有限状态自动机
- 格式:pptx
- 大小:2.30 MB
- 文档页数:47
有限自动机算法
有限自动机算法是一种常见的计算机科学算法,也称为状态机算法或有限状态自动机算法。
它是一种用来识别字符串的算法,通常被用于文本处理、编译器设计、自然语言处理等领域。
有限自动机算法基于有限状态自动机的理论,将一个字符串视为一个字符序列,通过状态转移来确定字符串是否符合特定的语法规则。
有限自动机算法通常分为两种类型:确定有限自动机(DFA)和非确
定有限自动机(NFA)。
DFA是一种状态转移图,其中每个状态都有一个唯一的出边,对于一个输入字符,只有一种可能的转移路径。
NFA则允许一个状态拥有多个出边,每一条出边代表一个可能的转移路径,同时,NFA还可以在不确定的情况下选择一条转移路径。
有限自动机算法的核心思想是将一个字符串逐个字符地输入到
状态机中,根据状态转移的规则,判断当前字符是否满足预定的语法规则。
如果符合规则,状态机将进入下一个状态,直到整个字符串被处理完毕。
如果最终状态符合预定要求,那么这个字符串将被认为是合法的。
总的来说,有限自动机算法是一种高效的字符串处理算法,它可以用来判断字符串是否符合特定的语法规则。
在文本处理、编译器设计、自然语言处理等领域中有广泛的应用。
- 1 -。
确定有限状态⾃动机⽬录思路确定有限状态⾃动机确定有限状态⾃动机(以下简称「⾃动机」)是⼀类计算模型。
它包含⼀系列状态,这些状态中:有⼀个特殊的状态,被称作「初始状态」。
还有⼀系列状态被称为「接受状态」,它们组成了⼀个特殊的集合。
其中,⼀个状态可能既是「初始状态」,也是「接受状态」。
起初,这个⾃动机处于「初始状态」。
随后,它顺序地读取字符串中的每⼀个字符,并转移到下⼀个状态。
当字符串全部读取完毕后,如果⾃动机处于某个「接受状态」,则判定该字符串「被接受」;否则,判定该字符串「被拒绝」。
本题使⽤有限状态⾃动机。
根据字符类型和合法数值的特点,先定义状态,再画出状态转移图,最后编写代码即可。
按照字符串从左到右的顺序,定义以下 9 种状态:0. 开始的空格1. 幂符号前的正负号2. ⼩数点前的数字3. ⼩数点、⼩数点后的数字4. 当⼩数点前为空格时,⼩数点、⼩数点后的数字5. 幂符号6. 幂符号后的正负号7. 幂符号后的数字8. 结尾的空格结束状态:合法的结束状态有 2, 3, 7, 8 。
代码class Solution {public boolean isNumber(String s) {Map[] states = {new HashMap<>() {{ put(' ', 0); put('s', 1); put('d', 2); put('.', 4); }}, // 0.new HashMap<>() {{ put('d', 2); put('.', 4); }}, // 1.new HashMap<>() {{ put('d', 2); put('.', 3); put('e', 5); put(' ', 8); }}, // 2.new HashMap<>() {{ put('d', 3); put('e', 5); put(' ', 8); }}, // 3.new HashMap<>() {{ put('d', 3); }}, // 4.new HashMap<>() {{ put('s', 6); put('d', 7); }}, // 5.new HashMap<>() {{ put('d', 7); }}, // 6.new HashMap<>() {{ put('d', 7); put(' ', 8); }}, // 7.new HashMap<>() {{ put(' ', 8); }} // 8.};int p = 0;char t;for(char c : s.toCharArray()) {if(c >= '0' && c <= '9') t = 'd';else if(c == '+' || c == '-') t = 's';else if(c == 'e' || c == 'E') t = 'e';else if(c == '.' || c == ' ') t = c;else t = '?';if(!states[p].containsKey(t)) return false;p = (int)states[p].get(t);}return p == 2 || p == 3 || p == 7 || p == 8;}}。
