当前位置:文档之家› 斜顶设计规范

斜顶设计规范

斜顶设计规范
斜顶设计规范

斜管沉淀池设计说明书

斜管沉淀池设计说明书 设计条件:用水量15000nVd 进水悬浮物浓度280mg/L 污泥含水量% 出水悬浮物浓度30 mg/L 设计参数:沉淀池个数n=4 沉淀池表面负荷:q=2.4m2 3/ (vm? h) 斜管孔径为100mm 斜管长1.0m 斜管水平倾角为60° 设计计算: 1.沉淀池表面积 用水量Q=15000m 3/d=625m3/h=0.174m3/s 沉淀池数n=4 表面负荷q°=2.4m3/ (ni*h ) Q = 625 A= =71.54m2 2 沉淀池平面尺寸 a = . A= . 71.54 =8.45m,取8.5m 3 池内停留时间 斜管区上部清水层高度h2=1.0m 斜管的自身垂直高度h3=1.0m

nq0* 0.91 4* 2.4* 0.91

t = (h 2 h 3)*60 =(1 1)*60 =50min q 2.4 4. 污泥部分所需容积 污泥储存时间T=24h 进水悬浮物浓度 C 1=280mg/L= t/m 3 出水悬浮物浓度G=30 mg/L 二t/m 3 污泥密度丫 =1t/m 3 污泥含水率p o =% 5. 污泥斗容积 在底部设方形的集泥斗,上面积边长为 a i =8.5m,下面积边长取 a 2=1.0m,斜坡度为50 h 5=(t 专""■ =(T 2)n =4.47m ,取 4.5m V 1= (2a 12+2aa 2+2a 22)= 45 ++212)=122.63m 3 6 则污泥斗的容积为 V 1=122.63m 3 V 1>V 可以满足储存污泥要求 6. 沉淀池的总高度 沉淀池超高h 1=0.3m 沉淀池底部缓冲层h 4=1.0m H=h 1 +h 2 +h 3+h 4+h 5=++++=7.8m 7. 进水流入槽、布水孔设计 3 Q(G C 2)T 625 (0.28 10 V = (1 o )n 1 (1-0.975 4 °.°3 10 彳)24 37.5m 3

几种常见形式斜拉桥的特点浅析及设计计算

几种常见形式斜拉桥的特点浅析及设计计算 姓名:XX 学号:X0X0X0XX 摘要:斜拉桥的主要形式有以下几种: 1)双塔三跨式;2)独塔双跨式;3)斜塔但跨式;4)三塔四跨式;5)多塔多跨式等。这些斜拉桥形式有各自的适用范围,应按工程具体情况选用适当的形式运用。 关键词:斜拉桥;跨径;适用条件;跨径设计;分孔尺寸 1 引言 斜拉桥是一种用斜拉索悬吊桥面的桥梁。最早的这种桥梁,其承重索是用藤罗或竹材编制而成。它们可以说是现代斜拉桥的雏形。斜拉桥的发展,有着一段十分曲折而漫长的历程。18世纪下半叶,在西方的法国、德国、英国等国家都曾修建过一些用铁链或钢拉杆建成的斜拉桥。可是由于当时对桥梁结构的力学理论缺乏认识,拉索材料的强度不足,致使塌桥事故时有发生。如德国萨尔河桥(1824)在建成第二年,就在一次有246人举行的火炬游行人群聚集桥上时,桥突然坍塌而酿成50 人丧生的严重惨剧。因此在相当长的一段时间内,斜拉桥这一桥型就销声匿迹了。 直至第二次世界大战后,在重建欧洲的年月中,为了寻求既经济又建造便捷的桥型,使几乎被遗忘的斜拉桥重新被重视起来。世界上第一座现代公路斜拉桥是1955年在瑞典建成的,主跨为182.6m的斯特罗姆海峡钢斜拉桥。近年来斜拉桥在国内外得到了迅速发展,目前已建成跨度最大的是中国苏通长江公路大桥(1088m)。[1] 2 各形式斜拉桥的特点分析 斜拉桥的孔径布臵主要可以分为双塔三跨式、独塔双跨式和多塔多跨式等三种形式。在特殊情况下,斜拉桥也可以布臵成独塔单跨式或者混合式。下面就这几种形式的特点进行简要的分析。 双塔三跨式(图一)是一种最常见的斜拉桥孔径布臵形式。双塔三跨式斜拉桥通常布臵

沉淀池设计计算

沉淀池 沉淀池是利用重力沉降作用将密度比水大的悬浮颗粒从水中去除的处理构筑物,是废水处理中应用最广泛的处理单元之一,可用于废水的处理、生物处理的后处理以及深度处理。在沉砂池应用沉淀原理可以去除水中的无机杂质,在初沉池应用沉淀原理可以去除水中的悬浮物和其他固体物,在二沉池应用沉淀原理可以去除生物处理出水中的活性污泥,在浓缩池应用沉淀原理分离污泥中的水分、使污泥得到浓缩,在深度处理领域对二沉池出水加絮凝剂混凝反应后应用沉淀原理可以去除水中的悬浮物。 沉淀池包括进水区、沉淀区、缓冲区、污泥区和出水区五个部分。进水区和出水区的作用是使水流均匀地流过沉淀池,避免短流和减少紊流对沉淀产生的不利影响,同时减少死水区、提高沉淀池的容积利用率;沉淀区也称澄清区,即沉淀池的工作区,是沉淀颗粒与废水分离的区域;污泥区是污泥贮存、浓缩和排出的区域;缓冲区则是分隔沉淀区和污泥区的水层区域,保证已经沉淀的颗粒不因水流搅动而再行浮起。 沉淀池的原理 沉淀池是利用水流中悬浮杂质颗粒向下沉淀速度大于水流向卜流动速度、或向下沉淀时间小于水流流出沉淀池的时间时能与水流分离的原理实现水的净化。 理想沉淀池的处理效率只与表面负荷有关,即与沉淀池的表面积有关,而与沉淀池的深度无关,池深只与污泥贮存的时间和数量及防止污泥受到冲刷等因素有关。而在实际连续运行的沉淀池中,由于水流从出水堰顶溢流会带来水流的上升流速,因此沉淀速度小于上升流速的颗粒会随水流走,沉淀速度等于卜-升流速的颗粒会悬浮在池中,只有沉淀速度大于上升流速的颗粒才会在池中沉淀下去。而沉淀颗粒在沉淀池中沉淀到池底的时间与水流在沉淀池的水力停留时间有关,即与池体的深度有关。 理论上讲,池体越浅,颗粒越容易到达池底,这正是斜管或斜板沉淀池等浅层沉淀池的理论依据所在。为了使沉淀池中略大于上升流速的颗粒沉淀下去和防止已沉淀下去的污泥受到进水水流的扰动而重新浮起,因而在沉淀区和污泥贮存区之间留有缓冲区,使这些沉淀池中略大于上升流速的颗粒或重新浮起的颗粒之间相互接触后,再次沉淀下去。 用沉淀池的类型 按水流方向划分,沉淀池可分为平流式、辐流式和竖流式三种,还有根据“浅层理论”发展出来的斜板(管)沉淀池。各自的优缺点和适用范围见表3—3。

