4. 土的应力路径
- 格式:pdf
- 大小:1.77 MB
- 文档页数:32
名词解释土的本构关系土的本构关系是土壤力学领域中广泛被研究的一个重要概念,它描述了土壤的物理和力学性质之间的关联。
在土壤工程和地基工程中,了解土的本构关系对于分析和设计土体的性能至关重要。
本文将探讨土的本构关系的定义、影响因素以及应用。
1. 概念解释土的本构关系指的是土壤的应力应变关系,即土壤在受到不同应力作用下的变形和应力响应的规律。
它研究土壤的变形特性对外力作用的响应,通过建立应力与变形之间的关系来描述土体的力学行为。
2. 影响因素土的本构关系受多种因素的影响,包括土壤类型、粒径分布、含水量、应力路径等。
这些因素对土壤的物理和化学性质产生影响,从而影响土的力学行为和本构关系。
2.1 土壤类型不同类型的土壤具有不同的本构特性。
粘性土主要由黏土颗粒组成,其本构关系常表现为塑性变形,即变形与剪切应力呈非线性关系;而砂土和砾石土则常表现为弹性变形,变形与剪切应力近似线性关系。
2.2 粒径分布土壤的粒径分布对其本构关系也有重要影响。
粒径分布越均匀的土壤通常具有较为线性的本构关系,即变形与应力呈线性关系;而粒径分布不均匀的土壤,特别是含有较多细颗粒的土壤,其本构关系常具有一定的非线性特性。
2.3 含水量土壤的含水量是影响其本构关系的另一个重要因素。
随着含水量的增加,土壤的剪切强度逐渐减小,其本构关系也会发生变化。
水分的存在会改变土颗粒间的摩擦特性,从而影响土体的变形与剪切应力之间的关系。
2.4 应力路径土壤受到的应力路径也会对其本构关系产生影响。
应力路径是指土壤在承受外力时所经历的不同应力状态。
不同的应力路径会导致土壤的本构关系发生变化,即变形与应力呈非线性关系。
3. 应用和意义了解土的本构关系对于土壤工程和地基工程具有重要的应用价值。
通过研究土的本构关系,可以评估土壤的稳定性和承载力,指导地基设计和土壤改良工程。
3.1 地基设计在地基设计中,了解土的本构关系有助于准确评估土壤的变形和稳定性。
通过建立应力-应变模型,可以预测土壤的变形行为,为地基工程提供可靠的依据。
土力学有效应力路径概述及解释说明1. 引言1.1 概述土力学有效应力路径是指土体在外部作用下,内部各个点的应力状态随时间变化的轨迹。
在地质工程领域中,了解土力学有效应力路径对于土体行为和稳定性的评估和预测具有重要意义。
随着土力学研究的深入和应用需求的增加,对有效应力路径的研究也日趋重要。
本文将对土力学有效应力路径进行概述及解释说明。
1.2 文章结构本文共分为五个部分,即引言、土力学有效应力路径、解释说明有效应力路径的变化规律与机制、应力路径测试方法和实验研究进展以及结论。
引言部分对本文的主要内容进行概括,并介绍了本文的结构安排。
1.3 目的本文旨在全面介绍土力学有效应力路径及其相关内容,并探讨其变化规律与机制。
同时,将会总结常用的应力路径测试方法和相关实验研究进展,并提出未来发展方向建议。
通过这些内容,可以帮助读者更好地理解土壤行为与稳定性问题,并促进该领域研究工作的进展。
2. 土力学有效应力路径2.1 定义与背景土力学有效应力路径是指材料中在外部加载作用下的应力变动过程所遵循的路径。
在土工工程领域中,研究土壤中应力变化规律对于预测土壤变形和强度具有重要意义。
2.2 有效应力路径的重要性有效应力路径是土壤中发生变形、破坏和剪切行为的关键参数之一。
通过了解土壤在加载过程中应力状态的变化,可以更好地理解其变形和强度特性。
有效应力路径可以帮助工程师设计合适的基础结构和地下工程,并评估它们的安全性。
2.3 影响因素及其解释说明多种因素会影响土壤中的有效应力路径。
首先是荷载施加速率,快速施加荷载会导致不同的应力传递机制,从而改变有效应力路径。
其次是孔隙水压,水分状态对土壤内部颗粒之间接触及摩擦特性产生影响。
