当前位置:文档之家› 11.气体在液体中的溶解度

11.气体在液体中的溶解度

11.气体在液体中的溶解度
11.气体在液体中的溶解度

《气体在液体中的溶解度》教学设计

PPT

溶解性口诀+气体

溶解性口诀一钾钠铵盐溶水快,①硫酸盐除去钡银铅钙。②氯化物不溶氯化银,硝酸盐溶液都透明。③氢氧根多溶一个钡④口诀中未有皆下沉。⑤注:①钾钠铵盐都溶于水;②硫酸盐中只有硫酸钡、硫酸铅不溶(硫酸钙硫酸银微溶也是沉淀);③硝酸盐都溶于水;④碱性物质中除了钾离子钠离子铵离子锂离子还有钡离子也可溶⑤口诀中没有涉及的盐类都不溶于水; 溶解性口诀二钾、钠、铵盐、硝酸盐;氯化物除银、亚汞;硫酸盐除钡和铅;碳酸、磷酸盐,只溶钾、钠、铵。说明,以上四句歌谣概括了8类相加在水中溶解与不溶的情况。 溶解性口诀三钾钠铵硝皆可溶、盐酸盐不溶银亚汞;硫酸盐不溶钡和铅、碳磷酸盐多不溶。多数酸溶碱少溶、只有钾钠铵钡溶 溶解性口诀四钾、钠、硝酸溶,(钾盐、钠盐和硝酸盐都溶于水。)盐酸除银(亚)汞,(盐酸盐里除氯化银和氯化亚汞外都溶。)再说硫酸盐,不容有钡、铅,(硫酸盐中不溶的是硫酸钡和硫酸铅。)其余几类盐,(碳酸盐、亚硫酸盐、磷酸盐、硅酸盐和硫化物)只溶钾、钠、铵,(只有相应的钾盐、钠盐和铵盐可溶)最后说碱类,钾、钠、铵和钡。(氢氧化钾、氢氧化钠、氢氧化钡和氨水可溶)另有几种微溶物,可单独记住。 溶解性口诀五(适合初中化学课本后面的附录)钾钠铵盐硝酸盐①氢氧根多钡离子②硫酸盐除钡钙银③碳酸溶氢钾钠铵④生成沉淀氯化银⑤溶解性口诀六(初学记忆)不是沉淀物……我们初中的口诀是钾【化合物】、钠【化合物】、铵【铵根】、硝【硝酸盐】都可溶氯化物里银不溶硫酸盐里钡不溶解释①钾盐、钠盐、铵盐、硝酸盐都溶于水②除了以上四种,氢氧根和钡离子结合时也溶于水③硫酸根除了和钡离子、钙离子、银离子结合时不溶于水,其他都溶④碳酸根除了和氢离子、钾离子、钠离子和铵离子结合时溶于水,其他都不溶⑤氯离子只有和银离子结合时不溶于水 溶解性口诀七铵钾钠钡氢氧溶①碳酸只溶铵钾钠②所有硝酸都能溶③盐酸只有银不溶④硫酸只有钡不溶⑤解释①氢氧化铵,氢氧化钾,氢氧化钠,氢氧化钡都溶于水,其余带氢氧根的都不溶于水。②碳酸铵,碳酸钾,碳酸钠都溶于水,其余带碳酸根的都不溶于水。③所有带硝酸根的都能溶于水。。④带氯离子的只有氯化银不溶于水,其余都溶于水。(因为盐酸中有氯离子,所以在这里所有带氯离子的都称为盐酸的同一类物质,注意:此说法只用于理解此溶解性口诀,实际中没有此说法) ⑤带硫酸根的只有硫酸钡不溶于水,其余都溶于水。 适合高中使用的口诀:碳酸只溶钾钠铵;(碳酸盐里钾钠铵盐易溶)氢氧多溶了钡的碱。(氢氧根比碳酸根多溶解一个钡离子)硫酸不溶钡和铅;(硫酸盐里钡和铅不溶)三价碳酸天地间。(三价的阳离子和碳酸根离子都生成气体和沉淀,即上天和入地)还是氢氧人水性好,水底忍渴好几年。(氢氧根和银离子会生成氧化银沉淀是为水底,忍渴指还生成了水)氯化不溶唯有银;(氯化物中只有银盐不溶)硝酸大度溶万金。(硝酸盐都易溶)