沈阳市公和斜拉桥施工图设计说明书

沈阳市公和斜拉桥施工图设计说明书圆砾14.00,20.30m,圆砾含土8.80,13.10m,其下为砂砾岩(泥质胶结,强风化,沈阳市公和斜拉桥施工图设计说明书呈土状)。 地下水位埋深12m左右 沈阳市公和斜拉桥位于沈阳市老道口,横跨沈阳站站场,现受沈阳市快速干不存在液化土层 道系统工程建设指挥部的委托,由沈阳市市政工程设计研究院与大连理工大学土地震基本烈度为VII度 建勘察设计研究院联合设计,以大连理工大学土建勘察设计研究院为主设计(设场地标准冻深为1.20m 计责任单位)((见设计委托书)。月平均气温:1月,12?,8月24.6?, 极端温度:,30.6?和38.3? 一、设计依据 四、设计规范 1(《沈阳市快速干道系统工程指挥部第七次会议纪要》,代设计委托书; 2(《沈阳市公和桥主桥岩土工程勘察报告》; 1( 城市桥梁设计规范准则 3(沈阳市规划设计研究院提供的‘东西快速干道’规划设计及道路红线图; 2( 公路桥涵设计通用规范(JTJ021,89) 4(经市领导审定的公和桥方案图; 3( 公路桥涵地基与基础设计规范 (JTJ024,85) 5(沈阳市城乡建设委员会‘沈阳建发[1997]30号文件。 4( 公路钢筋混凝土及预应力混凝土桥涵设计规范(JTJ023,85)

5( 公路工程抗震设计规范(JTJ004,89) 二、设计标准 6( 公路斜拉桥设计规 范(试行1996.12.1) 1.设计荷载: 7( 施工规范:现行公路桥涵施工技术规范行车道:设计荷载汽,20,验算荷载挂,100 2人行道:3.5KN/m 五、桥梁总体布置 2 非机动车道:4.0KN/m,汽,10验算 公和斜拉桥2.桥面宽度桥为单索面独塔斜拉桥,跨径为114m+120m,桥全长236m,建筑 222桥全宽32m,双向六车道上层为755m 面积,下层为2242 m,共计为9794 m。桥梁纵坡为双向2.5%,竖 曲线半径为3000m,桥梁横向宽度为32米,横坡1%,上层为车行道及人行 道,双侧人行道各宽1.8m 下层非机动车道宽4.5m 下层为非机动车道,索塔处桥面中心线标高为 57.863m(黄海高程),塔高桥面以 桥面横向布置(半幅): 上为69.007m。 , 1.85m人行道+0.5m路缘+11.25m(33.75)车行道+0.5路缘+0.2m 护栏 +3.4m/2索塔=32m/2 六、建筑材料 3.设计时速:80Km/h 4.基本风压:700Pa 1.混凝土:箱梁及主塔为50#砼,墩身为50#砼,承台及桩 基为30#砼。 5(设计地震烈度:7度,按8度设防 2.钢筋:采用I级及II级钢筋,应符合国家标准GB13013,91和GB1499,6(桥上纵坡:2.5%,竖曲线半径3000m 91。 7(桥下净空:?7m 3.预应力钢绞线应符合ASTM A416,92技术标准,直径为 15.24mm,标准强度 为1860Mpa,锚具采用VLM型号,并用相应配套的锚下垫板及螺旋筋,力 筋管道采用镀锌波纹管。三、地质条件 4.精轧螺纹钢标准强度为750Mpa,其他指标应符合国家相应标准,其锚具采用

《公路斜拉桥设计规范JTG_T 3365-01—2020》修订解读

《公路斜拉桥设计规范》修订解读 近日,交通运输部发布了《公路斜拉桥设计规范》(JTG 3365-01—2020,以下简称《规范》),作为公路工程行业标准,自2020年8月1日起施行,原《公路斜拉桥设计细则》(JTG/T D65-01—2007,以下简称原《细则》)同时废止。为便于理解本次修订的主要内容,切实做好贯彻实施工作,现将有关修订情况解读如下: 一、修订背景 原《细则》自2007年实施以来,在公路斜拉桥设计、施工、养护等方面发挥了重要的规范和指导作用。近年来,我国斜拉桥建造技术迅速发展,建设了大量大跨度、特殊结构型式的斜拉桥,积累了大量设计、施工经验。原《细则》已不能满足我国目前斜拉桥设计的需求了。为适应斜拉桥建设技术的发展,交通运输部组织完成了《规范》的修订工作。 二、标准的定位 《规范》涵盖了公路斜拉桥常用材料、作用、总体设计、构造设计、结构分析计算、设计对施工监控的要求以及养护条件设计,与上游的公路桥涵通用设计规范、钢筋混凝土及预应力混凝土桥涵设计规范、钢结构桥梁设计规范等,共同形成了公路斜拉桥设计体系。《规范》以规范和指导公路斜拉桥设计为目标,旨在体现全寿命周期设计理念。《规范》充分考虑了与其他标准的衔接,以国内外工程实践和先进研究成果为依托,根据我国公路斜拉桥建设的现状以及实际特点,以容全面、分类指导、重点突出、简单适用为基本原则,广泛征求意见,具有清晰明确的定位,对进一步提升公路斜拉桥设计工作具有较强的指导作用。 三、《规范》的特点

