八年级数学上二次根式提高题
- 格式:doc
- 大小:272.00 KB
- 文档页数:4
一、选择题1.5﹣x ,则x 的取值范围是( ) A .为任意实数B .0≤x≤5C .x≥5D .x≤52.下列运算错误的是( ) A= B.=C.)216=D.)223=3.a b =--则( ) A .0a b +=B .0a b -=C .0ab =D .220a b +=4.=a 、x 、y 是两两不同的实数,则22223x xy y x xy y +--+的值是( )A .3B .13C .2D .535.当4x =-的值为( )A .1BC .2D .36.如果关于x 的不等式组0,2223x mx x -⎧>⎪⎪⎨-⎪-<-⎪⎩的解集为2x >则符合条件的所有整数m 的个数是( ). A .5B .4C .3D .27.下列计算正确的是( )A 6=± B.=C.6= D=(a≥0,b≥0)8.下列计算正确的是( )A=B=C4=D3=-9.下列运算正确的是() A=B .(28-=C12=D1=10.与根式1x x--的值相等的是( ) A .x -B .2x x --C .x --D .x -二、填空题11.若m =20161-,则m 3﹣m 2﹣2017m +2015=_____.12.把31a a-根号外的因式移入根号内,得________ 13.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.14.已知函数1x f xx,那么21f _____.15.120654010144152118+++235a b c +的形式(,,a b c 为正整数),则abc =______.16.下面是一个按某种规律排列的数阵:11第行325 62第行722310 11 233第行 131541732 19254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示).17.14+⋅⋅⋅=的解是______.18.已知实数m 、n 、p 满足等式,则p =__________.19.=_______.20.a ,小数部分是b b -=______.三、解答题21.观察下列各式子,并回答下面问题.(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(1,该式子一定是二次根式,理由见解析;(215和16之间.理由见解析. 【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断;(2)将16n =代入,得出第16,再判断即可. 【详解】解:(1 该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(215=16=,∴1516<<.15和16之间. 【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.22.解:设x222(35)(35)2(35)(35)x =++-++-,即235354x =++-+,x 2=10 ∴x =10.∵3535++->0,∴3535++-=10. 请利用上述方法,求4747++-的值. 【答案】14 【分析】根据题意给出的解法即可求出答案即可. 【详解】设x =47++47-,两边平方得:x 2=(47+)2+(47-)2+247?47+-, 即x 2=4+7+4﹣7+6, x 2=14 ∴x =±14.∵47++47->0,∴x =14. 【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.23.先化简,再求值:a+212a a -+,其中a =1007. 如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018. 【答案】(1)小亮(22a (a <0)(3)2013. 【解析】试题分析:(12a ,判断出小亮的计算是错误的; (22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮(2(a <0)(3)原式=a+2(3-a )=6-a=6-(-2007)=2013.24.-10 【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可 【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10. 【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.25.(1)计算:(2)先化简,再求值:(()8a a a a +--,其中14a =.【答案】(1)2)82-a ,【分析】(1)分别根据二次根式的除法法则、二次根式的性质、二次根式的乘法法则计算和化简各项,再合并同类二次根式即可;(2)分别根据平方差公式和单项式乘以多项式的法则计算各项,再把a 的值代入化简后的式子计算即可. 【详解】(1)==;(2)(()8a a a a +--2228a a a =--+82a =-,当14a =时,原式1824⎫=⨯-=⎪⎭.【点睛】本题考查了整式的乘法和二次根式的混合运算,属于常考题型,熟练掌握基本知识是解题的关键.26.已知x y ==求下列各式的值: (1)22x xy y -+; (2).y xx y+ 【答案】(1) 72;(2)8. 【分析】计算出xy=12, (1)把x 2-xy+y 2变形为(x+y )2-3xy ,然后利用整体代入的方法计算;(2)把原式变形为2()2x y xyxy+-,然后利用整体代入的方法计算.【详解】∵x =,y ==32∴xy=12, (1)22x xy y -+ =(x+y )2-3xy,=2132-⨯ =72; (2)y x x y +=2212()22812x y xy xy-⨯+-==.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.27.2020(1)- 【答案】1 【分析】先计算乘方,再化简二次根式求解即可. 【详解】2020(1)-=1 =1. 【点睛】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.28.已知x²+2xy+y²的值. 【答案】16 【解析】分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x²+2xy+y²=(x+y )²,然后利用整体代入的方法计算. 本题解析: ∵x² +2xy+y² =(x+y)²,∴当∴x²+2xy+y²=(x+y)²=(2−=16.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据二次根式的性质得出5-x≥0,求出即可. 【详解】|5|5x x ==-=-, ∴5-x≥0, 解得:x≤5,故选D . 【点睛】本题考查了二次根式的性质的应用,注意:当a≥0,当a≤0.2.C解析:C 【分析】根据二次根式的化简、乘法、完全平方公式、平方差公式逐项判断即可得. 【详解】A =,此项正确;B 、=C 、)21516=+=+D 、)22743=-=,此项正确;故选:C . 【点睛】本题考查了二次根式的化简与乘法运算,熟记运算法则是解题关键.3.C解析:C 【分析】直接利用二次根式的性质 ,将已知等式左边化简,可以得到a 与b 中至少有一个为0,进而分析得出答案即可. 【详解】解:∵a b =--, ∴a-b=-a-b , 或b-a=-a-b∴a= -a ,或b=-b, ∴a=0,或b=0, ∴ab=0, ∴0ab =. 故选:C . 【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.4.B解析:B 【分析】根据根号下的数要是非负数,得到a (x-a )≥0,a (y-a )≥0,x-a≥0,a-y≥0,推出a≥0,a≤0,得到a=0,代入即可求出y=-x ,把y=-x 代入原式即可求出答案. 【详解】由于根号下的数要是非负数,∴a (x-a )≥0,a (y-a )≥0,x-a≥0,a-y≥0,a (x-a )≥0和x-a≥0可以得到a≥0, a (y-a )≥0和a-y≥0可以得到a≤0, 所以a 只能等于0,代入等式得,所以有x=-y , 即:y=-x ,由于x ,y ,a 是两两不同的实数, ∴x >0,y <0. 