此外,颗粒骨架结构也直接决定了应力传递机制以及有效应力路径。
需要进一步解释的是,荷载历史和路径也是影响有效应力路径的重要因素。
如果土壤在先前的加载过程中受到多次加载和卸载循环的作用,其强度和变形特性将会发生不同。
土木试验题库及答案详解1. 什么是土的压缩性?答案:土的压缩性是指土在压力作用下体积缩小的性质。
它与土的孔隙比、颗粒间摩擦力和颗粒间的粘结力有关。
2. 简述土的三相组成。
答案:土的三相组成包括固体颗粒、水和气体。
固体颗粒是土的骨架,水和气体填充在颗粒间的孔隙中。
3. 土的密实度是如何定义的?答案:土的密实度是指土中固体颗粒的体积与土的总体积之比,通常用百分比表示。
4. 描述土的渗透性。
答案:土的渗透性是指土允许液体或气体通过其孔隙的能力。
渗透性与土的孔隙结构、颗粒大小和形状有关。
5. 什么是土的剪切强度?答案:土的剪切强度是指土在剪切作用下达到破坏时所能承受的最大剪应力。
6. 解释土的固结过程。
答案:土的固结过程是指土在荷载作用下,孔隙水逐渐排出,土体体积逐渐减小,最终达到稳定状态的过程。
7. 什么是土的压缩模量?答案:土的压缩模量是指土在压缩过程中,单位压力变化所引起的单位体积变化的比值。
8. 简述土的抗剪强度指标。
答案:土的抗剪强度指标包括内摩擦角和黏聚力。
内摩擦角是土颗粒间摩擦力的量度,黏聚力是土颗粒间的粘结力。
9. 描述土的分类方法。
答案:土的分类方法主要根据土的颗粒大小、形状、密度、孔隙率和矿物组成等因素进行。
10. 什么是土的饱和度?答案:土的饱和度是指土中孔隙水的体积与土中孔隙总体积之比,通常用百分比表示。
11. 简述土的膨胀性。
答案:土的膨胀性是指土在吸水后体积增大的性质。
膨胀性与土的矿物组成、颗粒大小和孔隙结构有关。
12. 什么是土的冻胀?答案:土的冻胀是指土在低温条件下,孔隙水结冰膨胀,导致土体体积增大的现象。
13. 解释土的抗冻性。
答案:土的抗冻性是指土在反复冻融作用下,保持其结构和性质不发生显著变化的能力。
14. 描述土的工程性质。
答案:土的工程性质包括土的压缩性、渗透性、剪切强度、固结性、膨胀性、冻胀性等,这些性质对土的工程应用有重要影响。
15. 什么是土的承载力?答案:土的承载力是指土在荷载作用下,不发生剪切破坏的最大承载能力。
基础工程公式汇总基础工程公式是工程领域中不可或缺的重要工具,它们在设计、分析和解决问题时起着关键作用。
本文将汇总一些常见的基础工程公式,并以人类的视角进行描述。
一、力学公式1. 牛顿第二定律:力等于物体的质量乘以加速度。
它描述了物体在受力作用下的运动状态。
2. 弹性势能公式:弹性势能等于弹性系数乘以形变的平方。
它用于描述弹性体在受力作用下的形变情况。
二、流体力学公式1. 流量公式:流量等于流体的速度乘以截面积。
它描述了流体在管道中的运动情况。
2. 压力公式:压力等于力除以面积。
它描述了流体对物体施加的压力。
三、热力学公式1. 热传导公式:热传导率等于导热系数乘以温度梯度。
它描述了热量在导体中的传导情况。
2. 热容公式:热容等于物体的质量乘以比热容。
它描述了物体在吸热或放热过程中的温度变化情况。
四、电磁学公式1. 电流公式:电流等于电荷通过导体的速度。
它描述了电荷在导体中的运动情况。
2. 电场公式:电场强度等于电荷除以电场力。
它描述了电荷对周围空间施加的力。
五、结构力学公式1. 应力公式:应力等于力除以截面积。
它描述了物体受到的力在截面上的分布情况。
2. 变形公式:变形等于物体的长度变化除以原始长度。
它描述了物体在受力作用下的变形情况。
六、土力学公式1. 孔隙水压力公式:孔隙水压力等于孔隙水的密度乘以重力加速度乘以水的高度。
它描述了土壤中孔隙水的压力情况。
2. 应力路径公式:应力路径等于应力除以孔隙水压力。
它描述了土体中应力变化的路径。