《规范》注重落实新发展理念和交通强国建设纲要,对标国内国际先进水平,充分吸纳我国公路斜拉桥的设计、施工和养护中的先进成果,广泛征求了设计、施工、建设、养护、管理等有关单位和专家的意见,经过反复讨论、修改后定稿。主要修订内容包括: (一)使用科学的极限状态设计方法,满足大跨径建设需求。借鉴和吸收国内外先进的设计方法,结构设计根据可靠性设计理论,按照相关设计规范要求,采用了以概率理论为基础、按分项系数表达的极限状态设计方法。将适用跨径由800m以下提高到1000m以下的新建和改建公路斜拉桥的设计,针对大跨斜拉桥刚度较小的特点,提出综合考虑抗风、抗震、防撞等复杂因素进行总体设计。 (二)突出桥梁全寿命周期的先进设计理念。明确斜拉桥主体结构的设计使用年限为100年,与《公路桥涵设计通用规范》(JTG D60—2015)保持一致,补充了可更换构件设计使用年限的规定,新增对斜拉桥养护检修设施耐久性的规定。明确规定斜拉桥设计应统筹考虑桥梁设计、施工及养护。 (三)充分体现新型斜拉桥结构型式、新型构造、新材料以及新工艺。新增了分体式箱形截面梁、钢桁梁、混凝土索塔鞍座式锚固、外置式钢锚箱锚固、钢桁梁主梁的索梁锚固形式、钢桥面铺装等新型斜拉桥结构形式、构造及材料的设计要求。 (四)提出特殊构造部位的计算理论和计算方法。增加了索塔锚固部位拉压杆模型、换索工况的结构性能要求、墩梁临时锚固计算分析、边跨配重和抗拔装置设计等规定。提出斜拉索承载力计算方法及要求,对部分斜拉桥的拉索考虑结

斜管沉淀池设计计算

斜管沉淀池设计方案 1.二层池改建说明 二沉池设在生物处理构筑物的后面,用于沉淀去除活性污泥或腐殖污泥取消MBR膜池,增加三个二次沉淀池,更好的对污水的处理、沉淀,达到排放要求。再改建好氧区,各部分,多增加回流部分,充分利用污泥,并增设添加药剂管道。 池体结构复杂、设备安装和使用精度要求高,必须保证池体结构具有相当高的尺寸、标高和公差配合要求,以便顺利安装和保证正常使用,例如反应区池壁的标高、角度和斜板的平直度;过墙柔性套管的位置和标高以及平直度;各种设备基础、预埋螺栓轴线及位置和尺寸均需精确无偏差,反应区、集泥槽底部工艺混凝土的坡度控制、位置尺寸等必须精确控制。 池体平面为矩形,进口设在池长的一端,一般采用淹没进水孔,水由进水渠通过均匀分布的进水孔流入池体,进水孔后设有挡板,使水流均匀地分布在整个池宽的横断面。沉淀池的出口设在池长的另一废水沉淀池端,多采用溢流堰,以保证沉淀后的澄清水可沿池宽均匀地流入出水渠。堰前设浮渣槽和挡板以截留水面浮渣。水流部分是池的主体。池宽和池深要保证水流沿池的过水断面布水均匀,依设计流速缓慢而稳定地流过。污泥斗用来积聚沉淀下来的污泥,多设在池前部的池底以下,斗底有排泥管,定期排泥。 【构造】

根据水流和泥流的相对方向,可将斜板斜管沉淀池分为异向流(逆向流)、同流向和测向流(横向流)三种类型,其中异向流,应用的最广。异向流的特点:水流向上、泥流向下,倾角60度。初步设定为横向流。 【斜管沉淀池的排泥】 斜管沉淀池由于单位面积出水量高,因而泥量亦相应增加,与普通平流式沉淀池相比,每单位面积的积泥量,将增加好几倍,积泥分布在整个底板上,虽比较均匀,但积泥不及时排除将会严重影响出水水质。 常用的排泥措施: A机械刮泥;适用于大型斜板沉淀池,管理简单,可以自动控制。但加工维修困难,某些部件质量尚未过关,容易发生故障,影响使用,在国内积累经验上不多,有待提高和巩固。 B穿孔管排泥;应用于平流沉淀池已有相当历史,目前用于斜板沉淀池也不少,但须严格管理,不然容易堵塞,

斜板沉淀池设计

. . 环保设备课程作业 作业1:斜板沉淀池设计计算 采用异向流斜板沉淀池 1.设计所采用的数据 ①由于斜板沉淀池在絮凝池之后,经过加药处理,故负荷较高,取q=3.0mm/s ②斜板有效系数η取0.8,η=0.6~0.8 ③斜板水平倾角θ=60° ④斜板斜长 L=1.2m ⑤斜板净板距 P=0.05m P一般取50~150mm ⑥颗粒沉降速度μ=0.4mm/s=0.0004m/s 2.沉淀池面积 式中 Q——进水流量,m3/d q——容积负荷,mm/s 3.斜板面积 η 需要斜板实际总面积为 4.斜板高度 ° 5.沉淀池长宽 设斜板间隔数为N=130个 则斜板部分长度为° 斜板部分位于沉淀池中间,斜板底部左边距池边距离l2=0.1m,斜板底部右边距池边距离l3=0.8m,则池长L=7.5+0.1+0.8=8.4m 池宽B= 校核:,符合

故沉淀池长为8.4m ,宽为9.2m ,从宽边进水。 6.污泥体积计算 排泥周期T=1d ()()()() 612324100200002002010100 90100110096Q C C T V m n γρ--???-??= = =-?- 污泥斗计算 设计4个污泥斗,污泥斗倾斜角度为67°,污泥斗下底面长a=0.4m ,上底面长b=2.1m 。 5 2.10.4tan tan 672222 2b a h m θ???? =-=-?= ? ????? 污泥斗总容积: 3150.4 2.1249.29222 a b V h n L m ++= ???=???=>V=90m 3 ,符合要求。 7.沉淀池总高度 123450.3 1.0 1.0 1.0 2.0 5.3H h h h h h m =++++=++++= 式中 h 1——保护高度(m ),一般采用0.3-0.5m ,本设计取0.3m ; h 2——清水区高度(m ),一般采用0.5-1.0m ,本设计取1.0m ; h 3——斜管区高度(m ); h 4——配水区高度(m ),一般取0.5-1.0m ,本设计取1.0m ; h 5——排泥槽高度(m )。 8.进出水系统 8.1. 沉淀池进水设计 沉淀池进水采用穿孔花墙,孔口总面积: 式中 v ——孔口速度(m/s ),一般取值不大于0.15-0.20m/s 。本设计取0.18m/s 。 每个孔口的尺寸定为15cm ×8cm ,则孔口数 个。进水孔位置应在斜管以下、沉泥区以上部位。 8.2.沉淀池出水设计 沉淀池的出水采用穿孔集水槽,出水孔口流速v1=0.6m/s ,则穿孔总面积: 设每个孔口的直径为4cm ,则孔口的个数:

斜管沉淀池计算例题

沉淀 3.3.1 介绍 给水处理的沉淀工艺是指在重力作用下,悬浮固体从水中分离的过程,原水经过投药,混合与反应过程,水中悬浮物存在形式变为较大的絮凝体,要在沉淀池中分离出来,以完成澄清的作用,混凝沉淀后出水浊度一般在10 度以下。 (1)沉淀池类型的选择 本设计采用斜管沉淀池,斜管沉淀池是根据浅池理论发展而来的,是一种在沉淀池内装置许多直径较小的平行的倾斜管的沉淀池。斜管沉淀池的特点:沉淀效率高,池子容积小和占地面积小;斜管沉淀池沉淀时间短,故在运行中遇到水质、水量的变化时,应注意加强管理, 以保证达到要求的水质。从改善沉淀池水力条件的角度分析,由于斜管的放入,沉淀池水力半径大大减小,从而使雷诺数大为降低,而弗劳德数则大大提高,因此,斜管沉淀池也满足水流的稳定性和层流的要求。从而提高沉淀效果。 (2)斜管沉淀池的设计计算 本设计采用两组沉淀池,水流用上向流。异向流斜管沉淀池宜用于浑浊度长期低于1000 度的原水。斜管沉淀区液面负荷,应按相似条件下的运行经验确定,一般可采用~)/(23h m m ?。

斜管设计一般可采用下列数据:管径为25~35 毫米;斜长为1.0 米;倾角为60°。斜管沉淀池的清水区保护高度一般不宜小于1.0 米;底部配水区高度不宜小于1.5 米。 3.3.2 设计计算 (1)设计参数 处理水量Q=0.425 m/s,斜管沉淀池与反应池合建,池有效宽度B=8.8m,混凝处理后颗粒沉降速度u =0.4mm/s,清水区上升速 度v=3.0mm/s,采用塑料片热压六边形蜂窝管,管厚0.4mm,边距d =30mm,水平倾角60度。采用后倾式,以利于均匀配水。斜管长1m,管径一般为25~35mm(即管的内切圆直径),取为30mm。 (2)清水面积 A=Q/v ==142m2 1 其中斜管结构占用面积按照5%计算,人孔所占面积为1 m2,则: =142×+1=149.75m2, 实际清水区所需面积为:A 1 进水方式:进水区沿8.8m长的一边布置。 为了配水均匀设计尺寸:B×L=8.8m×14.3m (3)斜管长度L =v/sin60°==3.5mm/s, 斜管内水流速度v 2

石环公路转体斜拉桥拉索安装方案(6.18)

一、编制依据 1、石环公路(省道S101)工程第一合同段(K31+230~K32+480)施工图设计文件(A册)。 2、投入的机械设备、技术力量和类似工程的施工及管理经验。 3、铁道部现行的《铁路行车线上施工技术安全规则》(TDJ412-87)。 4、《公路桥涵施工技术规范》(JTJ 041-2000)。 5、《公路工程质量检验评定标准》(JTG F80/1-2004)。 二、工程概况 石家庄市环城公路斜拉桥主桥采用独塔单索面的预应力混凝土斜拉桥,塔、梁、墩、固接体系,工程采用塔梁同时施工,交叉作业的方法。桥面以上塔高38.6米;斜拉索共8X4=32根,有151-φ7,241-φ7,共2种,最大张拉索力600吨。斜拉索锚具塔上为锚固端,梁上为张拉端,斜拉索在主梁上标准索距为8m。施工内容包括:斜拉索挂索、展索、牵引、张拉、调索、护罩安装及锚端防护等。 三、施工安排 1、施工人员进场情况 根据施工计划安排,为满足现场挂索施工需要,项目部已安排35人,成立专门的挂索作业组,负责全桥的挂索与张拉施工,各工种分配情况详见附表《挂索施工人员配备情况一览表》。 2、施工机械设备进场情况 各种设备已进场,挂索施工安排塔吊1台、转向滑车、手拉葫芦、千斤顶、张拉杆、吊点、电焊机及其它挂索设备均已全部进场完毕,并作好了施工前的准备工作,详见表《主要设备机具准备》。 主要设备机具准备:

3、施工用水、电情况 施工用水使用自建水井。 施工用电使用当地变压器接入,都满足施工要求。 4、施工材料供应 材料及缆索供应采用汽车运输,材料供应根据施工计划分期分批供应,加工件已按工期按计划加工。其它材料的供应详见附表《工程材料准备情况一览表》。 5、试验设施 现场已建有中心试验室一座,配备满足施工需要的试验设备和相应的试验人员。具有满足本工程试验的资质和能力。 6、施工计划 本桥斜拉索拟在6月20日安排进场,并于6月25日前完成验收工作,具备挂索条件。6月26日至7月31日完成斜拉索的挂设。 7、技术准备: ⑴计算、确定张拉技术参数。 ⑵张拉施工机具、设备的设计、制造、标定工作。 四.斜拉索安装施工方案 1.工程特点: 本工程主桥箱梁施工采用搭设支架立模分段浇注砼施工方法.要完成