将x=-y 代入原式得: 原式=()()()()2222313x x x x x x x x +---=--+-. 故选B . 【点睛】本题主要考查对二次根式的化简,算术平方根的非负性,分式的加减、乘除等知识点的理解和掌握,根据算术平方根的非负性求出a 、x 、y 的值和代入求分式的值是解此题的关键.5.A解析:A 【分析】根据分式的运算法则以及二次根式的性质即可求出答案. 【详解】 解:原式2223232323x x x x112323x x将4x =代入得, 原式114234232211131331133331131=.故选:A. 【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.6.C解析:C 【分析】先求出两个不等式的解集,根据不等式组的解集为2x >可得出m ≤2的值是整数,得出|m|=3或2,于是m=-3,3,-2或2,由m ≤2,得m=-3,-2或2. 【详解】 解:解不等式02x m->得x >m , 解不等式223x x --<-得x >2, ∵不等式组解集为x >2, ∴m ≤2,则|m|=3或2,∴m=-3,3,2或-2, 由m ≤2得,m=-3,-2或2.即符合条件的所有整数m 的个数是3个. 故选:C . 【点睛】本题考查了解一元一次不等式组以及二次根式的性质,熟练运用一元一次不等式组的解法是解题的关键.7.D解析:D6=,故A 不正确;根据二次根式的除法,可直接得到2=,故B 不正确; 根据同类二次根式的性质,可知C 不正确;= (a≥0,b≥0)可知D 正确.故选:D8.B解析:B 【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案. 【详解】解:A A 错误;B =,故B 正确;C ==C 错误;D 3=,故D 错误;故选:B .【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.9.B解析:B【分析】根据二次根式的性质及运算法则依次计算各项后即可解答.【详解】选项A A 错误;选项B ,(2428-=⨯=,选项B 正确;选项C 124==,选项C 错误;选项D 1,选项D 错误.综上,符合题意的只有选项B .故选B .【点睛】本题考查了二次根式的性质及运算法则,熟练运用二次根式的性质及运算法则是解决问题的关键.10.D解析:D【分析】先化简二次根式,再计算二次根式的乘法即可.【详解】由题意可得x 是负数,所以-x x-⋅=- 故选:D .【点睛】此题考查二次根式的化简,二次根式的乘法计算法则,正确化简二次根式是解题的关键,注意题目中x 的符号是负号,这是解题的难点. 二、填空题11.4030【分析】利用平方差公式化简m ,整理要求的式子,将m 的值代入要求的式子计算即可.【详解】m== m==+1,∴m3-m2-2017m+2015=m2(m ﹣1)﹣2017m+2015解析:4030【分析】利用平方差公式化简m ,整理要求的式子,将m 的值代入要求的式子计算即可.【详解】mm ), ∴m 3-m 2-2017m +2015=m 2(m ﹣1)﹣2017m +2015= )22017)+2015=(2017+2015﹣2=4030.故答案为4030.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.12.【分析】根据被开方数大于等于零,可得出,再根据二次根式的性质进行计算即可.【详解】解:∵,∴,∴.故答案为:.【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质【分析】根据被开方数大于等于零,可得出0a <,再根据二次根式的性质进行计算即可.【详解】 解:∵310a-≥, ∴0a <,∴===故答案为:a . 【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质是解此题的关键.13.a+3【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2∵a >0+3.a =a+3. 【点睛】本题考查阅读理解的能力,正确理解题意是关键. 14.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时, .【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x =,代入原函数即可解答. 【详解】 因为函数1x f xx ,所以当1x =时, 211()2221f x . 【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 15.【解析】【分析】根据题意,可得到=,利用平方关系把根号去掉,根据、、的系数相等的关系得到关于a ,b ,c 的三元方程组,解方程组即可.【详解】∵=∴,即.解得.【点睛】本题考查了解析:【解析】【分析】a ,b ,c 的三元方程组,解方程组即可.【详解】∴(22118=,即2222118235a b c =+++++.2222352118,2120,2540,2144,a b c ab ac bc ⎧++=⎪=⎪∴⎨=⎪⎪=⎩ 解得15,4,18.a b c =⎧⎪=⎨⎪=⎩154181080abc ∴=⨯⨯=.【点睛】本题考查了二次根式的加减,解本题的关键是将等式平方去根号,利用等量关系中等式左、.16.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n (n ≥3且n 是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.17.9【解析】【分析】设y=,由可将原方程进行化简,解化简后的方程即可求得答案.【详解】设y=,则原方程变形为,∴,即,∴4y+36-4y=y(y+9),即y2+9y-36=0,∴解析:9【解析】【分析】设()11111y y y y =-++可将原方程进行化简,解化简后的方程即可求得答案. 【详解】设则原方程变形为 ()()()()()1111112894y y y y y y ++=+++++, ∴1111111112894y y y y y y -+-++-=+++++, 即11194y y -=+, ∴4y+36-4y=y(y+9),即y 2+9y-36=0,∴y=-12或y=3, ∵, ∴,∴x=9,故答案为:9.【点睛】本题考查了解无理方程,解题的关键是利用换元法,还要注意()11111y y y y =-++的应用. 18.5【解析】试题解析:由题可知,∴,∴,∴,①②得,,解方程组得,∴.故答案为:5.解析:5【解析】试题解析:由题可知3030m n m n -+≥⎧⎨--≥⎩, ∴3m n +=,0=,∴35200m n p m n p +--=⎧⎨--=⎩①②, ①-②得2620m n +-=,31m n +=,解方程组331m n m n +=⎧⎨+=⎩得41m n =⎧⎨=-⎩, ∴4(1)5p m n =-=--=.故答案为:5.19.【分析】设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【点睛】此题考查的是二t =,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t =,由算术平方根的非负性可得t ≥0,则244t =+8=+8=+81)=+6=+21)=1t ∴=..【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.20.【详解】若的整数部分为a ,小数部分为b ,∴a=1,b=,∴a -b==1.故答案为1.解析:【详解】a ,小数部分为b ,∴a =1,b 1,∴-b 1)=1.故答案为1.三、解答题21.无22.无23.无25.无26.无27.无28.无。
八年级数学二次根式拓展提高之恒等变形(实数)拔高练习试卷简介:全卷共三个大题,第一题是填空(7道,每道5分);第二题是计算(3道,每道5分);第三题是解答(4道,每道10分),满分120分,测试时间30分钟。