计算机组成原理与结构期末论文有限自动机的原理及示例学院:专业:姓名:学号:有限自动机的原理及示例本文将介绍几种重要有限自动机的基本原理,并通过例子说明它们的运行过程。
一. 语言的基本概念一张字母表是一个非空有限集合∑,字母表∑中的每个元素x 称为∑中的一个字母,也称符号、终止符或者字符。
∑中有限个字符1,,n a a 有序地排列起来12n x a a a =就称为∑上的一个字符串,n 称为它的长度。
其中有一个特殊的串ε,它的长度为零。
若1∑和2∑都是字母表,则它们的乘积12∑∑定义为{}12121122,a a a ∑∑=∈∑∈∑:a ,特别地, 0121{}n n ε-∑=∑=∑∑=∑∑∑=∑∑令*01kk k k ∞=∞+=∑=∑∑=∑若*,,x y z ∈∑,且z xy =则称,x y 是z 的子串。
字母表∑上的一种语言是*∑的一个子集L 。
二. 有限状态自动机的原理和运算实例1.基本原理一个有限状态自动机的物理模型通常包括两部分:(1)一个输入存储带,带被分解为多个单元,每个单元存放一个输入符号(字母表上的符号),整个输入串从带的左端点开始存放,而带的右端可以无限扩充。
(2)一个有限状态控制器(FSC ),该控制器的状态只能是有限个;FSC 通过一个读头和带上单元发生耦合,可以读出当前带上单元的字符。
初始时,读头对应带的最左单元,每读出一个字符,读头向右移动一个单元。
有限状态自动机的一个动作为:读头读出带上当前单元的字符;FSC 根据当前FSC 的状态和读出的字符,改变FSC 的状态;并将读头右移一个单元。
接着给出有限状态自动机的数学模型。
字母表∑上的一个有限状态自动机(FSAM)是一个五元组()0,,,,,FSAM Q q F δ=∑ 其中,i)Q 是一个有限状态的集合;ii)∑是字母表,它是输入带上的字符的集合;iii)0q Q ∈是开始状态;iv)F Q ⊂是接收状态(终止状态)集合;v):Q Q δ⨯∑→是状态转换函数,(,)q x q δ'=表示自动机在状态q 时,扫描字符x 后到达状态q '。
形式语言自动机——有限自动机有限自动机是形式语言自动机中最简单的一种类型,它具有有限个状态和一定的转移规则。
一个有限自动机包含以下几个要素:1.状态集合:有限自动机通过状态集合来描述它的内部状态。
每个状态代表了自动机所处的一些特定状态,例如开始状态、结束状态等。
2.输入字母表:输入字母表是指自动机能够接受的输入符号的集合。
每个输入符号在自动机的状态转移中起着关键的作用,它触发了状态的变化。
3.转移函数:转移函数定义了自动机状态之间的转移规则。
它接受来自输入字母表的输入符号和当前状态作为输入,返回下一个状态作为输出。
4.初始状态和接受状态:初始状态是自动机的起始状态,它是自动机开始处理输入时的初始状态。
接受状态是自动机达到的一种终止状态,它表示自动机已经接受了整个输入。
有限自动机的工作原理可以简述为以下几个步骤:1.从初始状态开始,根据输入符号进行状态转移。
2.在每次状态转移后,根据转移函数返回的下一个状态继续进行状态转移,直到达到接受状态或输入用尽。
3.如果最终达到了接受状态,则自动机接受了整个输入;否则,自动机拒绝该输入。
有限自动机可以描述和识别各种不同的形式语言。
它能够处理的语言包括正则语言、上下文无关语言和上下文相关语言等。
通过对有限自动机的状态和转移规则的定义和设计,可以将输入串按照预期的形式语言规则进行解析和处理,是编程语言编译器、字符串模式匹配等领域的基本技术。
有限自动机具有简单、易于实现和高效的特点。
它的状态转移规则可以通过转移表或状态转移图直观地表示出来,便于对自动机进行设计和分析。
