详解】(1)∵cos 220C C ++=,∴22cos s 10C C +=+,即)210C +=,∴cos C = 又()0,C π∈,∴34C π=. (2)∵2222222cos 325c a b ab C a a a =+-=+=,∴c =,即sin C A =,∴sinA C =∵1sin 2ABC S ab C ∆=,且in sin ABC S A B ∆=,∴1sin sin 2ab C A B =,∴sin sin sin abC A B=2sin sin c C C ⎛⎫= ⎪⎝⎭1c =. 【点睛】本题考查利用解三角形,属于基础题. 28.(1)2[2,2],33k k k Z ππππ-++∈;(2)最小值为1- 【解析】 【分析】(1)先利用平面向量数量积的坐标运算律以及辅助角公式得出()2sin 6f x x π⎛⎫=- ⎪⎝⎭,然后解不等式()22262k x k k Z πππππ-+≤-≤+∈可得出函数()y f x =的单调递减区间;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得出6x π-的取值范围,然后再利用正弦函数的性质得出函数()y f x =的最大值和最小值.【详解】 (1)()3sin ,1a x =-,()1,cos b x =,()1cos 2cos 2sin cos cos sin 266f x x x x x x x ππ⎫⎛⎫∴=-=-=-⎪ ⎪⎪⎝⎭⎝⎭2sin 6x π⎛⎫=- ⎪⎝⎭,解不等式()2222k x k k Z ππππ-+≤≤+∈,得()22233k x k k Z ππππ-+≤≤+∈, 因此,函数()y f x =的单调递增区间为2[2,2],33k k k Z ππππ-++∈; (2)02x π≤≤,663x πππ∴-≤-≤,所以,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,则()min 2sin 16f x π⎛⎫=-=- ⎪⎝⎭,()max 2sin 2sin 263f x πππ⎛⎫=-== ⎪⎝⎭因此,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为1-【点睛】本题考查三角函数的单调性与最值,考查平面数量积的坐标运算,解这类问题首先要利用三角三角恒等变换公式将三角函数解析式化简,并将角视为一个整体,利用正弦函数或余弦函数的基本性质求解,考查分析问题和解题问题的能力,属于中等题.29.(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,()62k x k Z ππ=+∈;(2)522a ≤<,3π.【解析】 【分析】(1)根据图像得A=2,利用412562T πππω=-=,求ω值,再利用6x π=时取到最大值可求φ,从而得到函数解析式,进而求得对称轴方程;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得72,666x πππ⎡⎤+∈⎢⎥⎣⎦,方程f (x )=2a ﹣3有两个不等实根转为f (x )的图象与直线y =2a ﹣3有两个不同的交点,从而可求得a 的取值范围,利用图像的性质可得12x x +的值. 【详解】(1)由图知,2,A =4156242=T ππππω=-=,解得ω=2,f(x)=2sin(2x+φ), 当6x π=时,函数取得最大值,可得2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,即sin 13πϕ⎛⎫+= ⎪⎝⎭,2,32k k Z ππϕπ+=+∈,解得2,6k k Z πϕπ=+∈ ,又(0,)2πϕ∈所以6π=ϕ, 故()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,令262x k πππ+=+则()62k x k Z ππ=+∈, 所以()f x 的对称轴方程为()62k x k Z ππ=+∈; (2)70,2,2666x x ππππ⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦,所以方程()23f x a =-有两个不等实根时,()y f x =的图象与直线23y a =-有两个不同的交点,可得1232,a ≤-<522a ∴≤<, 当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()12f x f x =,有122266x x πππ+++=,故123x x π+=.【点睛】本题考查由y =A sin (ωx +φ)的部分图象确定函数解析式,考查函数y =A sin (ωx +φ)的图象及性质的综合应用,属于中档题.30.(Ⅰ) (),,36ππππ⎡⎤-+∈⎢⎥⎣⎦k k k Z (Ⅱ) 62ππ≤≤m【解析】 【分析】(Ⅰ)利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数()f x 化为π2sin 216x ⎛⎫++ ⎪⎝⎭,利用正弦函数的单调性解不等式,可得到函数()f x 的递增区间;(Ⅱ) 要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,,可得7 2266m πππ≤+≤,从而可得结果.【详解】(Ⅰ)()22f x cos x =+πcos212sin 216x x x ⎛⎫=+=++ ⎪⎝⎭,由()222,262k x k k Z πππππ-≤+≤+∈得(),36k x k k Z ππππ-≤≤+∈所以,()f x 的单调递增区间是(),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(Ⅱ)由(Ⅰ)知()π2sin 216f x x ⎛⎫=++ ⎪⎝⎭.因为π,6x m ⎡⎤∈-⎢⎥⎣⎦,所以π2,2666x m ππ⎡⎤+∈-+⎢⎥⎣⎦.要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,. 所以72266m πππ≤+≤,即62m ππ≤≤. 【点睛】本题主要考查二倍角公式、辅助角公式的应用以及三角函数的单调性、三角函数的值域,属于中档题. 函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,2222k x k πππωϕπ-+≤+≤+求得增区间.。