以上是一些常见的基础工程公式,它们在工程领域中起着重要的作用。
通过理解和应用这些公式,工程师能够更好地解决问题、优化设计,并确保工程的安全性和稳定性。
一名词解释:1、孔隙比:土的孔隙体积与土的颗粒体积之比称为土的孔隙比e。
142、可塑性指标:是指黏土受外力作用最初出现裂纹时应力与应变的乘积。
用来描述土可塑性的物理指标。
143、渗流力:水流经过时必定对土颗粒施加一种渗流作用力,而单位体积土颗粒所受到的渗流作用力为渗流力。
144、变形模量:在部分侧限条件下,土的应力增量与相应的应变增量的比值。
145、应力路径:对加荷过程中的土体内某点,其应力状态的变化可在应力坐标图中以应力点的移动轨迹表示,这种轨迹称为应力路径。
146、弱结合水:是指紧靠于强结合水的外围而形成的结合水膜,亦称薄膜水。
137、塑性指数:是指液限和塑限的差值(省去%符号),即土处在可塑状态的含水量变化范围。
138、有效应力:通过土粒接触点传递的粒间应力。
139、地基固结度:是指地基土层在某一压力作用下,经历时间t所产生的固结变形量与最终固结变形量之比值,或土层中(超)孔隙水压力的消散程度。
1310、砂土液化:当饱和松砂受到动荷载作用,由于孔隙水来不及排出,孔隙水压力不断增加,就有可能使有效应力降到零,因而使砂土像流体那样完全失去抗剪强度。
1311、土体抗剪强度:土体抵抗剪切破坏的受剪强度。
1212、地基承载力:地基承担荷载的能力。
1213、主动土压力:当挡土墙离开土体方向偏移至土体达到极限平衡状态时,作用在墙上的土压力称为主动土压力。
1114、地基极限承载力:是指地基剪切破坏发展即将失稳时所能承受的极限荷载。
1015、塑限:土由半固状态转到可塑状态的界限含水量称为塑限,用符号W p表示。
1016、毛细水:存在于地下水位以上,受到水与空气界面的表面张力作用的自由水。
0917、压缩系数:土体在侧限条件下孔隙比减小量与竖向有效压力增量的比值。
0818、弹性模量:土体在无侧限条件下瞬时压缩的应力应变模量。
0719、有效应力原理:饱和土中任意点的总应力总是等于有效应力加上孔隙水压力;或有效应力总是等于总应力减去孔隙水压力。
土力学名词解释土的结构:土的结构主要是指土粒或土粒集合体的大小,形状,相互排列与联结等。
土的构造:在同一土层中的物质成分和颗粒大小等都相近的各部分之间的相互关系的特征称之为土的构造。
土的密度:单位体积土的质量称之为土的质量密度,简称土的密度。
土的重力密度:单位体积土所受的重力称之为土的重力密度,简称土的重度。
土的相对密度:土粒密度(单位体积土粒的质量)与4 °C时纯水密度之比,称为土粒的相对密度,或土粒比重。
土的含水量:土中水的质量与土粒质量之比(用百分数表示)成为土的含水量。
土的干密度:单位体积中土中土粒的质量成为土的干密度。
土的饱和重度:土中孔隙完全被水充满诗土的重度成为饱和重度。
土的有效重度:地下水位以下的土受到水的浮力作用,扣除水浮力后单位体积所受的重力称为土的有效重度。
土的孔隙比:土中孔隙体积与土粒体积之比土的孔隙率:土中体积和总体积之比土的饱和度:土中水的体积与孔隙体积之比液限:土由可塑状态转到流动状态的界限含水量塑限:土由半固态转到可塑状态的界限含水量。
塑性指数:土的液限和塑限的差值液性指数:是指粘性土的天然含水量和塑性的差值与塑性指数之比碎石土:粒径大于2mm的颗粒质量超过总质量50%的土砂土:粒径大于2mm的颗粒质量不超过总质量的50%,而粒径大于0.075mm的颗粒质量的超过总质量的50%的土粉土:塑性指数小于或等于10,粒径大于0.075mm的颗粒含量不超过总质量的50%的土粘性土:是指塑性指数大于10的土,粘性土按塑性指数大小分为粉质粘土和粘土。