虽然有限自动机的能力有限,无法处理具有复杂语法和上下文依赖的语言,但它在很多实际应用中能够提供有效的解决方案。
总而言之,有限自动机作为形式语言自动机的一种基本形式,具有较简单的结构和规则,广泛应用于形式语言的表示、识别和处理中。
通过对有限自动机的理论和实践研究,可以深入理解形式语言的本质和特性,为计算机科学中的语言处理和编程技术提供基础支持。
状态机分类
状态机是一种计算模型,它将计算过程看作状态的转换。
根据状态机的特性和实现方式的不同,我们可以将状态机分为以下几类:
1. 有限状态自动机(FSM)
有限状态自动机是最简单的状态机,它包含一组状态和一组转移条件。
在任何时候,状态机只能处于其中一个状态,而转移条件定义了从一个状态到另一个状态的转换。
有限状态自动机通常用于解决识别问题,例如正则表达式匹配。
2. 基于事件的状态机(EFSM)
基于事件的状态机扩展了有限状态自动机的转移条件,使其能够对事件做出响应。
事件可以是内部事件,例如超时或计数器溢出,也可以是外部事件,例如输入或输出。
基于事件的状态机通常用于实现协议或通信模型。
3. 层次状态机(HSM)
层次状态机是一种分层的状态机,它将状态和转移条件分组成层。
每一层都有自己的状态和转移条件,而底层状态机可以控制上层状态机的转换。
层次状态机通常用于处理复杂的控制流程,例如嵌入式系统或游戏引擎。
4. 反应式状态机(RSM)
反应式状态机是一种特殊的状态机,它可以对外部事件做出反应并改变其内部状态。
反应式状态机还可以将其状态和行为分成可
重用的模块,从而使状态机模型更加模块化和可扩展。
反应式状态机通常用于实现基于事件的系统和应用程序。
总之,状态机是一种强大的计算模型,可用于建模和实现各种计算问题。
通过了解不同类型的状态机,我们可以选择最适合特定问题的状态机实现方式。
离散数学是数学的一个分支,它研究的是离散的、离散化的对象和其相关的结构和性质。
其中,有限状态机和图灵机是离散数学中非常重要的概念之一。
有限状态机(Finite State Machine,FSM)又称有限状态自动机,是一种能够自动地进行状态转换的数学模型,它由一组状态、一组输入符号和一组状态转移函数组成。
有限状态机具有有限个状态和可以改变状态的输入符号,它根据输入和当前状态来确定下一个状态以及所执行的动作。
有限状态机的基本组成包括:状态集合、输入符号集合、输出符号集合、状态转移函数和输出函数。
其中,状态集合是有限的,每个状态都有一个或多个输入符号和对应的动作,而状态转移函数表达了从一个状态到另一个状态的转变。
输出函数则定义了在状态转移过程中,输出的对应动作。
有限状态机广泛应用于各个领域,例如自动控制系统、电子电路的设计、编译器、自然语言处理等。
它们通过对输入符号的分析,根据当前状态确定下一个状态并执行相应的动作。
因此,有限状态机是一种简便而有力的数学工具,有助于解决实际问题。
与有限状态机相对应的是图灵机(Turing Machine),它是在理论计算机科学领域中提出的一种抽象模型。
图灵机由一条无限长的纸带、一个读写头和一套指令集组成。
纸带被划分为无限个格子,每个格子上可以写入一个符号,读写头可在不同格子间移动,并根据当前状态和读写头所指格子上的符号来确定下一步的动作。
图灵机具备了无限的纸带和可执行的指令集,在理论上能够实现任何计算过程。
它是经典计算机科学理论中最重要的抽象计算模型之一,对计算机科学的发展起到了巨大的推动作用。
有限状态机和图灵机在离散数学中的研究和应用,对计算理论、自动机理论和形式语言等领域都具有重要影响。
它们帮助我们理解计算机程序的运行原理、设计和分析自动化系统、解决问题等。
总之,离散数学中的有限状态机和图灵机是两个重要的概念,它们分别对应了离散系统和通用计算机。
有限状态机可以方便地描述和分析各种状态转换的问题,而图灵机则提供了一种抽象的计算模型,帮助我们理解计算的本质和计算机的工作机制。
C语言中的状态机实现引言:状态机是一种常见的编程技术,广泛应用于许多领域,包括嵌入式系统、通信协议等。
