第6章芳香烃
- 格式:ppt
- 大小:2.32 MB
- 文档页数:206
第六章 芳香烃● 教学基本要求1、掌握单环芳香烃的同分异构及命名;2、掌握单环芳香烃的化学性质和芳环亲电取代反应历程;3、掌握苯环取代定位规律并能初步应用在合成上;4、了解多环芳烃和Huckel 规则。
● 教学重点单环芳香烃的化学性质和芳环亲电取代反应历程;苯环取代定位规律并能初步在合成上的应用。
● 教学难点单环芳香烃的化学性质和芳环亲电取代反应历程;苯环取代定位规律并能初步在合成上的应用。
● 教学时数: ● 教学方法与手段 1、讲授与练习相结合;2、传统教学方法与与现代教学手段相结合;3、启发式教学。
● 教学内容第一节 单环芳烃在化学反应中不易发生加成、氧化反应,而易进行取代反应的特性,被称之为芳香性。
具有芳香性的烃,统称为芳香烃,简称芳烃。
芳烃有苯系芳烃和非苯系芳烃之分。
1.1苯的结构 1、苯的结构苯的分子式为C 6H 6,碳氢数目比为1:1,应具有高度不饱和性。
事实则不然,在一般条件下,苯不能被高锰酸钾等氧化剂氧化,也不能与卤素、卤化氢等进行加成反应,但它却容易发生取代发应,并且苯环具有较高的热稳定性,加热到900℃也不分解。
苯具有芳香性,必然是由于它存在一个特殊的结构所决定的。
1865年,凯库勒(Kekule’)提出了苯的环状对称结构式: 简写式HCCC CC C H HH此式称为苯的凯库勒式,碳环是由三个C=C 和三个C —C 交替排列而成。
它可以说明苯分子的组成及原子相互连接次序,并表明碳原子是四价的,六个氢原子的位置等同,因而可以解释苯的一元取代产物只有一种的实验事实。
但是凯库勒式不能解释苯环在一般条件下不能发生类似烯烃的加成、氧化反应;也不能解释苯的邻位二元取代产物只有一种的实验事实。
按凯库勒式推测苯的邻位二元取代产物,应有以下两种:显然,凯库勒式不能表明苯的真实结构。
近代物理方法测定证明,苯分子中的六个碳原子和六个氢原子都在同一平面上,碳碳键长均相等(0.1396nm ),六个碳原子组成一个正六边形,所有键角均为120°。
第六章芳香烃Ⅰ. 三维球型芳香分子—富勒烯1985年英国化学家哈罗德·沃特尔·克罗托博士(Sir Harold Walter Kroto,1939年10月7日~)和美国科学家理查德·埃里特·史沫莱(Sir Richard Errett Smalley,1943年6月6日~)等人在氦气流中以激光汽化蒸发石墨实验中首次制得由60个碳组成的碳原子簇结构分子C60。
是90年代科学界重大成果之一。
为此,克罗托等获得1996年度诺贝尔化学奖。
C60是由60个碳原子组成的球型分子,C60具有笼形结构,在物理及化学性质上可看作三维的芳香化合物,分子立体构型属于D5h点群对称性。
包含12个五元环和20个六元环,直径为0.71nm。
因其稳定性可用美国著名建筑设计师R.B.Fuller发明的短程线圆顶结构加以解释,故命名为富勒烯Fullerene。
由于球面弯曲效应和五元环的存在, 引起碳原子轨道的杂化方式改变,C60分子中的杂化轨道介于石墨的sp2和金刚石的sp3杂化之间,σ键沿球面方向,而 键则垂直分布在球的内外表面,形成了三维球状芳香分子。
五边形环为单键,两个六边形环的共用边则为双键。
单键长146pm称为长键;双键长139pm称为短键。
以后又相继发现了C44、C50、C76、C80、C84、C90、C94、C120、C180、C540。
等纯碳组成的分子,它们均属于富勒烯家族,经证实它们属于碳的第三种同素异形体,其中C60的丰度约为50%。
由于特殊的结构和性质,C60及其衍生物在超导、磁性、光学、催化、材料及生物等方面表现出优异的性能,得到广泛的应用。
特别是1990年以来Kratschmer和Huffman等人制备出克量级的C60,使C60的应用研究更加全面、活跃。
C60分子结构示意图Nelson等人报道C60对田鼠表皮具有潜在的肿瘤毒性。
Baier等人认为C60与超氧阴离子之间存在相互作用。