三角函数型应用题(高一)1.如图:某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(RtAFHE, H是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,分别落在线段上.已知AB = 20米,AD = iOy/3米,iB ZBHE = 0.(1)试将污水净化管道的长度厶表示为&的函数,并写出定义域;(2)若sin&+cos0 = “,求此时管道的长度厶;(3)问:当&取何值时,污水净化效果最好?并求出此时管道的长度.n cEH =-^— FH = -^- cos& sin 〃『於由于込曲旳叭—<tan6^<V3 厶=』- +』- + ——-—— 3 6 3 cos & sin& sin&・cos&6 3⑵ sin& + cos& = "时,sin&cos0 = * 厶=20(血+ 1); 厶二亠+亠+ 」 ]0严& + COS& + 1) (3) cos& sin& sin& cos &二 sin& cos&sin 0 • cos 0 =-——- 0 G [―,—]设sm 〃 + cos& = f 贝g2 由于 6 3f = sin & + cos 0 = \/2 sin (& + —) G [^ + *, A /2] 所以 4 2在 2 内单调递减,石+10 =兰0 =兰2时 6,3时,厶的最大值20(石+ 1)米答:当一氏或一亍时所铺设的管道最短,为20(的+1)米.解:(1)于是当2.某居民小区内建有一块矩形草坪ABCD,佔二50米,BCG5羽米,为了便于居民平时休闲散步,该小区物业管理公司将在这块草坪内铺设三条小路OE、EF和OF,考虑到小区整体规划,要求O是AB的屮点,点£在边BC上,点F在边AD上,且ZEOF=90。
初中三角函数应用题10道(1)求步道AC 的长度(结果保留根号);(2)游客中心Q 在点A 的正东方向,步道AC 与步道BQ 交于点P 小明和爸爸分别从B 处和A 处同时出发去游客中心,小明跑步的速度是每分钟请计算说明爸爸的速度要达到每分钟多少米,他俩可同时到达游客中心.0.1)(参考数据:2 1.414≈,3 1.732≈,6 2.449≈)2.(2023春·重庆沙坪坝·九年级重庆八中校考阶段练习)下图是儿童游乐场里的一个娱乐项目转飞椅的简图,该设施上面有一个大圆盘(圆盘的半径是 3.5OA =米),圆盘离地面的高度1 6.5OO =米,且1OO ⊥地面l ,圆盘的圆周上等间距固定了一些长度相等的绳子,绳子的另一端系着椅子(将椅子看作一个点,比如图中的点B 和1B ),当旋转飞椅静止时绳子是竖直向下的,如图中的线段AB ,绳长为4.8米固定不变.当旋转飞椅启动时,圆盘开始旋转从而带动绳子和飞椅一起旋转,旋转速度越大,飞椅转得越高,当圆盘旋转速度达到最大时,飞椅也旋转到最高点,此时绳子与竖直方向所成的夹角为57α=︒.(参考数据:sin 570.84︒≈,cos570.55︒≈,tan 57 1.54︒≈)(1)求飞椅离地面的最大距离(结果保留一位小数);(2)根据有关部门要求,必须在娱乐设施周围安装安全围栏,而且任何时候围栏和飞椅的水平距离必须超过2米.已知该旋转飞椅左侧安装有围栏EF ,且EF l ⊥,19.8O E =米,请问圆盘最大旋转速度的设置是否合规?并说明理由.3.(2023春·重庆渝北·九年级校联考阶段练习)如图,某大楼的顶部竖有一块宣传牌AB ,小明在斜坡的坡脚D 处测得宣传牌底部B 的仰角为45︒,沿斜坡DE 向上走到E 处测得宣传牌顶部A 的仰角为31︒,已知斜坡DE 的坡度3:4,10DE =米,22DC =米,求宣传牌AB 的高度.(测角器的高度忽略不计,参考数据:sin 310.52︒≈,cos310.86︒≈,tan 310.6)︒≈。
三角函数测试题及答案一、选择题1. 已知角A的正弦值为\( \sin A = \frac{1}{2} \),则角A的余弦值\( \cos A \)是:A. \( \frac{1}{2} \)B. \( \frac{\sqrt{3}}{2} \)C. \( -\frac{1}{2} \)D. \( -\frac{\sqrt{3}}{2} \)2. 函数\( y = \sin x + \cos x \)的周期是:A. \( \pi \)B. \( 2\pi \)C. \( \pi/2 \)D. \( 4\pi \)3. 已知\( \cos x = \frac{1}{3} \),且\( x \)在第一象限,求\( \sin x \)的值:A. \( \frac{2\sqrt{2}}{3} \)B. \( \frac{2\sqrt{5}}{3} \)C. \( \frac{4\sqrt{2}}{9} \)D. \( \frac{4\sqrt{5}}{9} \)二、填空题4. 根据正弦定理,如果三角形ABC的边a和角A相对,且\( a = 5 \),\( \sin A = \frac{3}{5} \),则边b的长度为______(假设\( \sin B = \frac{4}{5} \))。
5. 已知\( \tan x = -1 \),求\( \sin 2x \)的值。
三、解答题6. 求以下列三角方程的解:\( \sin^2 x + \cos^2 x = 1 \)7. 证明:\( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \)。
四、应用题8. 在直角三角形ABC中,角C为直角,已知AB = 10,AC = 6,求BC 的长度。
答案:一、选择题1. C2. B3. B二、填空题4. 45. 1 或 -1三、解答题6. 该方程对所有\( x \)都成立,因为它是三角恒等式。
(完整版)高考三角函数经典解答题及答案1. 在△ABC 中,角 A、B、C 所对的边分别是 a、b、c,且 a²+c²-b²=(1) 求 sin²(2A+C)+cos²B 的值;(2) 若 b=2,求△ABC 面积的最大值。
解:(1) 由余弦定理:cosB=(a²+ c²- b²)/(2ac)=4/√115,得sinB=√(1-cos²B)=3√(23)/23。
由正弦定理sin²(2A+C)+cos²B=4sin²B+cos²B=13/23。
2. 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,且bcosC=3acosB-ccosB。
(I) 求 cosB 的值;(II) 若 BA·BC=2,且b=√2,求 a 和 c·b 的值。
解:(I) 由正弦定理得 a=2RsinA,b=2RsinB,c=2RsinC,则 2RsinBcosC=6RsinAcosB-2RsinCcosB,故sinBcosC=3sinAcosB-sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即 sin(B+C)=3sinAcosB,可得 sinA=3sinAcosB/sinB。
又sinA≠0,因此 cosB=1/3。