本套试卷有一定的难度系数,包含了根式的意义及其与绝对值、完全平方式的综合运用,同学们可以在做题过程中回顾课本,加深对根式的理解。
学习建议:本讲内容是在课本基础上的拔高训练,深入地剖析了根式,需要同学们更加深入地理解根式的意义,也要熟悉其与绝对值、完全平方式的综合运用。
虽然题目有些难度,但万变不离其宗,大家可以在做这部分题的时候多回顾课本,真正做到理解最基本的知识点。
一、填空题(共7道,每道5分)1.化简:=______.答案:6解题思路:被开方数必须大于等于零,∴,即.又,∴a-1=0 ∴a=1 代入所求式子,答案为6.易错点:忽略了被开方数是大于等于零这一隐含条件试题难度:三颗星知识点:二次根式有意义的条件2.若有意义,则a-b=______.答案:0解题思路:若使有意义,需满足2ab-b-a2-b2≥0,即-(a-b)2≥0∴(a-b)2≤0 又(a-b)2≥0 ∴(a-b)2=0 ∴a-b=0易错点:没有掌握被开方数必须大于等于零这一条件试题难度:二颗星知识点:二次根式有意义的条件3.已知,若axy-3x=y,则a=______.答案:解题思路:算术平方根和完全平方式都是大于等于零的,而二者之和等于零,所以二者分别等于零,故可得出x=,y=3.然后代入axy-3x=y,可得a=.易错点:求不出x、y的值试题难度:三颗星知识点:二次根式有意义的条件4.若,则3x+4y=______.答案:-7解题思路:若使式子式子有意义,须满足,可得x=-2,y=∴3x+4y=-7. 易错点:求不出x、y的值试题难度:三颗星知识点:分式有意义的条件5.若x<0,则=______,=______.答案:-x;x解题思路:一个数先平方再开方,等于它的绝对值;一个数先立方再开立方,等于它本身. 易错点:一个数先平方再开平方等于它的绝对值,而非它本身.试题难度:二颗星知识点:二次根式的性质与化简6.设m>n>0,m²+n²=4mn,则的值等于___.答案:解题思路:将m²+n²=4mn左边同时加减2mn,即可求得m+n、m-n的值,然后代入求解. 易错点:没有看出所求式子和已知式子的联系;符号正负判断错误.试题难度:四颗星知识点:二次根式的混合运算7.若,则x2+4x-5=______;若,则x2+2x-1=______.答案:2001;2010解题思路:先将所求式子变形为完全平方式的形式,然后代入求解.易错点:直接代入导致计算错误试题难度:三颗星知识点:二次根式的混合运算二、计算题(共3道,每道5分)1.已知b<0<a,化简:|a-b|答案:-b解题思路:一个数先平方再开方等于它的绝对值;正数的绝对值等于它本身,负数的绝对值等于它的相反数.易错点:一个数先平方再开方等于它的绝对值,而非它本身.试题难度:三颗星知识点:绝对值2.化简:答案:2解题思路:一个数先平方再开方等于它的绝对值;一个数先开方再平方等于它本身.易错点:混淆了先平方再开方和先开方再平方的结果.试题难度:三颗星知识点:二次根式的性质与化简3.当1<x<4时,化简:答案:3解题思路:观察得知,被开方数是完全平方式,利用一个数先平方再开方等于它的绝对值进行解题.易错点:一个数先平方再开方等于它的绝对值,而非它本身.试题难度:三颗星知识点:二次根式的性质与化简三、解答题(共7道,每道10分)1.如果式子化简的结果为2x-3,求x的取值范围.答案:=|x-1|+|x-2|=2x-3,∴x-1≥0且x-2≥0. 解得x≥2解题思路:由x的系数判断绝对值符号内数的正负易错点:由化简结果不知道怎么判断x的范围试题难度:四颗星知识点:绝对值2.已知|a|=5,且ab>0,求a+b的值.答案:∵,∴|b|=3 ∴b=±3 而|a|=5 ∴a=±5 又ab>0,∴ab同号,即当a=5时,b=3;当a=-5时,b=-3 ∴答案为8或-8解题思路:两数想乘,同号得正、异号得负易错点:漏掉了a、b同时为负的情况试题难度:三颗星知识点:绝对值3.已知a2+12ab+9b2的算术平方根.答案:=∵a<0,b<0 ∴原式=-2a-3b解题思路:4a2+12ab+9b2是一个完全平方式,利用一个数先平方再开方等于它的绝对值进行解题易错点:一个数先平方再开方等于它的绝对值,而非它本身.试题难度:三颗星知识点:绝对值4.已知,求的值.答案:∵,∴a>0 ∴-2=1 ∴=3∴解题思路:先判断出a>0,再利用完全平方和与完全平方差的转换进行解题易错点:没有判断出a与0的大小关系试题难度:四颗星知识点:完全平方公式5.一个数的平方根是a2+b2和4a-6b+13,求这个数.答案:由已知,可得a2+b2+4a-6b+13=0,即(a+2)2+(b-3)2=0 ∴a=-2、b=3 ∴a2+b2=13 ∴这个数为169.解题思路:一个数的两个平方根互为相反数易错点:答案错误:所求的是这个数而不是它的平方根试题难度:四颗星知识点:二次根式的应用6.设a是一个无理数,且a、b满足ab+a-b=1,求b.答案:∵ab+a-b=1 ∴b(a-1)=1-a 又∵a为无理数∴a-1也是无理数,即a-1≠0 ∴b=1 解题思路:将a看作已知数、b看作未知数,然后移项求解易错点:找不到突破口试题难度:三颗星知识点:解一元一次方程7.数轴上,表示1、的对应点分别为A、B,点B关于点A的对称点为点C,求点C所表示的数.答案:如图,∵AC=AB=,∴OC=OA-AC=1-()=.解题思路:点B、点C关于点A对称,那么AC=AB.易错点:找不到点C所代表的数试题难度:四颗星知识点:数轴。
《二次根式》练习题一1.下列式子:①;②;③﹣;④;⑤,是二次根式的有()A.①③B.①③⑤C.①②③D.①②③⑤2.下列运算结果正确的是()A.B.C.(﹣)2=2D.3.下列式子是最简二次根式的是()A.B.C.D.4.下列二次根式中,最简二次根式是()A.−√0.75B.14√63C.13√101D.√155.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件不能判断△ABC是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5D.a:b:c=3:4:56.计算÷3×的结果正确的是()A.1B.2.5C.5D.67.下列整数中,与最接近的是()A.﹣1B.0C.1D.28.已知a<0,b≠0,化简二次根式的结果是()A.a B.﹣a C.a D.﹣a9.我们把形如a+b(a,b为有理数,为最简二次根式)的数叫做型无理数,如2 +1是型无理数,则(﹣)2属于无理数的类型为()A.型B.型C.型D.型10.已知y=x+5﹣,当x分别取1,2,3,…,2021时,所对应y值的总和是()A.16162B.16164C.16166D.1616811.如图,∠MON=90°,已知△ABC中,AC=BC=10,AB=12,△ABC的顶点A、B分别在边OM、ON上,当点B在边ON上运动时,点A随之在边OM上运动,△ABC的形状保持不变,在运动过程中,点C到点O的最大距离为()A.12.5B.13C.14D.15《二次根式》练习题二12.下列4个数:0.,,π﹣3.14,,其中无理数有个.13.若使代数式有意义,则x的取值范围是.14.计算的结果是.15.计算•(a≥0,b≥0)=.16.计算×÷2=.17.计算:(3+2)(3﹣2)=.18.若成立,则x满足的条件为.19.若=2﹣x,则实数x满足的条件是.20.设a、b、c是△ABC的三边的长,化简的结果是.21.若|2020﹣m|+=m,则m﹣20202=.22.计算:(1)++|1﹣|(2)3×÷223.计算:(1)÷(2)÷3×24.计算:•(﹣)÷(a>0)25.已知a、b满足,求的平方根.《二次根式》练习题三26.如图,四边形ABCD中,∠A=90°,AB=AD=3,BC=10,CD=8,求四边形ABCD 的面积.27.如图,已知BA=BC,BD=BE,∠ABC=∠EBD=90°.(1)求证:AB平分∠EAC;(2)若AD=1,CD=3,求BD.28.求+的值.解:设x=+,两边平方得:x2=()2+()2+2=3++3﹣+4=10∴x=±∵+>0,∴+=请利用上述方法,求+的值.29.先阅读材料,然后回答问题.(1)小张同学在研究二次根式的化简时,遇到了一个问题:化简.经过思考,小张解决这个问题的过程如下:①=②=③=④在上述化简过程中,第步出现了错误,化简的正确结果为;(2)请根据你从上述材料中得到的启发,化简①;②30.