二氧化碳在水中的溶解性解读

探究活动 溶解度曲线二氧化碳在水中的溶解性 二氧化碳在水中的溶解性 一、探究目的 1.通过探究认识二氧化碳在水中的溶解性 2.学会运用多种途径进行探究的方法 3.初步学习设计实验探宪方案 二、探究活动 1.问题情景和问题的提出 通常汽水瓶开启后,我们都会看到有大量的气泡冒出,有时甚至夹带着大量的汽水往外冲。汽水瓶和啤酒瓶受热或受到猛烈碰撞时都可能发生爆炸,所以,装有汽水和啤酒的箱子都标有“轻拿轻放、避光保存”的安全标志。 汽水和啤酒通常被称为碳酸饮料。为什么汽水和啤酒中含有二氧化碳呢?二氧化碳能溶解在水中吗?如果二氧化碳能溶于水,那它在水中的溶解程度如何? 2.实验探究 二氧化碳是无色、无味的气体,这给我们的探究带来了一定的困难。但我们可以结合所学知识和已有经验,根据二氧化碳在水中溶解前后和溶解过程中发生的一系列变化,设计方案探究二氧化碳在水中的溶解情况。下面给出了探究二氧化碳在水中溶解情况的实验方案,请你认真研究此方案,从中选择一些方案进行探究。你也可以自己设计方案探究二氧化碳在水中的溶解情况。 探究方案(Ⅰ) 根据“二氧化碳溶解在水中,可与水反应生成碳酸,碳酸遇紫色石蕊试液会变红”探究二氧化碳在水中的溶解情况 二氧化碳+水=碳酸 ()()() 1.下图,取两支试管,加入约1/3体积的滴有紫色石蕊试液的水,分别通入足量的二氧化碳(可用嘴吹)和空气,观察实验现象。 探究方案(Ⅰ)实验示意图 2.把上述两支试管分别放在酒精灯火焰上加热。观察实验现象。

3.回答下列问题: (1)分别通入二氧化碳和空气后,A试管呈________色;B试管呈________色。 (2)加热后,A试管呈________色;B试管呈________色。 (3)碳酸能使紫色石蕊试液变红,为什么在水中通入二氧化碳也能使紫色石蕊试液变红? (4)加热后的现象表明温度对于二氧化碳在水中的溶解度有何影响? 探究方案(Ⅱ) 根据“二氧化碳和空气在不同温度下在水中溶解量的不同”探究二氧化碳在水中的溶解情况。 1.如下图,取两支容积相同、加入水的量相同的大试管,分别在试管中加入约2/3体积的水,然后再分别向试管中通入足量的二氧化碳和空气 探究方案(Ⅱ)实验示意图 2.在试管口上塞上带有干瘪气球的单孔橡皮塞,将两只试管一起放在水浴里加热。观察气球胀大的情况。 3.回答下列问题: (1)两支试管上的气球膨胀程度相同吗? (2)两只气球膨胀程度不同,你能解释其原因吗? 探究方案(Ⅲ) 根据“二氧化碳被水吸收而引起的气体压强变化”探究二氧化碳的在水中的溶解情况。 1.如下图,取两只干燥的质地轻柔软的矿泉水瓶,其中一只收集满二氧化碳气体,另一只盛满空气,分别塞上带有吸满水的胶头滴管的橡皮塞,并塞紧。 探究方案(Ⅲ)实验示意图 2.将胶头滴管里的水挤入矿泉水瓶中,振荡矿泉水瓶,观察矿泉水瓶的变化。 3.回答下列问题:

气体在水中的溶解度

表中的符号意义如下。 ——吸收系数,指在气体分压等于101.325 kPa时,被一体积水所吸收的该气体体积(已折合成标准状况); l——是指气体在总压力(气体及水气)等于101.325 kPa时溶解于1体积水中的该气体体积;q——是指气体在总压力(气体及水气)等于101.325 kPa时溶解于100 g水中的气体质量(单位:g)。 气体在水中的溶解度 The Aquatic Solubilities of Gases 气体 (Gas) H 2 He Ar Kr Xe Rn O 2 N 2 Cl

Br 2 (蒸气) 空气 NH 3 H 2S HCl CO CO 2溶解度符 号 (Solubility symbol)温度(Temperature)/℃010203040506080100×102 q×1042.171.981.821.721.661.631.621.601.60 1.921.741.601.471.391.291.180.79 0.970.9910.9941.0031.0211.07 -1.751.741.721.701.69