在C语言中,我们可以通过编写状态机来实现复杂的逻辑控制和状态转换。
本文将介绍C语言中状态机的实现方法,以及一些实例案例,帮助读者更好地理解和应用状态机。
一、什么是状态机?状态机,又称有限状态自动机(Finite State Machine,FSM),是一种数学模型,用于描述系统的所有可能状态以及在不同状态下的行为。
状态机由一组状态、初始状态、状态转移条件和状态转移动作组成,通过不断地改变当前状态和响应输入条件来实现对系统的控制。
二、C语言中的状态机实现方法在C语言中,我们可以使用多种方式实现状态机,包括基于if-else语句的状态机、基于switch-case语句的状态机以及使用函数指针表的状态机。
下面将分别介绍这些方法。
1. 基于if-else语句的状态机实现基于if-else语句的状态机是最简单的实现方式。
我们可以使用一个整型变量来表示当前状态,然后使用一系列的if-else语句来判断当前状态,并执行相应的操作。
下面是一个简单的示例代码:```c#include <stdio.h>// 定义状态#define STATE_IDLE 0#define STATE_WORKING 1#define STATE_FINISHED 2int main() {int currentState = STATE_IDLE;while (1) {// 根据当前状态执行相应操作if (currentState == STATE_IDLE) {printf("当前状态:空闲\n");// 执行空闲状态下的操作} else if (currentState == STATE_WORKING) { printf("当前状态:工作中\n");// 执行工作中状态下的操作} else if (currentState == STATE_FINISHED) { printf("当前状态:已完成\n");// 执行已完成状态下的操作}// 状态转移条件// ...// 更新当前状态// ...}return 0;}```2. 基于switch-case语句的状态机实现基于switch-case语句的状态机是常见的实现方式。
自动机理论与编译原理自动机理论和编译原理是计算机科学中重要的研究领域,旨在研究和设计能够自动执行特定任务的机器模型以及将高级语言转换为低级可执行代码的技术。
一、自动机理论自动机理论是计算机科学中的一个重要分支,主要研究机器模型的行为和性能。
自动机可以被视为在不同状态之间进行转换的抽象模型,常用于解决字符串匹配、语言识别、编译器和自然语言处理等问题。
1. 有限状态自动机(Finite Automaton)有限状态自动机是一种能够处理有限个输入字符并根据预定义规则进行状态转换的计算模型。
它由一组状态、字母表、转移函数和初始状态组成。
有限状态自动机可以表示正则语言和正则表达式,被广泛应用于字符串匹配和模式识别。
2. 非确定有限状态自动机(Non-deterministic Finite Automaton)非确定有限状态自动机是一种具有多个可能状态转换路径的自动机模型。
在输入字符的情况下,非确定有限状态自动机可能存在多个下一状态的选择。
这种模型常用于正则表达式的匹配和找出所有的匹配结果。
3. 图灵机(Turing Machine)图灵机是一种具有无限长带子和可执行状态的理论计算设备。
它可以模拟任何可计算的算法,并被认为是现代计算机理论的基础。
图灵机理论对于解决计算问题的可计算性和复杂性有着重要的意义。
二、编译原理编译原理是研究将高级语言转化为机器语言的原理和方法。
主要包括词法分析、语法分析、语义分析、中间代码生成、代码优化和目标代码生成等阶段。
1. 词法分析(Lexical Analysis)词法分析是将源代码分割为一系列标记(Token)的过程。
标记是语言中的基本单位,如关键字、标识符、常量和运算符等。
词法分析器通常使用正则表达式和有限状态自动机来实现。
2. 语法分析(Syntax Analysis)语法分析是分析源代码中的语法结构,根据语法规则构建语法树的过程。