如图1,∠MCN=90°,点A在射线CM上滑动,点B在射线CN上滑动,且线段AB 的长始终保持10cm不变.(1)若AC=6cm,动点P从点A出发,从点A→点B→点C→点A,速度为2cm/s,设运动时间为ts.当t为何值时,△ACP为等腰三角形;(2)如图2,在滑动过程中,以AB为斜边在AB的右侧作Rt△ABE,在滑动的过程中EC的最大值为 .(直接写出结果)参考答案练习题一1.下列式子:①;②;③﹣;④;⑤,是二次根式的有()A.①③B.①③⑤C.①②③D.①②③⑤【解答】解:是二次根式的有①③⑤;②中被开方数小于0无意义,④是三次根式.故选:B.2.下列运算结果正确的是()A.B.C.(﹣)2=2D.【解答】解:A:∵=4,∴A选项不符合题意;B:∵==3,∴B选项不符合题意;C:∵(﹣)2=2,所以C选项符合题意;D:∵,所以D选项不符合题意.故选:C.3.下列式子是最简二次根式的是()A.B.C.D.【解答】解:A.=2,因此选项A不符合题意;B.=,因此选项B不符合题意;C.==,因此选项C不符合题意;D.的被开方数是整数,且不含有能开得尽方的因数,因此是最简二次根式,因此选项D符合题意;故选:D.4.下列二次根式中,最简二次根式是()A.−√0.75B.14√63C.13√101D.√15【解答】解:最简二次根式的条件:①被开方数的因式或因数的指数小于2;②被开方数的因数是整数,因式是整式.A、D不符合上述条件②,不是最简二次根式;B、不符合上述条件①,不是最简二次根式.故选C.5.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件不能判断△ABC是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5D.a:b:c=3:4:5【解答】解:A、∵∠B=∠C+∠A,且∠A+∠B+∠C=180°,∴∠B=90°,故△ABC 是直角三角形;B、∵a2=(b+c)(b﹣c),∴a2+c2=b2,故△ABC是直角三角形;C、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,∴最大角∠C=75°≠90°,故△ABC不是直角三角形;D、由条件可设a=3k,则b=4k,c=5k,那么a2+b2=c2,故△ABC是直角三角形;故选:C.6.计算÷3×的结果正确的是()A.1B.2.5C.5D.6【解答】解:÷3×=3÷3×=×=1,故选:A.7.下列整数中,与最接近的是()A.﹣1B.0C.1D.2【解答】解:∵4<5<9,∴2<<3,∵2.22=4.84,2.32=5.29,∴2.2<<2.3,∴1.2﹣1<1.3,∴与最接近的是1.故选:C.8.已知a<0,b≠0,化简二次根式的结果是()A.a B.﹣a C.a D.﹣a【解答】解:因为a<0,b≠0,所以,故选:B.9.我们把形如a+b(a,b为有理数,为最简二次根式)的数叫做型无理数,如2+1是型无理数,则(﹣)2属于无理数的类型为()A.型B.型C.型D.型【解答】解:(﹣)2=6﹣2××+2=﹣4+8,属于型无理数,故选:B.10.已知y=x+5﹣,当x分别取1,2,3,…,2021时,所对应y值的总和是()A.16162B.16164C.16166D.16168【解答】解:y=x+5﹣|x﹣3|,当x≤3时,∴y=x+5+x﹣3=2x+2,当x>3时,∴y=x+5﹣(x﹣3)=x+5﹣x+3=8,∴y值的总和为:4+6+8+8+8+……+8=4+6+8×2019=16162,故选:A.11.如图,∠MON=90°,已知△ABC中,AC=BC=10,AB=12,△ABC的顶点A、B分别在边OM、ON上,当点B在边ON上运动时,点A随之在边OM上运动,△ABC的形状保持不变,在运动过程中,点C到点O的最大距离为()A.12.5B.13C.14D.15【解答】解:取AB的中点D,连接CD,如图所示:∵AC=BC=10,AB=12,∵点D是AB边中点,∴BD=AB=6,∴CD===8,连接OD,OC,有OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值是OD+CD,又∵△AOB为直角三角形,D为斜边AB的中点,∴OD=AB=6,∴OD+CD=6+8=14,即点C到点O的最大距离为14,故选:C.练习题二12.下列4个数:0.,,π﹣3.14,,其中无理数有2个.【解答】解:0.,,π﹣3.14,,其中无理数有π﹣3.14,,一共2个.故答案为:2.13.若使代数式有意义,则x的取值范围是x≤2且x≠0.【解答】解:由题意得:2﹣x≥0且x≠0,解得:x≤2且x≠0,故答案为:x≤2且x≠0.14.计算的结果是3.【解答】解:原式==3,故答案为:3.15.计算•(a≥0,b≥0)=6a.【解答】解:•(a≥0,b≥0)==6a.故答案为:6a.16.计算×÷2=3.17.计算:(3+2)(3﹣2)=1.【解答】解:原式=32﹣(2)2=9﹣8=1.故答案为:1.18.若成立,则x满足2≤x<3.【解答】解:∵成立,∴,解得:2≤x<3.故答案为:2≤x<3.19.若=2﹣x,则实数x满足的条件是x≤2.20.设a、b、c是△ABC的三边的长,化简的结果是2b﹣2a.【解答】解:原式=|a﹣b﹣c|﹣|a﹣b+c|=﹣a+b+c﹣a+b﹣c=2b﹣2a,故答案为:2b﹣2a.21.若|2020﹣m|+=m,则m﹣20202=2021.【解答】解:由题意得:m﹣2021≥0,解得:m≥2021,∵|2020﹣m|+=m,∴m﹣2020+=m,∴=2020,∴m﹣2021=20202,则m﹣20202=2021,故答案为:2021.22.计算:(1)++|1﹣|【解答】解:原式=3﹣2﹣1+=.计算:(2)3×÷2.【解答】解:原式=(3×÷2)==.23.计算:(1)÷(2)÷3×【解答】(1);(2).24.计算:•(﹣)÷(a>0).【解答】解:原式====.25.已知a、b满足,求的平方根.【解答】解:由题意知:,∴a2﹣4=0,∴a=±2,又a﹣2≠0,∴a=﹣2,当a=﹣2时,b=﹣1,∴===2,的平方根的平方根为±.练习题三26.如图,在四边形ABCD中,∠A=90°,AB=AD=3,BC=10,CD=8,求四边形ABCD的面积.【解答】解:连接BD,∵∠A=90°,AB=AD=3,∴BD===6,∵BC=10,CD=8,∴BD2+CD2=BC2,∴△BDC是直角三角形,且∠BDC=90°,∴四边形ABCD的面积S=△ABD+S△BDC==+=9+24=33.27.如图,已知BA=BC,BD=BE,∠ABC=∠EBD=90°.(1)求证:AB平分∠EAC;(2)若AD=1,CD=3,求BD.【解答】解:(1)证明:∵∠ABC=∠EBD=90°,∴∠ABD+∠CBD=∠ABD+∠ABE,∴∠CBD=∠ABE,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS),∴∠EAB=∠BAC,∴AB平分∠EAC;(2)答案:.28.求+的值解:;设x=+,两边平方得:x2=()2+()2+2,即x2=3++3﹣+4,x2=10∴x=±.∵+>0,∴+=请利用上述方法,求+的值.【解答】解:设x=+,两边平方得:x2=()2+()2+2,即x2=4++4﹣+6,x2=14∴x=±.∵+>0,∴x=29.先阅读材料,然后回答问题.(1)小张同学在研究二次根式的化简时,遇到了一个问题:化简.经过思考,小张解决这个问题的过程如下:①=②=③=④在上述化简过程中,第④步出现了错误,化简的正确结果为;(2)请根据你从上述材料中得到的启发,化简①;②.【解答】解:(1)①=②=③=||=.故答案为:④;;(2)①.②===.30.如图1,∠MCN=90°,点A在射线CM上滑动,点B在射线CN上滑动,且线段AB 的长始终保持10cm不变.(1)若AC=6cm,动点P从点A出发,从点A→点B→点C→点A,速度为2cm/s,设运动时间为ts.当t为何值时,△ACP为等腰三角形;(2)如图2,在滑动过程中,以AB为斜边在AB的右侧作Rt△ABE,在滑动的过程中EC的最大值为10cm.(直接写出结果)【解答】解:(1)①AC=AP时,AP=AC=6cm,则t=6÷2=3;②AC=CP时,CP=AC=6cm,在Rt△ACB中,CB===8(cm),∴BP=CB﹣CP=8﹣6=2(cm),∴t=(10+2)÷2=6;或如图1﹣1,过点C作CD⊥AB于D,则D为AP中点,AD=×6=3.6,AP=2AD=7.2,∴t=7.2÷2=3.6;③AP=CP时,如图1﹣2,过点P作PD⊥AC于D,则D为AC中点,∵∠ADP=∠ACB=90°,∴DP∥CB,∴点P为AB的中点,∴AP=AB=×10=5(cm),则t=5÷2=2.5.故当t=3或t=6或t=3.6或t=2.5时,△ACP为等腰三角形;(2)答案为:10cm.。