竖流式沉淀池设计计算

竖流式沉淀池设计计算 按水流方向划分,沉淀池可分为平流式、辐流式和竖流式三种,还有根据“浅层理论”发展出来的斜板(管)沉淀池。 设置沉淀池的一般要求有哪些 (1)沉淀池的个数或分格数一般不少于2个,为使每个池子的人流量均等,要在人流口处设置调节阀,以便调整流量。池子的超高不能小于0.3m,缓冲层为0.3m~0.5m。 (2)一般沉淀池的停留时间不能小于1h,有效水深多为2~4m(辐流式沉淀池指周边水深),当表面负荷一定时,有效水深与沉淀时间之比也为定值。 (3)沉淀池采用机械方式排泥时,可以间歇排泥或连续排泥。不用机械

排泥时,应每日排泥,初沉池的静水头不应小于1.5m,二沉池的静水头,生物膜法后不应小于1.2m,活性污泥法后不应小于0.9m。 (4)采用多斗排泥时,每个泥斗均应没单独的排泥管和阀门,排泥管的直径不能小于200mm。污泥斗的斜壁与水平面的倾角,采用方斗时不能小于60°,采用圆斗时不能小于55 (5)当采用重力排泥时,污泥斗的排泥管一般采用铸铁管,其下端伸入斗内,顶端敞口伸出水面,以便于疏通,在水面以下1.5~2.0m处,由排泥管接出水平排泥管,污泥借静水压力由此管排出池外。 (6)使用穿孔排泥管排泥时,排泥管长度应在15m以内,排泥管管径150~200mm,孔径15~25mm,孔眼内流速4~5m/s,孔眼总面积与管截面积的比值为0.6~0.8,孔眼向下成45°~60°交错排列。为防止排泥管堵塞,应设压力水冲洗管,根据堵塞情况及时疏通。

(7)进水管有压力时,应设置配水井,进水管由配水井池壁接人,且应将进水管的进口弯头朝向井底。沉淀池进、出水区均应设置整流设施,同时具备刮渣设施。 (8)沉淀池的出水整流措施通常为溢流式集水槽,出水堰可用三角堰、孔眼等形式,普遍采用的是直角锯齿形三角堰,堰口齿深通常为50mm,齿距为200mm左右,正常水面应当位于齿高的1/2处。堰口设置可调式堰板上下移动机构,在必要时可以调整。 (9)沉淀池最大出水负荷,初沉池不宜大于2.9L/(s·m),二沉池不宜大于1.7 L/(s·m)。在出水堰前必须设置收集与排除浮渣的措施,如果使用机械排泥,排渣和排泥可以综合考虑。

一大型净水厂网格斜管絮凝沉淀池设计计算方法

净水厂网格斜管絮凝沉淀池设计计算方法 胡江博 (陕西金水桥工程设计有限责任公司,陕西,西安,710000)【摘要】本文以一净水厂为例,对净水厂网格絮凝池和斜管沉淀池的设计计算方法进行了说明,为以后城镇供水项目设计人员提供了相关参考。 【关键词】净水厂;网格絮凝池;斜管沉淀池;设计计算 在给水处理中,网格絮凝池和斜管沉淀池是水处理时常用的构筑物。在城镇供水项目中,单池处理水量在1.0万~2.5万m3/d时,宜采用网格絮凝池和斜管沉淀池综合设计。 本文以西北地区一大型净水厂为实例,对以上两种常用构筑物进行设计计算分析,此水厂设计供水规模4.0万m3/d,水厂自用水量5%。构筑物分两组设计,每组可独立运行,单组的处理水量为2.1m3/d,即 0.243 m3/s。 一、网格絮凝池及过渡段设计计算 (一)絮凝池有效容积 V=QT=0.243×18×60=262.44 m3 式中:Q-单个絮凝池处理水量(m3/s);V-絮凝池的有效容积(m3);T-絮凝时间(s),规范要求12~20min。 (二)絮凝池面积 A=V/H=262.44/4=65.61m2 式中:A-单个絮凝池面积(m2);V-絮凝池的有效容积(m3);H-有效水深(m)。 (三)单格面积 f=Q/V=0.243/0.12=2.03m2 式中:f-单格面积(m2);Q-单个絮凝池处理水量(m3/s);v-竖井内流速(m/s),规范要求0.10~0.14m/s。 假设栅格为正方形,尺寸1.45m×1.45m,每格实际面积为2.10m2,计算出分格数为: n=65.61/2.10=31.24,取整数n=32。 每组池子布置4行,每行分8格,栅格混凝土厚度取0.2m,每个池子净尺寸为:L=6.4m,B=13.0m。 (四)实际絮凝时间 t=nfH/Q=32×2.1×4/0.243=18.43min 式中:t-实际絮凝时间(min);n-栅格个数;f-单格实际面积(m2);H-有效水深(m);Q-处理水量(m3/s)。 (五)絮凝池排泥 泥斗深度取1.0m,泥斗底边宽度取0.4m,斗坡与水平夹角为62°>45°,符合要求;排泥采用多斗

斜板沉淀池设计

环保设备课程作业 作业1:斜板沉淀池设计计算 采用异向流斜板沉淀池 1.设计所采用的数据 ①由于斜板沉淀池在絮凝池之后,经过加药处理,故负荷较高,取q=3.0mm/s ②斜板有效系数η取0.8,η=0.6~0.8 ③斜板水平倾角θ=60° ④斜板斜长 L=1.2m ⑤斜板净板距 P=0.05m P一般取50~150mm ⑥颗粒沉降速度μ=0.4mm/s=0.0004m/s 2.沉淀池面积 A=Q q = 20000 24×60×60×0.003 ≈77m2 式中 Q——进水流量,m3/d q——容积负荷,mm/s 3.斜板面积 A f=Q ημ=20000 24×3600×0.8×0.0004 =723m2 需要斜板实际总面积为A f′=A f cosθ=723 0.5 =1447m2 4.斜板高度 h=l×sinθ=1.2×sin60°=1.0m 5.沉淀池长宽 设斜板间隔数为N=130个 则斜板部分长度为l1=130×0.05÷sin60°=7.5m 斜板部分位于沉淀池中间,斜板底部左边距池边距离l2=0.1m,斜板底部右边距池边距离l3=0.8m,则池长L=7.5+0.1+0.8=8.4m 池宽B=A L =77 8.4 =9.2m 校核:B′=A f′ (N+1)×l =9.2m,符合故沉淀池长为8.4m,宽为9.2m,从宽边进水。