常用的语法分析方法有自顶向下的递归下降分析和自底向上的移进-归约分析。
有限自动机例题有限状态自动机(FSA)是计算机科学中的一种重要数学模型,它在字符串匹配、语言解析和编译器设计等领域都有广泛应用。
本文将围绕一道有限自动机例题进行分析和讲解,以帮助读者深入理解有限自动机的本质和应用。
例题描述:假设有一个字符串集合S = {“hello”, “world”, “cherry”, “come”, “back”},请设计一个DFA(确定性有限状态自动机)匹配这些字符串。
其中,该DFA应该包含5个终止状态,也就是说,只有当输入符串是S中的某一个字符串时,该DFA才能停机并进入终止状态。
解题步骤:根据题目描述,我们需要设计一个DFA,能够匹配给定字符串集合S中的任意一个字符串。
下面是解题的详细步骤:1. 首先,我们需要确定该DFA的状态集合Q。
由于该DFA需要包含5个终止状态,所以我们可以将状态集合分为6个部分,其中5个部分分别对应于集合S中的5个字符串,另一个部分表示该DFA的非终止状态。
2. 接下来,我们需要确定该DFA的输入字母表,即该DFA可以接受哪些字符作为输入。
由于题目中给出的字符串集合只包含小写字母,所以我们将该DFA的输入字母表设为Σ = {a, b, c, ..., z},即从小写字母表中取任意一个字母作为输入。
3. 确定该DFA的转移函数δ。
对于这个例题,我们需要根据提供的字符串集合S,为每一个状态和每一个输入字符都分别指定一个转移关系。
例如,对于初始状态S0,若输入字符是“h”,则它应该转移到状态S1,若输入字符是其它字符,则应该一直停留在S0状态。
4. 建立该DFA的起始状态和终止状态集合。
由于该DFA需要同时接受集合S中的5个字符串,所以我们需要将对应的5个状态都设为该DFA的终止状态。
同时,我们将状态S0设为该DFA的起始状态。
5. 最后,我们需要测试该DFA的性能和有效性,确保它能够实现对给定字符串集合的匹配操作。
可以考虑用几个测试用例来验证该DFA的工作状态,例如输入hello、world、cherry等字符串,检查DFA是否能够正确识别这些字符串并停机。
离散数学是计算机科学中的基础课程,其中有限状态自动机(Finite State Automaton, FSA)和正则表达式(Regular Expression, RegExp)是重要的概念和工具。
有限状态自动机是一种抽象的计算模型,用于描述在给定的输入序列下系统的行为。
它由一组有限个状态和一组转移函数组成,根据输入字符的不同,自动机在状态之间转移。
有限状态自动机被广泛应用于编译器设计、自然语言处理、模式匹配等领域。
在正则表达式中,有限状态自动机通常用于实现模式匹配操作。
正则表达式是一种描述字符串模式的语言。
它提供了一种简洁而强大的方式来匹配、查找和替换文本中的模式。
正则表达式由字母表、操作符和一组规则构成,可以用来描述具体的字符串。
正则表达式可以在编程语言(如Python、Perl、Java等)中实现,也可以在文本编辑器和命令行工具中使用。
有限状态自动机和正则表达式之间有一种密切的联系:正则表达式可以被转换为等价的有限状态自动机,有限状态自动机可以被转换为等价的正则表达式。
这种等价关系在理论上被称为“Kleene定理”,可以用于证明正则语言和有限自动机的等价性。
对于给定的正则表达式,可以通过构造等价的有限状态自动机来实现模式匹配。
在自动机的转移函数中,每个字符对应于一个状态转移,并根据正则表达式的规则选择相应的转移。
通过遍历自动机的状态转移路径,可以检测输入字符串是否与正则表达式相匹配。
另一方面,有限状态自动机可以通过反向构造来生成等价的正则表达式。
该过程被称为“状态消除”,通过消除自动机中的状态,并将其转换为正则表达式的形式。
最后,将所有状态消除为一个正则表达式,就得到了等价的正则表达式。
有限状态自动机和正则表达式在计算机科学中有着广泛的应用。
正则表达式可以用来进行文本的查找、分割和替换操作,提供了一种便捷的方式来处理复杂的字符串模式。