一、选择题1.下列式子中,属于最简二次根式的是()A.9B.13C.20D.72.如图,在矩形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()A.(8﹣3cm2B.(4﹣3cm2C.(16﹣3cm2D.(﹣3)cm232的倒数是()A2B.22C.2-D.22-4.下列各式是二次根式的是()A3B1-C35D4π-5.已知:x3,y31,求x2﹣y2的值()A.1 B.2 C3D.36.设a3535+-b633633+-21b a-的值为()A621+B621+C621D621 7.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.013323)=5;④如果点P(3-2n,1)到两坐标轴的距离相等,那么n=1,其中假命题的有()A.1个B.2个C.3个D.4个8.以下运算错误的是()A3535⨯=B.2222⨯=C169+169D2342a b ab b=a>0)9.使式子212 4xx+-x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x>﹣2,且x≠2D.x≥﹣2,且x≠210.x ≥3是下列哪个二次根式有意义的条件( ) A .3x +B .13x - C .13x + D .3x -二、填空题11.已知2216422x x ---=,则22164x x -+-=________.12.设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去…….⑴记正方形ABCD 的边长为11a =,按上述方法所作的正方形的边长依次为234,,,,n a a a a ,请求出234,,a a a 的值;⑵根据以上规律写出n a 的表达式.13.若a ,b ,c 是实数,且21416210a b c a b c ++=-+-+--,则2b c +=________.14.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72[72]=8[8]=2[2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________. 15.已知72x =-,a 是x 的整数部分,b 是x 的小数部分,则a-b=_______ 16.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.17.=_______.18.mn =________.19.n 为________.20.能合并成一项,则a =______.三、解答题21.计算(1)2213113a a a a a a +--+-+-;(2)已知a 、b +b =0.求a 、b 的值 (3)已知abc =1,求111a b cab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b ;(3)1. 【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab abbc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可.【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭=1113a a --+- =()()()()3113a a a a -++-+-=22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ; (3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,∴原式=1111a ab ab a ab a ab a ++++++++=11a ab ab a ++++=1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.22.(112=3=4=;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=5==;(2=3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,(2)如果n 为正整数,用含nn, (3)证明:∵n 是正整数,故答案为5=256;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.23.已知m ,n 满足m 4n=3+.【答案】12015【解析】 【分析】由43m n +=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n +=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13,∴原式=3-23+2012=12015.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.24.计算:(1﹣(2) (3)244x -﹣12x -.【答案】(1)2(3)-12x + 【解析】分析:(1)根据二次根式的运算,先把各二次根式化为最简二次根式,再合并同类二次根式即可;(2)根据乘法的分配律以及二次根式的性质进行计算即可;(3)根据异分母的分式的加减,先因式分解,再通分,然后按同分母的分式进行加减计算,再约分即可.详解:(1(2)(3)24142x x --- =41(2)(2)2x x x -+--= 42(2)(2)(2)(2)x x x x x +-+-+-=2(2)(2)xx x -+-=12x -+ 点睛:此题主要考查了二次根式的运算和分式的加减运算,熟练应用运算法则和运算律以及二次根式的性质进行计算是解题关键.25.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.26.观察下列一组等式,然后解答后面的问题1)1=,1=,1=,1=⋯⋯(1)观察以上规律,请写出第n 个等式: (n 为正整数). (2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小. 【详解】解:(1)根据题意得:第n 个等式为1=;故答案为1=;(2)原式111019==-=;(3-==,<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.27.计算下列各题(1)⎛÷ ⎝(2)2-【答案】(1)1;(2). 【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可; (2)利用完全平方公式和平方差公式展开,然后再进行合并即可. 【详解】(1)原式=1;(2)原式+2). 【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.28.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =, 由于437+=,4312⨯=,所以22+==,2===.. 【答案】见解析 【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法. 【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+=,====【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据直角二次根式满足的两个条件进行判断即可. 【详解】被开方数中含能开得尽方的因数,不是最简二次根式,故选项A 错误;3=被开方数中含分母,不是最简二次根式,故选项B 错误;=被开方数中含能开得尽方的因数,不是最简二次根式,故选项C 错误;是最简二次根式,故选项D 正确. 