3. 已知向量 m=(sinB,1-cosB),向量 n=(2,k),且 m 与 n 所成角为π/3,其中 A、B、C 是△ABC 的内角。
(1) 求角 B 的大小;(2) 求 sinA+sinC 的取值范围。
解:(1) ∠m与∠n所成角为π/3,且 m·n=2sinB+ k(1-cosB)=2√3/2cosB+k√(1-cos²B),又 m·n=2cosB+k(1-cosB),解得 k=4/3。
三角函数练习题及答案一、填空题1.已知函数()f x 在R 上可导,对任意x 都有()()2sin f x f x x --=,当0x ≤时,()1f x '<-,若π2π()3cos 33f t f t t ⎛⎫⎛⎫≤-+- ⎪ ⎪⎝⎭⎝⎭,则实数t 的取值范围为_________2.已知正方体1111ABCD A B C D -,点E 是AB 中点,点F 为1CC 的中点,点P 为棱1DD 上一点,且满足//AP 平面1D EF ,则直线AP 与EF 所成角的余弦值为_______.3.已知函数()2sin()f x x ωφ=+(0>ω,||φπ<)的部分图象如图所示,()f x 的图象与y 轴的交点的坐标是(0,1),且关于点(,0)6π-对称,若()f x 在区间14(,)333ππ上单调,则ω的最大值是___________.4.若,,44x y ππ⎡⎤∈-⎢⎥⎣⎦,a ∈R ,且33sin 204sin cos 0x x a y y y a ⎧+-=⎨++=⎩,则()cos 2x y +=______(提示:sin y x =在,22x ππ⎡⎤∈-⎢⎥⎣⎦上严格增函数) 5.在ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,D 为边BC 上的一点,若6c =,32b =7sin BAD ∠=,2cos 4BAC ∠=,则AD =__________. 6.已知四棱锥P ABCD -的顶点均在球O 的球面上,底面ABCD 是正方形,23AB =120APB ∠=︒,当AD AP ⊥时,球O 的表面积为______.7.已知函数()sin 2sin 23f x x x a π⎛⎫=+++ ⎪⎝⎭同时满足下述性质:①若对于任意的()()()123123,0,,4,x x x f x f x f x π⎡⎤∈+⎢⎥⎣⎦恒成立;②236f a π⎛⎫- ⎪⎝⎭,则a 的值为_________.8.已知向量a ,b ,c 满足0a b c ++=,()()0a b a c -⋅-=,||9b c -=,则||||||a b c ++的最大值是___________.9.已知函数()sin cos f x x x =+,()sin cos g x x x =:①函数()f x 的图象关于点(,0)4π对称;②函数|()|g x 的最小正周期是2π;③把函数f (2x )图象上所有点向右平移8π个单位长度得到的函数图象的对称轴与函数y=()g x 图象的对称轴完全相同;④函数1()()y f x g x =--在R 上的最大值为2.则以上结论正确的序号为_______________ 10.已知ABC 为等边三角形,点G 是ABC 的重心.过点G 的直线l 与线段AB 交于点D ,与线段AC 交于点E .设AD AB λ=,AE AC μ=,则11λμ+=__________;ADE 与ABC 周长之比的取值范围为__________.二、单选题11.已知函数()21ln e 1xf x x -⎛⎫=+ ⎪+⎝⎭,a ,b ,c 分别为ABC 的内角A ,B ,C 所对的边,且222446,a b c ab +-=则下列不等式一定成立的是( ) A .()()sin cos f A f B ≤ B .f (cos A )≤f (cos B ) C .f (sin A )≥f (sin B )D .f (sin A )≥f (cos B )12.已知双曲线2221(0)y x b b -=>的左、右焦点分别为1F ,2F ,过点2F 作直线l 交双曲线的右支于A ,B 两点.若11||::3:3:2AB AF BF =,则双曲线的离心率为( )A B C .113D .1113.已知函数2()log f x x =,函数()g x 满足以下三点条件:①定义域为R ;②对任意x ∈R ,有()2()g x g x π+=;③当[0,]x π∈时,()sin g x x =.则函数()()y f x g x =-在区间[0,4]π上的零点个数为( )A .5B .6C .7D .814.已知O 是三角形ABC 的外心,若()22AC ABAB AO AC AO m AO AB AC⋅+⋅=,且sin sin B C +=,则实数m 的最大值为( )A .3B .35C .75D .3215.在三棱锥A BCD -中,2AB AD BC ===,CD =AC =3BD =,则三棱锥外接球的表面积为( ) A .927πB .9πC .1847πD .18π16.已知函数()()3log 911x f x x+=-,下列说法正确的是( )A .()f x 既不是奇函数也不是偶函数B .()f x 的图象与sin y x =有无数个交点C .()f x 的图象与2y =只有一个交点D .()()21f f -<-17.在三棱锥S ABC -中,侧棱SA ,SB ,SC 两两垂直,且2SA SB SC +==.设SA x =,该三棱锥的表面积为函数()y f x =,以下判断正确的是( ) A .()f x 为常数 B .()f x 有极小值 C .()f x 有极大值D .()f x 是单调函数18.高斯是世界四大数学家之一,一生成就极为丰硕,以他的名字“高斯”命名的成果达110个,属数学家中之最.对于高斯函数[]y x =,[]x 表示不超过实数x 的最大整数,如[]1.71=,[]1.22-=-,{}x 表示x 的非负纯小数,即{}[]x x x =-.若函数{}1log a y x x=-+(0a >且1a ≠)有且仅有3个零点,则实数a 的取值范围为( ) A .(]3,4B .()3,4C .[)3,4D .[]3,419.()sin()(0)f x x ωφφ=+>的部分图象如图所示,设P 是图象的最高点,A ,B 是图象与x 轴的交点,若tan 2APB ∠=-,则ω的值为( )A .4π B .3π C .2π D .π20.在锐角ABC 中,若cos cos sin sin 3sin A C B Ca c A+=,且3sin cos 2C C +=,则a b +的取值范围是( ) A .(6,23⎤⎦B .(0,43⎤⎦C .(23,43⎤⎦D .(6,43⎤⎦三、解答题21.如图,长方形ABCD 中,2,3AB BC ==,点,,E F G 分别在线段,,AB BC DA (含端点)上,E 为AB 中点,⊥EF EG ,设AEG θ∠=.