- - - 5.284.133.372.882.51 0.1110.0810.0630.0510.043 0.2420.1740.1230.0980.082 0.5100.3260.2220.1620.126- - 0.036 - 0.085-----0 ------0000 ---×102 q×104 ×102 ×102 q×1032.091.84

4.893.803.102.612.312.091.951.761.70 6.955.374.343.593.082.662.271.38 2.942.311.891.621.391.211.050.660 4.613.152.301.801.441.231.020.683 1.460.9970.7290.5720.4590.3930.3290.223 60.535.121.313.8 42.924.814.99.5 2.9182.2841.8681.564- - -- - -- - ---- 2.351.861.551.341.181.091.020.9580.947×102 q×103 l q q l×102

第6章气体在固体中的溶解与扩散

气体在固体中的溶解和扩散

气体在固体中的溶解和扩散 ?气体分子的溶解与渗透 ?溶解 由两种或两种以上物质所组成的均匀体系叫做“溶体”。溶体中含量较多的成分称为“溶剂”,其余称为“溶质”。溶剂可以是液体,也可以是气体、固体;溶质可以是固体,也可以是气体、液体。 ?渗透和渗透率 由于在真空容器器壁两侧的气体总是存在压力差,即使固体壁面材料上存在的微孔小到足以阻止正常气体通过,但任何固体材料总是或多或少地渗透一些气体。气体从密度大的一侧向密度小的一侧渗入、扩散、通过、和逸出固体阻挡层的过程成为渗透。这种情况下气体的稳态流率称为渗透率。 ?气体溶质溶解于固体溶剂中的情况 从微观的角度来看,气体溶解于固体的过程可分为五个步骤: ①吸附 在高压侧,气体分子吸附在固体表面上; ②离解 吸附的气体分子有时在固体表面上离解为原子态; ③溶解 气体在固体表层达到与环境气压相对应的溶解浓度; ④扩散 由于表层浓度比较高,在浓度梯度的作用下气体分子

(或原子)向固体深部扩散,直到浓度均匀为止; ⑤脱附 溶质气体扩散到器壁的另一面重新结合成分子后释放(或气体扩散到器壁的另一面后解吸和释出;

气体在固体中的溶解和扩散 ?扩散速度与溶解度 溶解和渗透速度一般由扩散速度所决定,而最终固体材料可溶解的气体量则取决于溶解度。 ?扩散速度——研究溶解(或解溶)的动力学参量 表示溶解(或解溶)没有达到平衡时的进行速度,研究扩散可以知道固体材料吸收或放出气体 的速度。与渗透气体及壁面材料的种类和性质有密切关系; ?溶解度——研究溶解的静力学参量 在一定温度、一定气压下,固体能溶解气体的饱和浓度,称为该温度及气压下的“溶解度”。溶 解度表示材料内溶解达到动态平衡时所溶解的气体量,研究溶解度可以知道各种固体材料在一 定条件下能溶解多少气体; ?影响溶解度的因素 从宏观来看,溶解度与气体一固体组合的性质、气体压强、温度有关。 ?气体在固体中的溶解度——近似有理想溶体的性质 ①如果溶解时各物质成分能以任何比例互溶,体积有可加性,没有热效应发生,则形 成的溶体称为“理想溶体” ②当溶质浓度很小时,许多实际溶体表现得很像理想溶体。气体在固体中的溶解度一般

一些气体的溶解度

一些气体的溶解度 1、气体的溶解平衡是指在密闭容器中,溶解在液体中的气体分子与液体上面的气体分子保持平衡。溶解达平衡时,气体在液体中的浓度就是气体的溶解度。通常用1体积液体中所能溶解气体的体积表示。表1-1是一些气体在水中的溶解度。 表1-1 一些气体在水中的溶解度 温度/℃ O2 H2 N2 CO2 HCL NH3 0 0.0489 0.0215 0.0235 1.713 507 1176 20 0.0310 0.0182 0.0155 0.878 442 702 30 0.0261 0.0170 0.0134 0.665 413 586(28℃) 35 0.0244 0.0167 0.0126 0.592 ———— 从表1-1中可以明显地看出,温度升高,气体的溶解度减小。也可以看出,不同的气体在水中的溶解度相差很大,这与气体及溶剂的本性有关。H2,O2,N2等气体在水中的溶解度较小,因为这些气体在溶解过程中不与水发生化学反应,称为物理溶解。 2、CO2,HCL,NH3等气体在水中的溶解度较大,因为这些气体在溶解过程中与水发生了化学反应,称为化学溶解。 3、气体在液体中的溶解,除与气体的本性、温度有关外,压力对气体的溶解度的影响也比较大。 4、H2 在溶解过程中不与水发生化学反应,因为是物理溶解,所以除了温度和压力变化外,很难增大氢气在水中的溶解度。 据了解在标准状况.如在20℃和氢气分压为101.3kPa下,1L水能溶解氢气0.0195L,因为氢气是非极性分子,所以在水里的溶解度很小。如果不改变温度和压力难以增大氢气在水中的溶解度。 溶质在溶剂的溶解度是有温度,压力以及溶质和溶剂的本身物理化学性质决定的。氢气在水中的溶解度随着温度的下降和压强的增大而增加。 --来源网络整理,仅供学习参考