故选D . 【点睛】本题考查的是最简二次根式的概念,满足(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式两个条件的二次根式是最简二次根式.2.D解析:D 【分析】根据正方形的面积求出边长AB =4cm ,BC =()cm ,利用四边形ABCD 的面积减去两个阴影的面积即可列式求出答案. 【详解】∵两张正方形纸片的面积分别为16cm 2和12cm 2,4cm=cm,∴AB=4cm,BC=(+4)cm,∴空白部分的面积=()×4﹣12﹣16,=﹣12﹣16,=(﹣)cm2,故选:D.【点睛】此题考查正方形的性质,二次根式的化简,二次根式的混合计算,正确理解图形中空白面积的计算方法是解题的关键.3.B解析:B【分析】根据倒数的定义,即可得到答案.【详解】,;2故选:B.【点睛】本题考查了倒数的定义和化为最简二次根式,解题的关键是熟记倒数的定义进行解题. 4.A解析:A【分析】根据二次根式定义和有意义的条件:被开方数是非负数,即可判断.【详解】解:A、符合二次根式有意义条件,符合题意;B、-1<0B选项不符合题意;C、是三次根式,所以C选项不符合题意;D、π-4<0D选项不符合题意.故选:A.【点睛】a≥0.5.D解析:D【分析】先根据x 、y 的值计算x y +、x y -的值,再将所求式子利用平方差公式进行化简,然后代入求值即可.【详解】∵1,1x y ==,∴11112x y x y +==-=-=,则22()()2x y x y y x -=+-==故选:D .【点睛】本题考查了代数式的化简求值、二次根式的加减法与乘法,利用平方差公式对代数式进行化简是解题关键.6.B解析:B【分析】首先分别化简所给的两个二次根式,分别求出a 、b 对应的小数部分,然后化简、运算、求值,即可解决问题.【详解】∴a ,∴b ,∴21b a -, 故选:B .【点睛】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二次根式的运算法则来分析、判断、解答.7.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;)=17322+=,故错误;④如果点P(3-2n,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.8.C解析:C【分析】利用二次根式的乘法法则对A、B进行判断;利用二次根式的化简对C、D进行判断.【详解】A.原式=所以A选项的运算正确;B.原式=所以,B选项的运算正确;C.原式==5,所以C选项的运算错误;D.原式=2,所以D选项的运算正确.故选C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9.C解析:C【分析】根据分式和二次根式有意义的条件(分式的分母不为零,二次根式的被开方数为非负数)即可得到结果.【详解】解:由题意得:2x-40≠,2x∴≠±,又∵20x +≥,∴x ≥-2.∴x 的取值范围是:x>-2且2x ≠.故选C.【点睛】本题考查了分式和二次根式有意义的条件,解不等式,是基础题.10.D解析:D【分析】根据二次根式有意义的条件逐项求解即可得答案.【详解】A 、x+3≥0,解得:x≥-3,故此选项错误;B 、x-3>0,解得:x >3,故此选项错误;C 、x+3>0,解得:x >-3,故此选项错误;D 、x-3≥0,解得:x≥3,故此选项正确,故选D .【点睛】本题考查了二次根式和分式有意义的条件,二次根式的被开方数是非负数.分式的分母不能等于0.二、填空题11.3【解析】设,则 可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=,∴3216a =,解得:12a =,===故答案为: 点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.12.(1)a2=,a3=2,a4=2;(2)an =(n 为正整数).【解析】(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,AC ===.同理:AE =2,EH =2,解析:(1)a 2,a 3=2,a 4=;(2)a n n 为正整数).【解析】(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,ACAE =2,EH =,…,即a 2a 3=2,a 4=(2)an n 为正整数).13.21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得,,的值,从而得到答案.【详解】∵∴∴∴∴∴∴∴.【点睛】本题考查了二次根式、完全平方公式的知识;解题的解析:21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而得到答案.【详解】∵10a b c ++=∴100a b c ---=∴2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∴2221)2)3)0++=∴123===∴111429a b c -=⎧⎪-=⎨⎪-=⎩∴2511a b c =⎧⎪=⎨⎪=⎩∴2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.14.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和 解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.15.【分析】先把x 分母有理化求出x= ,求出a 、b 的值,再代入求出结果即可.【详解】∵∴∴∴【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值.解析:6【分析】先把x 分母有理化求出2 ,求出a 、b 的值,再代入求出结果即可.【详解】2x === ∵23<<∴425<< ∴4,242a b ==-=∴42)6a b -=-=【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值.16.【解析】试题解析:(5,4)表示第5排从左向右第4个数是:,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第解析:【解析】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4)故答案为17.【分析】设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【点睛】此题考查的是二【分析】t=,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t=,由算术平方根的非负性可得t≥0,则244t=+=+8=+8=+81)=+62=1)∴=.1t.【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.18.21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∵最简二次根式与是同类二次根式,∴ ,∴故答案为21.解析:21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∴1221343nm m-=⎧⎨-=-⎩,解得,73mn=⎧⎨=⎩,∴7321.mn=⨯=故答案为21.19.7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,∴若是整数,则n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式解析:7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式的定义,把28分解成平方数与另一个数相乘的形式是解题的关键.20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