(1)求角θ的取值范围;(2)求出EFG ∆周长l 关于角θ的函数解析式()f θ,并求EFG ∆周长l 的取值范围.22.已知函数()2sin 2cos 3f x x a x =+-.(1)当1a =时,求该函数的最大值;(2)是否存在实数a ,使得该函数在闭区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为1?若存在,求出对应a的值;若不存在,试说明理由.23.已知函数 2()sin 2cos 1f x x m x =--- [0,]2x π∈()1若()f x 的最小值为 - 3,求m 的值;()2当2m =时,若对任意 12,[0,]2x x π∈ 都有()()12124f x f x a -≤-恒成立,求实数a 的取值范围.24.已知向量a ,b 满足2sin 4a x x π⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,cos 4b x x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,函数()()f x a b x R =⋅∈.(1)求()f x 的单调区间;(2)已知数列()2*11224n n a n f n N ππ⎛⎫=-∈ ⎪⎝⎭,求{}n a 的前2n 项和2n S .25.在ABC ∆中,角,,A B C 的对边分别为,,a b c . 已知sin 2C =(1)若4a =,c =ABC ∆的面积;(2)若ABC ∆22213sin sin sin 16A B C +=,求c 的值.26.已知ABC ∆的三个内角A ,B ,C 的对边分别为a ,b ,c ,函数()()2sin cos sin f x x A x A =-+,且当512x π=时,()f x 取最大值. (1)若关于x 的方程()f x t =,0,2x π⎛⎫∈ ⎪⎝⎭有解,求实数t 的取值范围;(2)若5a =,且sin sin B C +=,求ABC ∆的面积. 27.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,已知sin tan 1cos BC B=-.(Ⅰ)求证:ABC ∆为等腰三角形;(Ⅱ)若ABC ∆是钝角三角形,且面积为24a ,求2b ac 的值.28.已知函数()()sin ,f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象如图所示:(1)求函数()f x 的解析式及其对称轴的方程;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,方程()23f x a =-有两个不等的实根12,x x ,求实数a 的取值范围,并求此时12x x +的值.29.已知向量33cos ,sin 22a x x ⎛⎫= ⎪⎝⎭,cos ,sin 22x x b ⎛⎫=- ⎪⎝⎭,且0,2x π⎡⎤∈⎢⎥⎣⎦(1)求a ·b 及||a b +;(2)若3()||2f x a b a b =⋅-+,求()f x 的最小值30.已知函数2()2cos 23cos f x x x x =+. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若()f x 在区间,6m π⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,求m 的取值范围.【参考答案】一、填空题1.π6∞⎛⎤- ⎥⎝⎦, 21163.114.1 5.46.28π7.0 8.3310+31039.②③④10. 3 21,32⎡⎢⎣⎦二、单选题 11.D 12.A 13.A 14.D 15.A 16.C 17.A 18.C 19.C 20.D 三、解答题21.(1)[,]63ππ(2)1sin cos ()sin cos f θθθθθ++=,[,]63ππθ∈,EFG ∆周长l 的取值范围为1)]【解析】(1)结合图像可得当点G 位于D 点时,角θ取最大值,点F 位于C 点时,BEF ∠取最大值,角θ取最小值,在直角三角形中求解即可. (2)在Rt ΔEAG 中,求出1cos EG θ=,在Rt ΔEBF 中,求得1sin EF θ=,在Rt ΔGEF 中,根据勾股定理得222FG EF EG =+,从而可得111()cos sin sin cos f θθθθθ=++,通分可得1sin cos ()sin cos f θθθθθ++=,令sin cos t θθ=+,借助三角函数的性质即可求解.【详解】(1)由题意知,当点G 位于D 点时,角θ取最大值,此时tan θ=02πθ<<,所以max 3πθ=当点F 位于C 点时,BEF ∠取最大值,角θ取最小值, 此时=3BEF π∠,所以min 236πππθ=-=故所求θ的取值集合为[,]63ππ(2)在Rt ΔEAG 中,cos AE EG θ=,1AE =,所以1cos EG θ=在Rt ΔEBF 中,cos cos()2BE BEF EF πθ∠=-=,1BE =,所以1sin EF θ= 在Rt ΔGEF 中,有勾股定理得222FG EF EG =+2222222211sin cos 1sin cos sin cos sin cos θθθθθθθθ+=+== 因为[,]63ππθ∈,所以sin 0,cos 0θθ,1sin cos FG θθ=所以111()cos sin sin cos f EG EF FG θθθθθ=++=++ 所以1sin cos ()sin cos f θθθθθ++=,[,]63ππθ∈令sin cos t θθ=+,则21sin cos 2t θθ-=所以22(1)211t l t t +==-- 因为[,]63ππθ∈,57[,]41212πππθ+∈,所以sin()4πθ+∈所以sin cos )4t πθθθ=+=+∈所以EFG ∆周长l 的取值范围为1)] 【点睛】本题考查了三角函数的在平面几何中的应用,主要考查了辅助角公式以及换元法求三角函数的值域,属于中档题.22.(1)1-;(2)存在,且2a =. 【解析】 【分析】(1)将1a =代入函数()y f x =的解析式,得出()()2cos 11f x x =---,由1cos 1x -≤≤结合二次函数的基本性质可得出该函数的最大值;(2)换元[]cos 0,1t x =∈,将问题转化为二次函数()222t at g t -+-=在区间[]0,1上的最大值为1,然后分0a ≤、01a <<和1a ≥三种情况讨论,利用二次函数的基本性质求出函数()222t at g t -+-=在区间[]0,1上最大值,进而求得实数a 的值.