科学溶解性表

编辑本段物质的溶解性介绍 溶解性表 离子种类OHˉNO3ˉClˉSO42ˉS2ˉSO32ˉCO32ˉSiO32ˉPO43ˉH+—溶、挥溶、挥溶溶、挥溶、挥溶、挥微溶NH4+溶、挥溶溶溶溶溶溶—溶K+溶溶溶溶溶溶溶溶溶Na+溶溶溶溶溶溶溶溶溶Ba2+溶溶溶难—微难难难Ca2+微溶溶微—难难难难Mg2+难溶溶溶—微微难难Al3+难溶溶溶———难难Mn2+难溶溶溶难难难难难Zn2+难溶溶溶难难难难难Cr3+难溶溶溶———难难Fe2+难溶溶溶难难难难难Fe3+难溶溶溶———难难Sn2+难溶溶溶难———难Pb2+难溶微难难难难难难Cu2+难溶溶溶难难难难难Hg2+—溶溶溶难难——难Ag+—溶难微难难难难难图例 溶:该物质可溶于水 难:难溶于水(溶解度小于0.01g,几乎可以看成不溶,但实际溶解了极少量,绝对不溶于水的物质几乎没有) 微:微溶于水 挥:易挥发或易分解 —:该物质不存在或遇水发生水解 常见沉淀 白色:BaSO4BaCO3CaCO3AgClAg2CO3Mg(OH)2Fe(OH)2Al(OH)3 CuCO3 ZnCO3 MnCO3 Zn(OH)2 蓝色:Cu(OH)2 浅黄色:AgBr 红褐色:Fe(OH)3 浅绿色:Fe(OH)2 编辑本段常见化合物沉淀 Cu(OH)2蓝色沉淀Fe(OH)3红褐色沉淀AgBr淡黄色沉淀AgI ,Ag3PO4黄色沉淀CuO 黑色沉淀Cu2O 红色沉淀Fe2O3 红棕色沉淀FeO 黑色沉淀FeS2 黄色沉淀PbS 黑色沉淀FeCO3 灰色沉淀Ag2CO3 黄色沉淀AgBr 浅黄色沉淀AgCl 白色沉淀Cu2(OH)2CO3 暗绿色沉淀BaCO3白色沉淀(且有CO2生成)CaCO3白色沉淀(且有CO2生成)BaSO4白色沉淀不溶的碳酸盐白色沉淀(且有CO2生成)不溶的碱、金属氧化物白色沉淀(且有CO2生成)Fe(OH)2为白色絮状沉淀(在空气中很快变成灰绿色,再变成Fe(OH)3红褐色沉淀) 编辑本段溶解性口诀 不建议死记硬背,只需记住每个阴离子里哪个不溶即可,钾钠铵硝都溶 溶解性口诀一 钾钠铵盐溶水快,① 硫酸盐除去钡银铅钙。② 氯化物不溶氯化银, 硝酸盐溶液都透明。③ 氢氧根多溶一个钡④ 口诀中未有皆下沉。⑤ 注: ①钾钠铵盐都溶于水; ②硫酸盐中只有硫酸钡、硫酸铅不溶(硫酸钙硫酸银微溶也是沉淀); ③硝酸盐都溶于水; ④碱性物质中除了钾离子钠离子铵离子锂离子还有钡离子也可溶