冀教版初中数学八年级上册第十五章二次根式15.2《二次根式的乘除》教学设计说明在设计本课时教案时,引导学生通过计算发现规律,从而由特殊到一般地给出二次根式的乘法法则、除法法则.注意引导学生类比积的算术平方根的性质,让学生把握两者的关系.通过例题的讲解,及时对解题方法和规律进行概括,有利于发展学生的思维能力.重视课本例题,适当地对立体进行引申,引发学生自主探寻与思考,突出例题在巩固强化中的作用,有利于学生对知识的串联、积累、加工,从而起到举一反三的效果.在学习过程中,采用小组学习方式,组间竞争,按各组表现评出最优小组,激发学生学习积极性和兴趣.(1)教材分析《二次根式的乘除》是是初中数学的重要内容之一,是《课程标准》“数与代数”的重要内容,是对“实数”、“代数式”等内容的延伸和补充.(2)学情分析本节课的内容是在理解二次根式的定义及相关概念的基础上,进一步研究二次根式的运算,是对二次根式的简便运算.二次根式的乘除这一节的知识构造较为简单,并且是在学生学习了平方根,立方根等内容的基础上进行的.由于学生对算术平方根等概念已经有了初步认识,这为学生学习打下了基础,在和学生一起学习的过程中,我们要创造条件和机会,让学生发表自己的见解,发挥学生学习的主动性和积极性.一、教学目标(1a≥0,b≥0)(a≥0,b≥0),并利用它们进行计算和化简.(2)理解ab=ab(a≥0,b>0),ab=ab(a≥0,b>0)及利用它们进行计算和化简.(3a b ab a≥0,b≥0)ababa≥0,b>0)并运用它们进行计算;•利用逆向思维,ab a b a≥0,b≥0),a baba≥0,b>0)并运用它们进行解题和化简.(4)培养学生对于事物规律的观察,发现能力,激发学生的学习激情.二、教学重点、难点a b ab a≥0,b≥0)ab a b a≥0,b≥0)abab(a≥0,b>0)ababa≥0,b>0)及运用,最简二次根式的概念.难点:二次根式的乘除法法则的逆用ab=a·b(a≥0,b≥0),a bab(0,0)a b≥>.课时设计两课时教学策略由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此,要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要注意逐步有序的展开,在讲解二次根式的乘除时可以结合积的算术平方根的性质,让学生把握两者的关系.积的算术平方根的性质及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算具体的例子,引导他们做出一般的结论.由于归纳法是通过一些个别的,特殊的例子的研究,从表象到本质,进而猜想出一般的结论.因此,本文采用从特殊到一般总结归纳的方法,类比的方法,讲授与练习相结合的方法.这种思维过程,对于初中生认识,研究和发现事物的规律有着重要作用,对于培养思维品质也有重要意义.三、教学过程情境导入,这个长方形的面积是多少?2.【问题探究】这个结果能否化简?如何化简?【设计意图】由实际问题入手,设置情境问题,激发学生的兴趣,体会数学来源于生活,又应用于生活,让学生初步感受二次根式的乘除.探索新知探究一1.填空=______;(1(2(3.(4,2.利用计算器计算填空,(2(1(32.(1)=,(2)=,(3)=,(4)=.师:提出问题:观察上面的结果,你发现他们有什么特点吗?小组讨论、抢答.生:(1)被开方数都是正数;(2)两个二次根式相乘等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.【归纳总结】反过来【设计意图】由特殊例子出发,由特殊到一般给出二次根式的乘法法则.例1.计算;(2(3(4.(1解析:(1(2=(3(4a≥0,b≥0)计算即可.点评:例2.化简(2(3;(1(4(5×4=12;解析:(1(2(3(4=3xy;(5.(a ≥0,b ≥0)直接化简即可.例3.计算解析:⨯⨯==点评:在(1)中要注意,在被开方数相乘的时候可以考虑因数分解或因式分解,在(2)中0,0)a b =≥≥,即根号外的系数与系数相乘,积为结果的系数;在(3)中要注意x ,y 的符号.【设计意图】通过例题的讲解,让学生体会二次根式的乘法法则.探究二(学生活动)请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空;(2=________.(13.利用计算器计算填空:(1答案:1.反过来2.3344(1),;(2),;==.规律:,44663.(1)=(2)=.;【归纳总结】【设计意图】由特殊例子出发,由特殊到一般给出二次根式的乘法法则.例4.计算:(1(2(3(4).解析:(1=2 ;(2==(3==2;(4.点评:上面4a≥0,b>0)便可直接得出答案.例5.化简:(1(2(3(4解析:(1=;(283ba =;(38y =;(413y .a ≥0,b >0)就可以达到化简之目的. 【设计意图】通过例题的讲解,让学生体会二次根式的除法法则.例6.计算:(1;(2;(3. 解析:(15;(2=3;(3=a . 观察上面例6的最后结果,可以发现这些式子中的二次根式有如下两个特点:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.现在我们来看本章引言中的问题:如果两个电视塔的高分别是12km,km h h ,那么它们的传播半径的比是_________..那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式.(学生分组讨论,到黑板上板书).2==.【设计意图】巩固二次根式的除法法则,通过观察总结归纳出最简二次根式的特点.例7.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.AC解:因为222AB AC BC=+所以AB=132====6.5(cm),因此AB的长为6.5cm.点评:学生掌握最简二次根式概念之后,通过两个例题让学生先尝试的去应用所学的知识,初步体验成功,树立学习的自信心.【设计意图】学生掌握最简二次根式概念之后,通过实际问题的例题讲解,激发学生的兴趣,引导学生体会数学来源于生活,又应用于生活.巩固练习教材对应习题.【设计意图】为学生提供演练机会,加强对二次根式加减运算的理解及掌握.应用拓展1.判断下列各式是否正确,不正确的请予以改正:(1=(2=4解:(1)不正确.×3=6;(2)不正确.4.a、b的取值范围分别是a≥0,b>0.带分数作为被开放数化简时必须先把带分数化成假分数再化简.2=,且x为偶数,求(1+)x解析:由题意得9060xx-≥⎧⎨->⎩,即96xx≤⎧⎨>⎩.∴6<x≤9.∵x为偶数,∴x=8.∴原式=(1+)x(1+)x=(1+)x 4(1)x x -+=(1)(4)x x +-. ∴当x =8时,原式的值=49⨯=6.点评:式子a b =a b,只有a ≥0,b >0时才能成立. 因此得到9-x ≥0且x -6>0,即6<x ≤9,又因为x 为偶数,所以x =8.3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式: 121+=1(21)2121(21)(21)⨯--=-+-=2-1,132+=1(32)3232(32)(32)⨯--=-+-=3-2, 同理可得:143+=4-3,……从计算结果中找出规律,并利用这一规律计算(121++132++143++……120122013+)()的值.解析:原式=(2-1+3-2+4-3+…+2013-2012)×(20131+) =(20131+)()=2013-1=2012.点评:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的.四、课堂小结(学生小组总结展示,师补充)1a≥0,b≥0)a≥0,b≥0)及其运用.2.二次根式的除法法则a≥0,b>0(a≥0,b>0)及其运用.3.最简二次根式的概念及其运用.【设计意图】梳理本节课的主要知识点,让学生明确重难点.课后作业一、选择题1(y>0)是二次根式,那么它化为最简二次根式是()A(y>0) By>0) C(y>0) D.以上都不对2.把(a-1a-1)移入根号内得()A..3.在下列各式中,化简正确的是()A=±12C 2D .4的结果是( )A .-3 B ..-3 D .5.