【详解】(1)当1a =时,()()22sin 2cos 3cos 11f x x x x =+-=---,1cos 1x -≤≤,当cos 1x =时,该函数取得最大值,即()max 1f x =-;(2)()22sin 2cos 3cos 2cos 2x a x x a x f x =+-=-+-,当0,2x π⎡⎤∈⎢⎥⎣⎦时,设[]cos 0,1t x =∈,设()222t at g t -+-=,[]0,1t ∈,二次函数()y g t =的图象开口向下,对称轴为直线t a =.当0a ≤时,函数()y g t =在[]0,1上单调递减,所以0=t 时,()()max 021g t g ==-≠,0a ∴≤不符合题意;当1a ≥时,函数()y g t =在[]0,1上单调递增,所以1t =时,()()max 1231g t g a ==-=,2a ∴=满足1a ≥;当01a <<时,函数()y g t =在[]0,a 上单调递增,在(],1a 上单调递减, ∴当t a =时,()()2max 21g t g a a ==-=,a ∴=01a <<.综上,存在2a =符合题意. 【点睛】本题考查二次型余弦函数的最值,将问题转化为二次函数的最值来求解是解题的关键,第二问要对二次函数图象的对称轴与区间的位置关系进行分类讨论,结合二次函数的单调性求解,考查分类讨论思想的应用,属于中等题. 23.(1)1m =;(2)13[,)8a ∈+∞【解析】 【分析】(1)将函数化为2()cos 2cos 2f x x m x =--,设cos [0,1]t x =∈,将函数转化为二次函数,利用二次函数在给定的闭区间上的最值问题的解法求解.(2) 对任意 12,[0,]2x x π∈ 都有()()12124f x f x a -≤-恒成立, 等价于12max1()()24f x f x a -≤-,然后求出函数()f x 的最值即可解决.【详解】(1)2()cos 2cos 2f x x m x =--,[0,]2x π∈令 cos [0,1]t x =∈, 设222()22()2g t t mt t m m =--=---, ①0m <,则min g(0)2()3g t ==-≠-,②01m ≤≤,则2min )3(2t m g =--=-,∴1m =± ∴1m =③1m ,则min g(1)21()3g m t ==--=-,∴1m =.(舍) 综上所述:1m =.(2)对任意12,[0,]2x x π∈都有()()12124f x f x a -≤-恒成立,等价于12max1()()24f x f x a -≤-,2m =,∴2g()(2)6t t =--,[0,1]t ∈max ()g(0)2f x ==-,min ()g(1)5f x ==-12max ()(25)()3f x f x =---=-∴ 1234a -≥,∴ 138a ≥, 综上所述:13[,)8a ∈+∞.【点睛】本题考查三角函数中的二次“型”的最值问题,和双参恒成立问题,属于中档题. 24.(1)单调增区间为7,1212k k ππππ⎡⎤--⎢⎥⎣⎦,k Z ∈,单调减区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2))22n n +【解析】 【分析】(1)由向量数量积的坐标运算可得()2sin 222sin 23f x a b x x x π⎛⎫=⋅=-=+⎪⎝⎭, 再利用三角函数单调区间的求法即可得解;(2)由题意可得()()22222221234212n S n n ⎤=-+-+⋅⋅⋅+--⎦,又()()2221241n n n --=-+,则)2442434n S n n =--⨯-⨯-⋅⋅⋅-+,再利用等差数列求和公式即可得解.【详解】解:(1)向量a ,b 满足2sin 4a x x π⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,cos 4b x x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,函数()2sin 222sin 23f x a b x x x π⎛⎫=⋅=-=+⎪⎝⎭, 由2222232k x k πππππ-≤+≤+,可得71212k x k ππππ-≤≤-,k Z ∈, 解得()f x 的单调增区间为7,1212k k ππππ⎡⎤--⎢⎥⎣⎦,k Z ∈; 单调减区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈.(2)因为22112sin 2244n n a n f n n ππππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,所以()()22222221234212n S n n ⎤=-+-+⋅⋅⋅+--⎦, 又()()2221241n n n --=-+,)2442434n S n n --⨯-⨯-⋅⋅⋅-+,所以())2234122n n n S n n --+==+.【点睛】本题考查了三角函数单调区间的求法及数列中捆绑求和,属中档题.25.(1)2)c =【解析】 【分析】(1)先根据sin2C =sin C 与cos C ,再利用余弦定理求出b 边,最后利用1sin 2ABC S ab C ∆=求出答案;(2)利用正弦定理将等式化为变得关系,再利用余弦定理化为2c 与ab 的关系式,再结合面积求出c 的值. 【详解】解:(1)因为sin2C =所以2101cos 12sin122164C C =-=-⨯=-.又()0,C π∈,所以sin C =.因为4a =,c =2222cos c a b ab C =+-, 所以214016244b b ⎛⎫=+-⨯⨯- ⎪⎝⎭,解得4b =,所以11sin 4422ABC S ab C ∆==⨯⨯= (2)因为22213sin sin sin 16A B C +=,由正弦定理,得2221316a b c +=. 又2222cos a b ab C c +-=,所以283c ab =.又1sin 2ABC S ab C ∆=,得18ab =,所以248c =,所以c = 【点睛】本题考查正余弦定理解三角形,属于基础题.26.(1)(;(2 【解析】 【分析】(1)利用两角和差的正弦公式整理()f x 可得:()sin(2)A f x x =-,再利用已知可得:522122A k πππ⨯-=+(k Z ∈),结合已知可得:3A π=,求得:(0,)2x π∈时,sin(2)13x π<-≤,问题得解.(2)利用正弦定理可得:sin sin )+=+B C b c ,结合sin sin B C +=可得:8+=b c ,对a 边利用余弦定理可得:2222cos a b c bc A =+-,结合已知整理得:13=bc ,再利用三角形面积公式计算得解.