6.污泥体积计算 排泥周期T=1d 污泥斗计算 设计4个污泥斗,污泥斗倾斜角度为67°,污泥斗下底面长a=0.4m ,上底面长b=2.1m 。 污泥斗总容积: 3150.4 2.1249.29222 a b V h n L m ++=???=???=>V=90m 3,符合要求。 7.沉淀池总高度 式中 h 1——保护高度(m ),一般采用0.3-0.5m ,本设计取0.3m ; h 2——清水区高度(m ),一般采用0.5-1.0m ,本设计取1.0m ; h 3——斜管区高度(m ); h 4——配水区高度(m ),一般取0.5-1.0m ,本设计取1.0m ; h 5——排泥槽高度(m )。 8.进出水系统 8.1. 沉淀池进水设计 沉淀池进水采用穿孔花墙,孔口总面积: A =Q = 式中 v ——孔口速度(m/s ),一般取值不大于0.15-0.20m/s 。本设计取0.18m/s 。 每个孔口的尺寸定为15cm ×8cm ,则孔口数N =A 15×8= 个。进水孔位置应在斜管以下、沉泥区以上部位。 8.2.沉淀池出水设计 沉淀池的出水采用穿孔集水槽,出水孔口流速v1=0.6m/s ,则穿孔总面积: A =Q = 设每个孔口的直径为4cm ,则孔口的个数: 式中 F ——每个孔口的面积(m2) 设沿池长方向布置8条穿孔集水槽,右边为1条集水渠,为施工方便槽底平坡,集水槽中心距为:L'=9.2/8=1.1m 。每条集水槽长L=8 m , 每条集水量为:30.230.014/28q m s = =?,考虑池子的超载系数为20%,故槽中流量为: 槽宽:b =0.90.4q '=0.9×0.0170.4=0.9×0.20=0.18 m 。 起点槽中水深 H1=0.75b=0.75×0.18=0.14m ,终点槽中水深H2=1.25b=1.25×

CJJ2-2008《城市桥梁工程施工与质量验收规范》

基本规定 2.0.1施工单位应具有相应的桥梁工程施工资质。总承包施工单位,必须选择合格的分包单位。分包单位应接受总承包单位的管理。 2.0.2施工单位应建立健全的质量保证体系和施工安全管理制度。 2.0.3施工前,施工单位应组织有关施工技术管理人员深入现场调查,了解掌握现场情况,做好充分的施工准备工作。 2.0.4施工组织设计应按其审批程序报批,经主管领导批准后方可实施,施工中需修改或补充时,应履行远审批程序。 2.0.5施工单位应按合同规定的或经过审批的设计文件进行施工。发生设计变更及工程洽商应按国家现行有关规定程序办理设计变更与工程洽商手续,并形成文件。严禁按未批准的设计变更进行施工。 2.0.6 工程施工应加强各项管理工作,符合合格部署、周密计划、精心组织、文明施工、安全生产、节约资源的原则。 2.0.7施工中应加强施工测量与试验工作,按规定作业,内业资料完整,经常复核,确保准确。 2.0.8施工中必须建立技术与安全交底制度。作业前主管施工技术人员必须向作业人员进行安全与技术交底,并形成文件。 2.0.9施工中应按合同文件规定的国家现行标准和设计文件的要求进行施工过程与成品质量控制,确保工程质量。 2.0.10工程质量验收应在施工单位自检基础上,按照检验批、分项工程、分部工程(子分部工程)、单位工程顺序进行。单位工程完成且经监理工

程师预验收合格后,应由建设单位按相关规定组织工程验收。各项单位工程验收合格后,建设单位应按相关规定及时组织竣工验收。 2.0.11验收后的桥梁工程,应结构坚固、表面平整、色泽均匀、棱角分明、线条直顺、轮廓清晰,满足城市景观要求。 2.0.12桥梁工程范围内的排水设施、挡土墙、引道等工程施工及验收应符合国家现行标准《城镇道路工程施工与质量验收规范》CJJ1的有关规定。

(完整版)斜拉桥监理要点

斜拉桥施工监理要点 斜拉桥属于高次内部超静定结构,施工与设计关联非常紧密,有互补和互反馈的关系。监理工程师和承包商在施工前要全面了解设计的要求和意图,吃透设计文件中的施工建议、工艺要求和施工程序,在此基础上编制监理实施细则、实施性施工组织设计和监控方案,在施工过程中要不断采集监测数据,反馈给设计单位,使之及时调整设计参数、修正并完善后续施工方案等措施,循环往复,以达到成桥后线形和内力状态符合设计要求的最终目的。 斜拉桥监理的重点是斜拉桥组合体系的三要素:即索塔,主梁和拉索,以及施工监控四个方面。 1索塔施工的监理要点 ⑴索塔一般采用现场浇筑钢筋砼或部分预应力钢筋砼结构。索塔施工与高桥墩的施工要求基本相同,具体施工时要根据不同的索塔型式采用相应的施工方式。因索塔高度较高,要着重控制各部位的平面位置、轴线控制、截面尺寸、倾斜度、预埋件制作及安装的精度和质量,施工测量控制要严格满足有关规范要求, ⑵索塔基础和承台的施工工艺与一般桥梁基础、承台施工工艺基本相同,施工监理要点也类似。应注意的是承台和基础施工要根据现场水文条件采用适宜的筑岛、围堰方式;承台砼体积很大,责成承包人做好设备、材料供应及人员的组织工作,按设计要求一次浇筑完成;为防止大体积砼水化热高导致砼开裂的现象,要求承包人必须按设计要求采取在砼中预埋冷凝管道的方法降低砼水化热,并可采用矿渣水泥、粉煤灰水泥、掺加缓凝剂等措施。 ⑶斜拉桥索塔施工常用的方法可采用支架翻模法,承包人事先应进行结构强度、刚度和稳定性验算。当采用两种不同材料搭设施工支架时,相互之间的牢固连接是支架整体稳定的关键,必须采取可靠措施予以保证;支架和操作平台要有足够的强度、刚度和抗风稳定性,一般宜间隔5m高度与索塔连接;为配合模板和张拉千斤顶的垂直提升,支架与索塔的间距宜在50cm左右。 ⑷索塔横梁施工的关键是模板和支撑系统,要考虑弹性和非弹性变形、支承下沉、温差及日照的影响,必要时应设支承千斤顶调控。