有限状态自动机则被广泛应用于编译器设计、模式匹配等领域,用于解析和分析文本数据。
有限状态机(Python) 有限状态机(Finite-state machine, FSM),⼜称有限状态⾃动机,简称状态机,是表⽰有限个状态以及在这些状态之间的转移和动作等⾏为的数学模型。
FSM是⼀种算法思想,简单⽽⾔,有限状态机由⼀组状态、⼀个初始状态、输⼊和根据输⼊及现有状态转换为下⼀个状态的转换函数组成。
现实世界中存在⼤量具有有限个状态的系统:钟表系统、电梯系统、交通信号灯系统、通信协议系统、正则表达式、硬件电路系统设计、软件⼯程,编译器等,有限状态机的概念就是来⾃于现实世界中的这些有限系统。
⼀般可以⽤状态图来对⼀个状态机进⾏精确地描述。
⼤家请看这个可乐机的状态图。
从图中就可以清楚地看到可乐机的运⾏过程,图中直观地表现了可乐机投⼊不同⾦额硬币时的情况以及⼏个处理步骤的各个状态和它们之间的转换关系,根据投⼊硬币的不同⾯值,对总⾦额进⾏计算,并对各种操作进⾏响应以完成⼀次购买。
状态机的动态结构使得其在通讯系统,数字协议处理系统,控制系统,⽤户界⾯等领域得到了⼴泛地应⽤。
有限状态机模型有限状态机是⼀个五元组M=\left(Q,\Sigma ,\delta ,q_0,F\right),其中:Q=\left\{q_0,q_1,\text{...},q_n\right\}是有限状态集合。
在任⼀确定的时刻,有限状态机只能处于⼀个确定的状态q_i;\Sigma =\left\{\sigma _1,\sigma _{2,\text{...},}\sigma _n\right\}是有限输⼊字符集合。
在任⼀确定的时刻,有限状态机只能接收⼀个确定的输⼊\sigma_j;\delta :Q\times \Sigma \rightarrow Q是状态转移函数,在某⼀状态下,给定输⼊后有限状态机将转⼊状态迁移函数决定的⼀个新状态;q_0\in Q是初始状态,有限状态机由此状态开始接收输⼊;F\subseteq Q是最终状态集合,有限状态机在达到终态后不再接收输⼊。
离散数学有限状态自动机模型解析在离散数学中,有限状态自动机(Finite State Automaton)是一种用来描述计算机程序、电路系统、语言识别等问题的数学模型。
它由一组有限的状态、输入字符集合、转移函数和初始状态组成。
本文将对有限状态自动机的定义、特性以及应用进行解析。
一、有限状态自动机的定义有限状态自动机包含以下几个要点:1. 状态集合:有限状态自动机的状态是相互独立的,即在任意时刻,有限状态自动机处于某一个状态。
2. 输入字符集合:输入字符集合包含了有限状态自动机可以接受的输入字符。
在有限状态自动机的运行过程中,每次都接受一个输入字符。
3. 转移函数:转移函数定义了有限状态自动机状态间的转移关系。
对于当前状态和输入字符,转移函数确定了下一个状态。
4. 初始状态:初始状态是有限状态自动机开始运行时的起始状态。
二、有限状态自动机的特性有限状态自动机具有以下几个特性:1. 确定性:在有限状态自动机的转移函数中,对于给定的当前状态和输入字符,只能有一个下一个状态。
确定性保证了有限状态自动机在运行时的唯一性。
2. 非确定性:有限状态自动机还可以具有非确定性,即在转移函数中,对于给定的当前状态和输入字符,可以有多个下一个状态。
非确定性使得有限状态自动机具有更强大的计算能力。
3. 等价性:两个有限状态自动机在接受相同的输入字符序列时,若最终处于相同的状态,则它们是等价的。
4. 完全性:有限状态自动机是完全的,当且仅当对于任意状态和输入字符,转移函数中都存在定义的下一个状态。
完全性保证了有限状态自动机在任意时刻都有明确的状态。
三、有限状态自动机的应用有限状态自动机在计算机科学和工程领域有着广泛的应用,下面以两个具体的例子来说明:1. 词法分析器:编译器中的词法分析器主要负责将源代码转换为标记序列。
有限状态自动机可以用来描述词法分析器,不同的状态对应不同的标记。
2. 文本搜索:在文本搜索引擎中,有限状态自动机可以用来匹配模式串。