【详解】解:(1)()2sin()cos sin f x x A x A =-+2sin()cos sin[()]x A x x x A =-+--2sin()cos sin cos()cos sin()x A x x x A x x A =-+---sin cos()cos sin()x x A x x A =-+-sin(2)x A =-.因为()f x 在512x π=处取得最大值, 所以522122A k πππ⨯-=+,k Z ∈, 即2,3A k k Z ππ=-+∈. 因为(0,)A π∈,所以3A π=, 所以()sin(2)3f x x π=-. 因为(0,)2x π∈,所以22(,)333x πππ-∈-所以sin(2)13x π<-≤,因为关于x 的方程()f x t =有解,所以t 的取值范围为(. (2)因为5a =,3A π=,由正弦定理sin sin sin b c a B C A ==于是sin sin )+=+B C b c .又sin sin B C +=,所以8+=b c . 由余弦定理得:2222cos a b c bc A =+-,整理得:2225=+-b c bc ,即225()3643=+-=-b c bc bc ,所以13=bc ,所以1sin 2ABC S bc A ∆== 【点睛】本题主要考查了两角和、差的正弦公式应用,还考查了三角函数的性质及方程与函数的关系,还考查了正弦定理、余弦定理的应用及三角形面积公式,考查计算能力及转化能力,属于中档题.27.(Ⅰ)证明见解析;(Ⅱ)2【解析】【分析】(Ⅰ)将正切化弦,结合两角和差正弦公式可求得()sin sin C B C =+,根据三角形内角和可整理为sin sin C A =,则由正弦定理可得到结论;(Ⅱ)利用三角形面积公式可求得1sin 2B =;根据三角形为钝角三角形且(Ⅰ)中的c a =,可知B 为钝角,求得cos B ;利用余弦定理可构造方程求得,a b 之间关系,从而得到所求结果.【详解】 (Ⅰ)由sin tan 1cos B C B =-得:sin sin cos 1cos C B C B=- 则:()sin sin cos cos sin sin C B C B C B C =+=+A B C π++= ()()sin sin sin B C A A π∴+=-= sin sin C A ∴=由正弦定理可知:c a =ABC ∆∴为等腰三角形 (Ⅱ)由题意得:2211sin sin 224a S ac B a B ===,解得:1sin 2B =ABC ∆为钝角三角形,且a c = B ∴为钝角 cos B ∴=由余弦定理得:(2222222cos 22b a c ac B a a =+-==+ 2222b b ac a∴==【点睛】本题考查三角形形状的求解、利用余弦定理、三角形面积公式求解三角形边之间的关系问题,涉及到两角和差正弦公式、三角形内角和、诱导公式、同角三角函数值的求解等知识.28.(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,()62k x k Z ππ=+∈;(2)522a ≤<,3π. 【解析】【分析】(1)根据图像得A=2,利用412562T πππω=-=,求ω值,再利用6x π=时取到最大值可求φ,从而得到函数解析式,进而求得对称轴方程;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得72,666x πππ⎡⎤+∈⎢⎥⎣⎦,方程f (x )=2a ﹣3有两个不等实根转为f (x )的图象与直线y =2a ﹣3有两个不同的交点,从而可求得a 的取值范围,利用图像的性质可得12x x +的值.【详解】(1)由图知,2,A =4156242=T ππππω=-=,解得ω=2,f(x)=2sin(2x+φ), 当6x π=时,函数取得最大值,可得2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,即sin 13πϕ⎛⎫+= ⎪⎝⎭, 2,32k k Z ππϕπ+=+∈,解得2,6k k Z πϕπ=+∈ ,又(0,)2πϕ∈所以6π=ϕ, 故()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,令262x k πππ+=+则()62k x k Z ππ=+∈, 所以()f x 的对称轴方程为()62k x k Z ππ=+∈; (2)70,2,2666x x ππππ⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦, 所以方程()23f x a =-有两个不等实根时,()y f x =的图象与直线23y a =-有两个不同的交点,可得1232,a ≤-<522a ∴≤<, 当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()12f x f x =,有122266x x πππ+++=, 故123x x π+=.【点睛】 本题考查由y =A sin (ωx +φ)的部分图象确定函数解析式,考查函数y =A sin (ωx +φ)的图象及性质的综合应用,属于中档题.29.(1)见解析;(2)178-. 【解析】【分析】(1)运用向量数量积的坐标表示,求出a ·b ;运用平面向量的坐标运算公式求出a b +,然后求出模.(2)根据上(1)求出函数()f x 的解析式,配方,利用二次函数的性质求出最小值.【详解】(1)33cos cos sin sin cos22222x x a b x x x ⋅=⋅-⋅=cos a b ⎛+= ⎝=∵0,2x π⎡⎤∈⎢⎥⎣⎦∴cos 0x ∴2cos a b x += (2)()cos23cos f x x x =- 223172cos 13cos 2cos 48x x x ⎛⎫=--=-- ⎪⎝⎭ ∵0,2x π⎡⎤∈⎢⎥⎣⎦∴0cos 1x ∴()min 317cos 48x f x ==- 【点睛】本题考查了平面向量数量积的坐标表示,以及平面向量的坐标加法运算公式.重点是二次函数求最小值问题.30.(Ⅰ) (),,36ππππ⎡⎤-+∈⎢⎥⎣⎦k k k Z (Ⅱ) 62ππ≤≤m 【解析】【分析】(Ⅰ)利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数()f x 化为π2sin 216x ⎛⎫++ ⎪⎝⎭,利用正弦函数的单调性解不等式,可得到函数()f x 的递增区间; (Ⅱ) 要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,,可得7 2266m πππ≤+≤,从而可得结果. 