二渗流:水等液体在土体孔隙中流动的现象渗透性:土具有被水等液体透过的性质渗透变形:土工构筑物由于渗透作用而出现的变形水力坡降:单位渗流长度上的水头损失水头:单位重量水体所具有的能量层流:指液流速度十分缓慢,液流相邻两个水分子的轨迹相互平行而不混惨的流动渗透指数:反映土的透水性能的比例系数,相当于水力坡降等于1时的渗透速度流网:在流线和等势线所组成的正交网格称为流网渗透力:单位体积土体内土颗粒所受的渗透作用力,也称为动水力流土:渗透力方向与重力方向相反,且向上的渗透力克服向下的重力时,表层土局部范围内的土体或颗粒群同时发生悬浮,移动的现象,俗称流土或流砂临界水力坡降:指土体发生流土破坏时的水力坡降管涌:在渗透水作用下,土中的细颗粒在粗颗粒形成的孔隙中移动,以至流失,随着土的孔隙不断扩大,渗透流速不断增加,较粗的颗粒也相继被水流逐渐带走,最终导致土体内形成贯通的渗流管道,造成土体塌陷,这种现象称为管涌,也叫潜蚀三自重应力:由土体自重引起的应力基底压力:基础底面传递给地基表面的压力基底附加应力:建筑物建造后在基础底面新增加的压力,是基底压力减去基底标高处原有自重应力之后的应力附加应力:由建筑物荷载在地基土中引起的,附加在原有自重应力之上的应力有效应力:通过土粒承受和传递的粒间应力四角点沉降系数:单位均布矩形荷载在某角点处引起的沉降地基沉降计算深度:计算地基时,超过地基下一定深度,土的变形可不计,该深度称为地基沉降计算深度压缩性:土在压力作用下体积缩小的特性固结:土的压缩随时间而增长的过程压缩曲线:室内土的侧限压缩试验结果,是图的孔隙比与所受的压力关系曲线压缩系数:反映土在一定压力作用下或在一定压力变化区间其压缩性大小的参数,其值等于e——p曲线上对应一定压力的切线斜率或对应一定压力变化区间的割线斜率压缩指数:采用半对数直角坐标测绘的e——log p压缩曲线,其后段接近直线,直线的斜率称为土的压缩指数压缩模量:土在完全侧限条件下的竖向附加压应力与相应的应变增量之比值变形模量:根据土体在无侧限条件下的应力应变关系得到的参数,定义同弹性模量,但由于变形模量随应力水平而异,加载和下载时值不同,故未称作弹性模量,而称变形模量地基最终沉降量:地基土层在荷载作用下,达到压缩稳定时地基表面的沉降量应力比法:地基沉降计算深度取地基附加应力等于自重应力的20%处,在该深度以下如有高压缩性土,则继续向下取至10%处,这种确定沉降计算深度的方法称为应力比法平均附加应力系数:基底下一定深度范围处附加应力系数的平均值变形比法:由基底下一定深度向上取规定的计算厚度,若计算厚度土层的压缩量不大于该深度土层总压缩沉降量的2.5%,即可确定该深度为地基沉降计算深度,这种确定地基沉降计算深度的规范方法为变形比法前期固结压力:土体土层在历史上所经受的最大固结压力正常固结土:历史上所经受的最大固结压力等于现有覆盖土自重应力的土体超固结土:土体历史上曾经受过大于现有覆盖土自重应力的前提固结压力的土体欠固结力:在目前自重应力下还未达到完全固结的土体,土体实际固结压力小于现有覆盖土自重应力超固结比:土体经受过的前期固结压力与现有的土自重应力之比原始压缩曲线:指室内压缩试验e——log p 曲线经修正后得出的符合现场原始土体孔隙比与有效应力的关系曲线五抗剪强度:指土体抵抗剪切破坏的极限能力破坏准则:当土体中的应力组合满足一定短息是,土体即发生破坏,这种应力组合即为破坏准则,也是判定土体是否破坏的标准,破坏准则也称极限平衡条件库伦定律:将土的抗剪强度表示为剪切面上法向应力的函数莫尔—库伦强度理论:由库伦公式表示莫尔包线的强度理论莫尔包线:土地发生剪切破坏时,剪切破坏面上的剪应力是该面上的法向应力的函数,这个函数在坐标中是一曲线,该曲线为莫尔包线快剪试验:在试样施加竖向压力后,立即快速施加水平应力使试样剪切破坏的直接剪切试验,要求在3~5min 