空气在水中的溶解度

(一)空气的溶解 空气对水属于难溶气体,它在水中的传质速率受液膜阻力所控制,此时,空气的传质速率可表示为:N=KL(C*-C)=KL▲C 式中N--空气传质速率,kg/m2·h; KL--液相总传质系数,m3/m2·h; C*和C--分别为空气在水中的平衡浓度和实际浓度,kg/m3。 由上式可见;在一定的温度和溶气压力下(即C*为定值时),要提高溶气速率,就必须通过增大液相流速和紊动程度来减薄液膜厚度和增大液相总传质系数。增大液相总传质系数,强化溶气传质的途径是采用高效填料溶气罐,溶气用水以喷淋方式由罐顶进入,空气以小孔鼓泡方式由罐底进入,或用射流器、水泵叶轮将水中空气切割为气泡后由罐顶经溃头或孔板通入。这样,就能在有限的溶气时间内使空气在水中溶解量尽量接近饱和搜。当采用空罐时,也应采用上述的布气进水方式,而且应尽可能提高喷淋密度。 在水温一定而溶气压力不很高的条件下,空气在水中的溶解平衡可用亨利定律表示为:V=KTp 式中V--空气在水中的溶解度,L/m3; KT--溶解度系数,L/kPa·m3,是KT值与温度的关系如下: 不同温度下空气在水中的溶解度系数 温度(0C) 0 10 20 30 40 50 KT值(L/kPa.m3) 0.285 0.218 0.180 0.158 0.135 0.120 p--溶液上方的空气平衡分压,kPa(绝压)。 由上式可见,空气在水中的平衡溶解量与溶气压力成正比,且与温度有关。在实际操作中,由于溶气压力受能耗的限制,而且空汽溶解量与溶气利用率相比并不十分重要,因而溶气压力通常控制在490kPa(表压)以下。 溶解于水中的空气量与通入空气量的百分比,称为溶气效率。溶气效率与温度、溶气压力及气掖两相的动态接触面积有关。为了在较低的溶气压力下获得较高的溶气效率,就必须增大气液传质面积,并在剧烈的湍动中将空气分散于水。在20℃和290~490kPa(表压)的溶气压力下,填料溶气罐的平均溶气效率为70~80%,空罐为50~60%。 在一定条件下,空气在水中的实际溶解量与平衡溶解量之比,称为空气在水中的饱和系数。饱和系数的大小与溶气时间及溶气罐结构有关。在2~4min的常用溶气时间内,填料罐的饱和系数为0.7~0.8,空罐为0.8~0.7。不同溶气压力下,空气在水中的实际溶解量与溶气时间的关系如图5-4。大气压下空气在水中的平衡溶解量如表5-4。 大气压下空气在水中的平衡溶解量 温度(0C) 0 5 10 15 20 25 30 平衡溶mg/L 37.55 32.48 28.37 25.09 22.40 20.16 18.14 解量mL/L 29.18 25.69 22.84 20.56 18.68 17.09 15.04

气体溶解度

气体的溶解度 气体的溶解度大小,首先决定于气体的性质,同时也随着气体的压强和溶剂的温度的不同而变化。例如,在20℃时,气体的压强为101 kPa,1 L水可以溶解气体的体积是:氨气为702 L,氢气为0.018 19 L,氧气为0.031 02 L。氨气易溶于水,是因为氨气是极性分子,水也是极性分子,而且氨气分子跟水分子还能形成氢键,发生显著的水合作用,所以,它的溶解度很大;而氢气、氧气是非极性分子,所以在水里的溶解度很小。 当压强一定时,气体的溶解度随着温度的升高而减小。这一点对气体来说没有例外,因为当温度升高时,气体分子运动速率加大,容易自水面逸出。 当温度一定时,气体的溶解度随着气体的压强的增大而增大。这是因为当压强增大时,液面上的气体的浓度增大,因此,进入液面的气体分子比从液面逸出的分子多,从而使气体的溶解度变大。而且,气体的溶解度和该气体的压强(分压)在一定范围内成正比(在气体不跟水发生化学变化的情况下)。例如,在20℃时,氢气的压强是101 kPa,氢气在1 L水里的溶解度是0.018 19 L;同样在20℃,在2×101 kPa时,氢气在1 L水里的溶解度是0.018 19 L×2=0.036 38 L。 气体的溶解度有两种表示方法,一种是在一定温度下,气体的压强(或称该气体的分压,不包括水蒸气的压强)是101 kPa时,溶解于1体积水里,达到饱和的气体的体积(并需换算成在0 ℃时的体积),即这种气体在水里的溶解度。另一种气体的溶解度的表示方法是,在一定温度下,该气体在100 g水里,气体的总压强为101 kPa(气体的分压加上当时水蒸气的压强)所溶解的质量,用这种方法表示气体的溶解度就可和教材中固体溶解度的定义统一起来。 气体物质的溶解性和溶解度的关系

相关主题
文本预览
相关文档 最新文档