【详解】(Ⅰ)()22f x cos x =+πcos212sin 216x x x ⎛⎫=+=++ ⎪⎝⎭, 由()222,262k x k k Z πππππ-≤+≤+∈得(),36k x k k Z ππππ-≤≤+∈所以,()f x 的单调递增区间是(),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (Ⅱ)由(Ⅰ)知()π2sin 216f x x ⎛⎫=++ ⎪⎝⎭. 因为π,6x m ⎡⎤∈-⎢⎥⎣⎦,所以π2,2666x m ππ⎡⎤+∈-+⎢⎥⎣⎦. 要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,. 所以72266m πππ≤+≤,即62m ππ≤≤. 【点睛】本题主要考查二倍角公式、辅助角公式的应用以及三角函数的单调性、三角函数的值域,属于中档题. 函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,2222k x k πππωϕπ-+≤+≤+求得增区间.。
三角函数的应用题及解答三角函数是数学中一个非常重要的分支,其应用广泛且深入。
本文将列举几个三角函数的应用题,并给出详细的解答过程。
1. 问题描述:某建筑物高度为100米,离该建筑物水平面的观察角为30°,求观察点到建筑物底部的距离。
解答过程:根据三角函数的定义,正切函数可以表示观察点到建筑物底部的距离与建筑物高度之间的关系。
设观察点到建筑物底部的距离为x,则有tan(30°) = 100/x。
解以上方程,可得观察点到建筑物底部的距离x = 100/tan(30°) = 100/√3。
因此,观察点到建筑物底部的距离约为57.74米。
2. 问题描述:一辆汽车以40km/h的速度直线行驶,车头的倾斜角度为15°,求车头离直线道路的垂直距离。
解答过程:根据三角函数的定义,正切函数可以表示车头离直线道路的垂直距离与车速和倾斜角度之间的关系。
设车头离直线道路的垂直距离为y,则有tan(15°) = y/40。
解以上方程,可得车头离直线道路的垂直距离y = 40*tan(15°)。
因此,车头离直线道路的垂直距离约为10.93米。
3. 问题描述:一个航天器发射到外太空,离地球表面的垂直高度为500公里,航天器的视线与地球表面的夹角为60°,求航天器的真实高度。
解答过程:根据三角函数的定义,正弦函数可以表示真实高度与垂直高度之间的关系。
设航天器的真实高度为h,则有sin(60°) = h/500。
解以上方程,可得航天器的真实高度h = 500*sin(60°)。
因此,航天器的真实高度约为433.01公里。
通过以上例题,我们可以看到三角函数在实际问题中的应用。
无论是建筑物的观察角、汽车的倾斜角度还是航天器的视线角度,三角函数都能提供准确的数学描述和解答。
总结起来,三角函数是数学中一项重要而实用的工具,通过对角度和长度之间的关系的研究和运用,我们可以解决各种实际问题。
三角函数的应用题第一阶梯[例1]如图,AD∥BC,AC⊥BC,若AD=3,DC=5,且∠B=30°,求AB 的长。
解:∵∠DAC=90° 由勾股定理,有 CD 2=AD 2+AC 2 ∵AD=3,DC=5 ∴AC=4 ∵∠B=30° ∴AB=2AC ∴AB=8[例2]如图,△ABC 中,∠B=90°,D 是BC 上一点,且AD=DC ,若tg ∠DAC=41,求tg ∠BAD 。
探索:已知tg∠DAC 是否在直角三角形中?如果不在怎么办?要求∠BAD 的正切值需要满足怎样的条件?点拨:由于已知中的tg ∠DAC 不在直角三角形中,所以需要转化到直角三角形中,即可地D 点作AC 的垂线。
又要求∠BAD 的正切值应已知Rt△BAD 的三边长,或两条直角边AB 、BD 的长,根据已知可知没有提 供边长的条件,所以要充分利用已知中的tg∠DAC 的条件。
由于AD=DC ,即∠C=∠DAC,这时也可 把正切值直接移到Rt△ABC 中。
解答:过D 点作DE⊥AC 于E ,41DAC =∠tg 且AE DE DAC =∠tg设DE=k ,则AE=4k∵AD=DC,∴∠DAC=∠C,AE=EC ∴AC=8k∵41==BC AB tgC设AB=m ,BC=4m 由勾股定理,有AB 2+BC 2=AC 2∴k m 17178=k BC 171732=∴由勾股定理,有CD 2=DE 2+EC 2k CD 17=∴ k BD 171715=∴由正切定理,有.815=∠∴=∠BAD tg AB DBBAD tg[例3]如图,四边形ABCD 中,∠D=90°,AD=3,DC=4,AB=13,BC=12,求sinB 。
探索:已知条件提供的图形是什么形?其中∠D=90°,AD=3,DC=4,可提供什么知识?求sinB 应放在什么图形中。
点拨:因已知是四边形所以不能求解,由于有∠D=90°,AD=3,DC=4,这样可求AC=5,又因有AB=13,BC=12,所以可证△ABC 是Rt△,因此可求sinB 。
解:连结AC ∵∠D=90° 由勾股定理,有AC 2=CD 2+CD 2∵AD=3,CD=4,∴AC=5∵AB=13,BC=12∴132=122+52∴∠ACB=90° 由正弦定义,有135sin sin =∴=B AB AC B第二阶梯[例1]如图,在河的对岸有水塔AB ,今在C 处测得塔顶A 的仰角为30°,前进20米后到D 处,又测得A 的仰角为45°,求塔高AB 。
探索:在河对岸的塔能否直接测得它的高度?为什么在C 、D 两处测得仰角的含义是什么?怎样用CD 的长?点拨:要直接隔岸测得塔高是不可能的,也不可能直接过河去测量,这时只能考虑如何利用两个仰角及CD 长,由于塔身与地面垂直,且C 、D 、B 三点共线这时可以构成一个直角三角形,且有∠ACB=30°,∠ADB=45°,这时就可以借助解直角三角形的知识求解了。
解:根据仰角的定义,有 ∠ACB=30°,∠ADB=45°又AB⊥CB 于B 。
∴∠DAB=45°∴DB=AB 设AB=x由正切定义,有20)13(,20)13(.=-∴=-=∴=∠=∠x CD x CD CBABACB tg DB AB ADB tg 及解得)13(10+=x 即塔高)13(10+=AB答:塔高AB 为)13(10+米。
第三阶梯[例1]已知等腰三角形的顶点为A ,底边为a ,求它的周长及面积。
探索:在现在的已知条件下能否求得周长与面积?如果不能求解是因为什么原因造成的,这时底边为a ,能否确定腰长及各个内角呢?首先能否确定三角形是直角三角形呢如果不是直角三角形怎么办? 点拨:由于没有相应的图形,所以应先确定图形,若是等腰三角形,应先假设这个三角形是斜三角形,再根据条件先转化为直角三角形,再求相应的量。