内将土样剪坏固结快剪试验:是允许试样在竖向压力下充分排水,待固结稳定后,再快速施加水平剪应力使试样剪切破坏的直接剪切试验,要求3~5内将土样剪坏慢剪试验:是允许试样在竖向压力下充分排水,待固结稳定后,在缓慢地施加水平剪应力使试样剪切破坏的直接剪切试验,为保证剪切过程中土样内不产生孔隙水压力,施加水平剪应力使试样剪切破坏历时较长,对粘性土一般历时4~6h不固结不排水试验:试样在施加周围压力和随后施加竖向压力直至剪切破坏的整个过程中都不允许排出,自始自终关闭排水阀门的三轴压缩试验固结不排水试验:施加周围压力,打开排水阀门,允许排水固结,固结完成后关闭排水阀门,再施加竖向压力,使试样在不排水的条件下剪切破坏的三轴压缩试验固结排水试验:试样在施加周围压力后,允许排水固结,待固结稳定后,再排水条件下施加竖向压力至试件剪切破坏的三轴压缩试验无侧限抗压强度:将圆柱土样放在无侧限抗压仪中,不施加任何侧向压力的情况下施加垂直压力,直到使土样剪切破坏,剪切破坏时试样所能承受的最大轴向压力孔隙压力系数:指土体在不排水和不排气的条件下,由外荷载引起的孔隙压力增量与总应力增量的比值天然休止角:指干燥砂土自然堆积所形成的最大坡角临界孔隙比:由不同初始孔隙比的砂土试样在同一压力下进行剪切试验,得出初始孔隙比与体积变化之间的关系,相应于体积变化为零的初始孔隙比为临界孔隙比应力路径:土体内应力状态的变化可在应力坐标图中以应力点的移动轨迹表示,该移动轨迹为应力路径破坏主应力线:在p-q坐标表示的剪切破坏包线,是表示极限状态应力圆最大剪应力的特征点的连线。
1. 什么叫颗粒级配曲线,如何定性和定量分析土的级配?(出现4次)答:土的颗粒级配(粒度成分)——土中各个粒组的相对含量(各粒组占土粒总重的百分数)。
确定各粒组相对含量的方法:(1)颗粒分析试验,①筛分法,②沉降分析法,(2)试验成果——颗粒级配累积曲线,进行曲线分析:曲线较陡,则表示粒径大小相差不多,土粒较均匀;曲线平缓,则表示粒径大小相差悬殊,土粒不均匀,即级配良好。
2. 什么叫粘性土的液性指数?如何应用液性指数评价土的工程性质。
答:液性指数——粘性土的天然含水量和塑限的差值与塑性指数之比。
用L I 表示。
L I 值愈大,土质愈软;反之,土质愈硬。
)(p ωω ,0<L I 坚硬状态,10≤≤L I ,可塑状态)(L ωω 1>L I 流动状态3. 甲为条形基础,乙为正方形基础,两者基础宽度相同,埋深相同,基底附加压力也相同,地基土完全相同,两基础沉降量是否相同?为什么?答:不同,方形荷载所引起的σz ,其影响深度要比条形荷载小的多,条形基础下地基土的侧向变形主要发生在浅层,而位于基础边缘下的土体容易发生剪切滑动而首先出现塑性变形区。
4. 以固结不排水为例,说明三轴试验如何测定土的抗剪强度指标。
答:如果试样所受到的周围固结压力大于它曾受到的最大固结压力Pc ,属于正常固结试样,如果小于,属于超固结试样。
1变形模量和压缩模量有何关系和区别?(2次)答:土的变形模量是土体在无侧限条件下的应力和应变的比值,土的压缩模量是土体在侧限条件下的应力与应变的比值。
2什么是自重应力和附加应力?答:自重应力——由土体本身有效重量产生的应力称为自重应力。
附加应力:土体受到外荷载以及地下水渗流、地震等作用下附加产生的应力增量,是产生地基变形的主要原因,也是导致地基土的强度破坏和失稳的重要原因。
3填土内摩擦角对土压力大小有何影响?答:计算主动土压力时,一般可忽略内摩擦角的影响,但计算被动土压力和静止土压力时,考虑内摩擦角降低,导致墙背压力的增大4如下图所示,图中有无错误?5 为什么饱和黏性土不固结不排水剪的强度包线是一条水平线?答:如果饱和粘性土从未固结过,将是一种泥浆状土,抗剪强度也必然等于0,一般从天然土层中取出的试样一般都具有一定的天然的强度,天然土层的有效固结压力是随深度变化的,所以不排水抗剪强度也随深度变化,均质的正常固结不排水强度大致随有效固结压力成线性增大。