斜板沉淀池设计

中国矿业大学环境与测绘学院 环保设备课程作业 作业1: 斜板沉淀池设计计算 采用异向流斜板沉淀池 1.设计所采用的数据 ① 由于斜板沉淀池在絮凝池之后,经过加药处理,故负荷较高,取 ② 斜板有效系数n 取 0.8 , n =0.6~0.8 ③ 斜板水平倾角 0 =60° ④ 斜板斜长L=1.2m ⑤ 斜板净板距 P=0.05m P 一般取50~150mm ⑥ 颗粒沉降速度 =0.4mm/s=0.0004m/s q=3.0mm/s 2.沉淀池面积 20000 24 X 60 X 60 X 0.003 沁 77m 2 式中Q ――进水流量, q ——容积负荷, 3.斜板面积 m3/d mm/s 20000 24 X360QXQ.8 XQ.QQQ4 =723吊 需要斜板实际总面积为A f =盏=囂=1447m 2 4.斜板高度 h = l X sin 0 =1.2 X sin 60° = 1.0m 5.沉淀池长宽 设斜板间隔数为N=130个 则斜板部分长度为 I 1 = 130 X 0.05 -sin 60° = 7.5m 斜板部分位于沉淀池中间,斜板底部左边距池边距离 I 2=0.1m , 离 13=0.8m ,则池长 L=7.5+0.1+0.8=8.4m A 77 池宽 B= = = 9.2m L 8.4 斜板底部右边距池边距 校核: Af (N+ 1) Xl =9.2m ,符合

故沉淀池长为8.4m ,宽为9.2m ,从宽边进水。 6.污泥体积计算 排泥周期T=1d 20000 200 20 10 6 100 90m 3 1 100 96 污泥斗计算 污泥斗总容积:V i - - h 5 n L 上一 2 4 9.2 92m 3 >V=90rn,符合要求。 2 2 7. 沉淀池总高度 H h h 2 h 3 h 4 h 5 0.3 1.0 1.0 1.0 2.0 5.3m 式中 h 1 保护高度(m ), ?般采用 0.3-0.5m , 本设计取0.3m ; h 2 —清水区高度( m , 一般采用 0.5-1.0m ,本设计取1.0m ; h 3 —斜管区高度( m ); h 4 配水区咼度( m ), 一般取 0.5-1.0m , 本设计取1.0m ; h 5 —排泥槽高度( m )。 8. 进出水系统 8.1.沉淀池进水设计 沉淀池进水采用穿孔花墙,孔口总面积: A 1.3 石刁=而2= 108个。进水孔位置应在 斜管以下、沉泥区以上部位。 8.2.沉淀池出水设计 设每个孔口的直径为 4cm,则孔口的个数: 设计4个污泥斗,污泥斗倾斜角度为 ,污泥斗下底面长 a=0.4m ,上底面长 -=2.1m 。 n 怡 a - 2.1 2 0.4 2 tan 67 2m V Q C 1 C 2 24 100 T 100 n 式中v 孔口速度(m/s ), Q 0.23 A= V= 0^ = 1.3m 2 般取值不大于 0.15-0.20m/s 。本设计取0.18m/s 。 每个孔口的尺寸定为 15cmX 8cm,则孔口数N 沉淀池的出水采用穿孔集水槽,出水孔口流速 v1=0.6m/s ,则穿孔总面积: A = V1 0.23 乔= 0.38m 2

《斜板沉淀池设计》word文档

环保设备课程作业 环境与测绘学院

作业1:斜板沉淀池设计计算 采用异向流斜板沉淀池 1.设计所采用的数据 ①由于斜板沉淀池在絮凝池之后,经过加药处理,故负荷较高,取q=3.0mm/s ②斜板有效系数η取0.8,η=0.6~0.8 ③斜板水平倾角θ=60° ④斜板斜长 L=1.2m ⑤斜板净板距 P=0.05m P一般取50~150mm ⑥颗粒沉降速度μ=0.4mm/s=0.0004m/s 2.沉淀池面积 A=Q q = 20000 24×60×60×0.003 ≈77m2 式中 Q——进水流量,m3/d q——容积负荷,mm/s 3.斜板面积 A f=Q ημ=20000 24×3600×0.8×0.0004 =723m2 需要斜板实际总面积为A f′=A f cosθ=723 0.5 =1447m2 4.斜板高度 h=l×sinθ=1.2×sin60°=1.0m 5.沉淀池长宽 设斜板间隔数为N=130个 则斜板部分长度为l1=130×0.05÷sin60°=7.5m 斜板部分位于沉淀池中间,斜板底部左边距池边距离l2=0.1m,斜板底部右边距池边距离l3=0.8m,则池长L=7.5+0.1+0.8=8.4m 池宽B=A L =77 8.4 =9.2m 校核:B′=A f′ (N+1)×l =9.2m,符合故沉淀池长为8.4m,宽为9.2m,从宽边进水。 6.污泥体积计算

排泥周期T=1d ()()()() 612324100200002002010100 90100110096Q C C T V m n γρ--???-??= = =-?- 污泥斗计算 设计4个污泥斗,污泥斗倾斜角度为67°,污泥斗下底面长a=0.4m ,上底面长b=2.1m 。 5 2.10.4tan tan 6722222b a h m θ???? =-=-?= ? ????? 污泥斗总容积: 3150.4 2.1249.29222 a b V h n L m ++= ???=???=>V=90m 3 ,符合要求。 7.沉淀池总高度 123450.3 1.0 1.0 1.0 2.0 5.3H h h h h h m =++++=++++= 式中 h 1——保护高度(m ),一般采用0.3-0.5m ,本设计取0.3m ; h 2——清水区高度(m ),一般采用0.5-1.0m ,本设计取1.0m ; h 3——斜管区高度(m ); h 4——配水区高度(m ),一般取0.5-1.0m ,本设计取1.0m ; h 5——排泥槽高度(m )。 8.进出水系统 8.1. 沉淀池进水设计 沉淀池进水采用穿孔花墙,孔口总面积: A = Q v =0.23 0.18 =1.3m 2 式中 v ——孔口速度(m/s ),一般取值不大于0.15-0.20m/s 。本设计取0.18m/s 。 每个孔口的尺寸定为15cm ×8cm ,则孔口数N =A 15×8= 1.3 0.012=108 个。进水孔位置应在斜管以下、沉泥区以上部位。 8.2.沉淀池出水设计 沉淀池的出水采用穿孔集水槽,出水孔口流速v1=0.6m/s ,则穿孔总面积: A = Q v1=0.23 0.6 =0.38m 2 设每个孔口的直径为4cm ,则孔口的个数:

9 斜拉桥主要构件技术状况评定标准

9 斜拉桥主要构件技术状况评定标准 9.1斜拉索 斜拉桥的养护重点是斜拉索,斜拉索处在高的动应力状态且截面较小所以对腐蚀十分敏感,斜拉桥拉索的检查指标根据斜拉索材料主要缺陷行分类描述。 斜拉索检查指标中的滑移变位、护套内的材料老化变质和锚头损坏等病害,难以用准确的定量指标进行划分,故只从定性方面进行分类。为了便于一线养护工作者实际操作,本标准未对斜拉桥索力等指标进行划分,有条件的大型斜拉桥应定期对拉索的索力进行测定,依据测值来指导养护与维修。 斜拉索根据拉索和拉索防护的主要病害对部件安全性的影响程度,参照《公路桥涵养护规范》(JTG H11-2004)、《公路斜拉桥设计规范》(JTJ027-96)、《桥梁工程养护与维修手册》和《斜拉桥手册》,及评审专家组的意见,对吊索病害的定性和定量指标进行了确定。 9.2主梁 根据斜拉桥主梁的材料和结构状况将加劲梁分成预应力混凝土主梁、钢桁架主梁和钢箱主梁。 斜拉桥主梁的检查指标和分类方法与钢筋混凝土、预应力混凝土或钢桥主梁基本相同,视其采用的结构形式,参照钢筋混凝土、预应力混凝土或钢桥主梁的有关指标说明。 9.3索塔 根据斜拉桥索塔主要病害对部件安全性和耐久性的影响程度,参照《公路桥涵养护规范》(JTG H11-2004)、《公路斜拉桥设计规范》(JTJ027-96)、《桥梁工程养护与维修手册》和《斜拉桥手册》,以及钢筋混凝土、预应力混凝土或钢桥下部结构的有关指标说明,对索塔病害的定性和定量指标进行了确定。 - 198 -

9.4斜拉索护套 鉴于斜拉桥的养护重点是斜拉索,拉索的防护尤为重要。针对常用的两种防护套(加聚乙烯护套和热挤压包裹聚乙烯护套)材料主要缺陷行分类描述。 斜拉索护套检查指标中的护套裂缝、护套锈蚀、防护层破损、护套密封不严实、渗水和垫圈老化等病害难以用准确的定量指标进行划分,故只作定性分类。 斜拉索护套的主要病害对部件安全性的影响程度,参照《公路桥涵养护规范》(JTG H11-2004)、《公路斜拉桥设计规范》(JTJ027-96)、《桥梁工程养护与维修手册》和《斜拉桥手册》,以及评审专家组的意见,对斜拉索护套破裂、渗水、锈蚀和密封性等主要病害的指标进行了确定。 9.5锚具 斜拉索两端锚具的锈蚀是斜拉桥锚具的主要病害,而引起斜拉桥锚具锈蚀的起因,如锚杯积水、潮湿和防锈油结块等病害,也是养护工作的重点。 由于斜拉桥锚具的锚杯积水、锈蚀和防锈油结块等检查指标,难以用准确的定量指标进行划分,故只从定性方面进行分类。 9.6减震装置 部分斜拉桥装有减震装置,检查时主要针对是否有异常或失效,如发现问题应及时进行检修。 - 199 -

路桥规范

TB/T 1893-2006 铁路桥梁板式橡胶支座 TB/T 2820.3-1997 铁路桥隧建筑物劣化评定标准支座 TB/T 2820.3-1997 铁路桥隧建筑物劣化评定标准支座 TBJ 107-1992 铁路装配式小桥涵技术规则(含条文说明) TB 10203-2002 铁路桥涵施工规范 TB 10116-1999 铁路桥梁抗震鉴定与加固技术规范 TBJ 214-92 铁路钢桥高强度螺栓连接施工规定 TBJ 214-1992 铁路钢桥高强度螺栓连接施工规定 TB/T 1853-2006 铁路桥梁钢支座 TB/T 2357-1993 内燃机车用柴油机清洁度测定方法 TB/T 1893-2006 铁路桥梁板式橡胶支座 TB 10415-2003 铁路桥涵工程施工质量验收标准 TB 10002.3-2005 铁路桥涵钢筋混凝土和预应力混凝土结构设计规范 TB 10002.2-2005 铁路桥梁钢结构设计规范 TB 2773-1997 铁路钢桥用面漆、中间漆供货技术条件 TB 2772-1997 铁路钢桥用防锈底漆供货技术条件 TB/T 2092-2003 预应力混凝土铁路桥简支梁静载弯曲试验方法及评定标准 TB 10213-99 铁路架桥机架梁规程 TB/T 3043-2005 预制后张法预应力混凝土铁路桥简支T梁技术条件 TB 10002.5-2005 铁路桥涵地基和基础设计规范 TB 10052-1997 铁路柔性墩桥技术规范 TB 10002.4-2005 铁路桥涵混凝土和砌体结构设计规范 TB/T 1527-2004 铁路钢桥保护涂装 TB/T 2965-1999 铁路混凝土桥梁桥面TQF-I型防水层技术条件 TB/T 2331-2004 铁路桥梁盆式橡胶支座 TB 10002.1-2005 铁路桥涵设计基本规范 TB/T 2137-1990 铁路钢桥栓接板面抗滑移系数试验方法 TB/T 1893-1987 铁路桥梁板式橡胶支座技术条件 TB/T 1853-1995 铁路桥梁铸钢支座 TB/T 1728-1991 铁路铺轨机、架桥机术语 TB/T 1527-1995 铁路钢桥保护涂装 TB 10212-1998 铁路钢桥制造规范 CJJ 2-2008 城市桥梁工程施工与质量验收规范 CJJ 11-93 城市桥梁设计准则 CJJ 99-2003 城市桥梁养护技术规范

相关主题
文本预览
相关文档 最新文档