设已知△ABC 中,AB=AC ,BC=a (如图) 解:过A 点作:AD⊥BC 竽D 点,设∠BAD=α ∵AB=AC∴BD=CD=α=∠=∠CAD BAD a,2根据正弦定义,有αααsin 2.sin 2sin 2sin aAC aaAB ABBDBAD ====∠同理即 ∴AB+AC+BC=a+αsin a由余切定义,有DB AD BAD ctg =∠∴AD=αctg a⋅2∵AD BC S ABC ⋅=∆21∴αctg a S ABC⋅=∆42注意:也可设∠BAC=α,则∠BAD=2α。
[例2]有一块矩形纸片ABCD ,若把它对折,B 点落在AD 上F 处,如果DC=6cm ,且∠DFC=2θ,∠ECB=θ,求折痕CE 长。
探索:根据已知条件图形对折,B 点落在F 点的含义是什么?它会有怎样的结论?这时又可以形成什么图形关系?另知DC 的长能否求折痕呢?又根据条件我们还可以确定什么?这时又可形成怎样的问题?点拨:由于F 点的形成是因对折B 点而形成的,因此可有△EBC≌△FEC,同时又可有△AEF∽△CDF。
根据已知条件∠DFC=2θ及∠ECB=θ,这时就可以形成与角有关的图形。
进而可求CE 的长。
解:根据已知条件,有 △EBC≌△FEC∴EB=EF ,BC=FC ,∠ECB=∠ECF∵∠CFD=2θ,且∠ECB=θ ∴∠ECF=θ 由余弦定义,有 CF CD ADC =∠cos∵∠ADC=90°-2θ∴θ2sin CD CF =由余弦定义,有CE CF FCE =∠∴cosθθcos 2sin 6=∴CE[例3]如图6-5-5,某船向正东方向航行,在A 处望见灯塔C 在东北方向,前进到B 处望见灯塔C 在北偏西30°,又航行了半小时,望见灯塔C 恰在西北方向,若船速为每小时20海里,求A 、D 两点间的距离,(结果不取近似值)图6-5-5思路分析:易知ΔACD 是等腰直角三角形,要求AD ,不能利用ΔACD 直接求得,由于,102120=⨯=BD 图形中再没有其他的直角三角形,必须构造直角三角形,作CE⊥AD 于E ,只要求出CE ,就可能以求出AD ,借助两个直角三角形(ΔBCE 和ΔDCE )中,BE 、DE 与BD 的关系以及BE 与CE 之间的关系就可求CE 。
[解]作CE⊥AD,垂足为E ,设CE=x 海里 ∵∠CAD=∠CDA=90°-45°=45°,∴CE=AE=DE=x 。
在RtΔBCE 中,∠CBE=90°-30°=60°,∴,3360cot x CE BE =•=由DE-BE=BD 得,212033⨯=-x x , 解得3515+=x 。
∴)x AD 海里)(31030(2+==。
答:A 、D 两点间的距离为)31030(+海里。
第四阶梯[例1]有一段防洪大堤,其横断面为梯形ABCD ,AB∥DC,斜坡AD 的坡度i 1=1:1.2,斜坡BC 的坡度i 2=1:0.8,大坝顶宽DC 为6米,为了增强抗洪能力,现将大堤加高,加高部分的横断面为梯形DCFE ,EF∥DC,点E 、F 分别在AD 、BC 的延长线上(如图6-5-6),当新大坝顶宽EF 为3.8米时,大坝加高了几米?图6-5-6思路分析:本题实质上是梯形CDEF 的有关计算问题,注意到大堤加高但坡度不变,即DE 、CF 的坡度公别为1:1.2,1:0.8,又DC=6米,EF=3.8米,要求大坝加高的高度,分别作FH⊥DC 于G,FH⊥DC 于H,利用RtΔDEG, RtΔCFH 和矩形EFHG 可以求出新大坝的高度. [解]作EG⊥DC,FH⊥DC,垂足分别为G,H,则四边形EFHG 是矩形,GH=EF=3.8米. 设大坝加高x 米,则EG=FH=x 米。
∵i 1=1:1.2, i 2=1:0.8,∴.8.01,2.11==CH FH DG EG ∴.8.0,2.1x CH x DG ==由DG+GH+CH=6,得 1.2x+3.8+0.8=6.解得 x=1.1 答:大坝加高了1.1米。
[例2]如图6-5-7,台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形式气旋风暴,有极强的破坏力,据气象观测,距沿海某城市A 的正南方向220千米B 处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30°方向往C 移动,且台风中心风力不变,若城市所受风力达到或超过四级,则称为受台风影响。
(1)该城市是否会受到这次台风的影响?请说明理由。
(2)若会受到台风的影响,那么台风影响该城市的持续时间有多长? (3)该城市受到台风影响的最大风力为几级?图6-5-7思路分析:(1)作AD⊥BC 于D ,达到或超过四级风力所影响的范围是距台风中心不超过(12-4)×20=160千米的范围内,比较AD 与160的大小关系,就可以确定该城市是否受这次台风的影响。
(2)当A 点距台风中心不超过160千米时,将受到台风的影响,如图6-5-7,AE=AF=160千米,当台风中心从E 处移到F 处时,该城市都会受到这次台风的影响,利用勾股定理计算出EF 的长度,就可以计算出这次台风影响该城市的持续时间。
(3)显然当台风中心位于D 处时,A 市所受这次台风的风力最大。
[解](1)如图6-5-7,由点A 作AD⊥BC,垂足为D 。
∵AB=220,∠B=30°,∴)(11021千米==AB AD 。
由题意,当A 点距台风中心不超过160千米时,将会受到台风的影响,由于AD=110<160,所以A 市会受到这次台风的影响.(2)在BD 及BD 的延长线上分别取E,F 两点,使AE=AF=160千米.由于当A 点距台风中心不超过160千米时,将会受到台风的影响. 所以当台风中心从E 点移到F 点时,该城市都会到这次台风的影响.在RtΔADE 中,由勾股定理,得5301101602222=-=-=AD AE DE∴15602==DE EF (千米).∵该台风中心以15千米/时的速度移动,∴这次台风影响该城市的持续时间154151560=(小时). (3)当台风中心位于D 处时,A 市所受这次台风的风力最大,其最大风马牛不相及力为)(5.62011012级=-四、【课后练习】A 组1.如图:6-5-8,一铁路路基的横断面为等腰梯形,根据图示数据计算路基的下底宽AB=____。
2.如图6-5-9,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长度至少需要 _______米(精确到0.1米)图6-5-8图6-5-93.如图6-5-10,在高离铁塔150米的A 处,用测角仪测得塔顶的仰角为30°,已知测角仪高AD=1.52米,则塔高BE=_______(精确到0.1米)图6-5-10图6-5-114.某防洪堤坝的横断面是梯形,已知背水坡的坡长为60米,坡角为30°,则坝高为_______ 米。