阅读下列运算过程:3==5==数学上将这种把分母的根号去掉的过程称作“分母有理化”) A .2 B .6 C .13 D二、填空题6.(x ≥0)7._________. 三、综合提高题8,•现用直径为的一种圆木做原料加工这种房梁,那么加工后的房梁的最大截面积是多少?9.已知a为实数,-阅读下面的解答过程,请判断是否正确?若不正确,•请写出正确的解答过程:-a·1a=(a-110.若x、y为实数,且y答案:一、1.C 2.D 3.C 4.C 5.C二、6.7.三、8.设:矩形房梁的宽为x(cm)cm,依题意,得:2222);)x x cm x cm+==⋅=.9.不正确,正确解答:因为301aa⎧->⎪⎨->⎪⎩,所以a<0,aa=(1-a10.∵224040xx⎧-≥⎪⎨-≥⎪⎩∴x-4=0,∴x=±2,但∵x+2≠0,∴x=2,y=14∴4====.教学反思本节内容是在前一节二次根式的学习基础上,要求学生能熟练运用乘法法则和除法法则进行化简和计算.在教学过程中,通过一些特殊的例子让学生归纳出乘法法则和除法法则,学生比较容易接受.但是在具体进行化简和计算的过程中,学生对二次根式乘法法则和除法法则理解上问题不大,但常常忘记计算结果需要化简,此外被开方数是多项式的乘除法运算上容易出现错误,对分母有理化还不够熟练.因此还要加强训练,否则,在下一节二次根式的加减和混合运算时出现的错误会更多.总之,二次根式的乘除运算法则的学习和应用的过程中,渗透分析、概括、类比等数学思想方法,提高学生的思维品质和学习兴趣,鼓励学生大胆猜想,积极探索,运用类比、归纳和从特殊到一般的思考方法激发学生创造性的思维.。
二次根式重点题型专项训练一.二次根式有意义的条件(共8小题)1.若31m -有意义,则m 的取值范围是 . 2.要使632x -有意义,则x 的取值范围为 . 3.式子13x -有意义,则x 的取值范围是 . 4.如果分式13x x --有意义,那么x 的取值范围是 . 5.若代数式3221x x +++有意义,则x 的取值范围 . 6.要使式子03(2)1x x x ++--有意义,则x 的取值范围为 . 7.若代数式4x x+在实数范围内有意义,则x 的取值范围为 . 8.若式子53x x -+-有意义,则x 的取值范围是 .二.二次根式的性质(共10小题)9.已知a a -=,则a 的值为 .10.计算:2(53)-= .11.若21121y x x =-+-+,则xy = .12.已知445y x x =-+--,则2021()x y += .13.已知13a <<,则化简2212816a a a a -+--+的结果是 .14.已知15x <<,化简2(1)|5|x x -+-= .15.若2a >,化简2(2)|2|a a -+-的结果是 .16.已知x ,y 为实数,且161625y x x =---+,则x y +的值是 .17.实数a ,b 在数轴上的位置如图所示,化简22()a a b +-的结果是 .18.实数a 在数轴上的位置如图所示,则22(4)(11)a a ---化简后 .19化为最简二次根式.20化成最简二次根式为.21化为最简二次根式为.22化成最简二次根式的结果是.23化为最简二次根式的结果为.24x的值为.25a的值为.26a=.27和是同类二次根式,则m=.28.若最简二次根式可以合并,则合并后的结果为.四.二次根式的乘除(共10小题)295=,则n=.30=.31的结果是.32=.33=.34.计算1)-的结果等于.35÷的结果是.36-的结果是.37.计算:+⨯-=.38.化简20212020⋅+的结果为.2)2)39-的结果为 .40= .41.计算+的结果是 .42.计算:= .43的结果是 .44= .45.计算:+= .46-的结果是 .47-= .48-的结果是 .六.分母有理化(共5小题)49= .50= .51= .52的一个有理化因式 .53.写出的一个有理化因式 .七.二次根式的混合运算(共7小题)54.计算:(1;(2(22)+.55.计算:122(328)(52)27÷⨯-.56.计算:.57.计算: (1)2101(2)()8(23)2--++; (2)1(5018)22-.58.计算:1(4332)(4332)62(6)8+-.59.计算:314|13|5(525--.60.计算.(122427823183a a a b a b -+-; (2)2(52)(53)(53)726-.参考答案一.二次根式有意义的条件(共8小题)1m 的取值范围是 13m.解: 310m ∴-,解得13m , 即m 的取值范围是13m. 故答案为:13m .2x 的取值范围为 2x . 解:根据题意,得630x -, 解得2x .故答案是:2x .3x 的取值范围是 3x < .解:有意义,必须30x -且30x -≠,解得:3x <, 故答案为:3x <.4有意义,那么x 的取值范围是 1x 且3x ≠ .解:有意义, 则10x -且30x -≠,解得:1x 且3x ≠.故答案为:1x 且3x ≠.531x ++有意义,则x 的取值范围 1x >- . 解:由题意得,220x +且10x +≠,解得1x -且1x ≠-,1x ∴>-,故答案为:1x >-.60(2)x -有意义,则x 的取值范围为 3x -且1x ≠且2x ≠ . 解:根据题意,得301020x x x +⎧⎪-≠⎨⎪-≠⎩.解得3x -且1x ≠且2x ≠.故答案是:3x -且1x ≠且2x ≠.7在实数范围内有意义,则x 的取值范围为 4x -且0x ≠ . 解:在实数范围内有意义, 40x ∴+且0x ≠,解得:4x -且0x ≠.故答案为:4x -且0x ≠.8x 的取值范围是 35x . 解:50x -且30x -, 解得:35x ,即x 的取值范围是35x ,故答案为:35x .二.二次根式的性质(共10小题)9a =,则a 的值为 0 .解:a =,0a ∴-,0a 且2a a -=,解得:0a =,故答案为:0.10= 33=.故答案为:311.若1y =+,则xy解:1y =, ∴210120x x -⎧⎨-⎩, 解得:12x =, 故1y =,则11122xy =⨯=. 故答案为:12.12.已知5y =,则2021()x y += 1- .解:5y x =--,40x ∴-,40x -,解得4x =,5y ∴=-,20212021()(1)1x y ∴+=-=-,故答案为:1-.13.已知13a <<的结果是 25a - .= 13a <<,10a ∴-<,40a -<,∴1(4)25a a a =---=-.故答案为:25a -.14.已知15x <<|5|x -= 4 .解:15x <<,∴|5|154x x x -=-+-=.故答案为:4.15.若2a >,化简2(2)|2|a a -+-的结果是 24a - . 解:当2a >时,20a ∴->,∴2(2)|2|a a -+-22a a =-+-24a =-.16.已知x ,y 为实数,且161625y x x =---+,则x y +的值是 9 . 解:由题意得:160x -,160x -,解得:16x =,25y ∴=,则1625459x y +=+=+=,故答案为:9.17.实数a ,b 在数轴上的位置如图所示,化简22()a a b +-的结果是 2a b -+ .解:由数轴可得:21a -<<-,01b <<,则0a b -<,∴22()a a b +-a b a =-+-2a b =-+.故答案为:2a b -+.18.实数a 在数轴上的位置如图所示,则22(4)(11)a a ---化简后 215a - . 解:由题意可得510a <<,40a ∴->,110a -<,原式|4||11|a a =---4(11)a a =---411=--+a a=-,215a故答案为:215a-.三.最简二次根式(共10小题)19化为最简二次根式===故答案为:.20=,.21===,22====23解:原式=,24x的值为2.解:=∴-=,x213解得:2x=,故答案为:2.25a 的值为 4 .解: 3123a a ∴-=+,4a ∴=,故答案为:4.26a = 1 .=根据题意得12a +=,解得1a =.故答案为1.27和是同类二次根式,则m = 7 .解:和是同类二次根式, 3182m m ∴+=+,7m ∴=, 当7m =时,318222m m +=+=,7m ∴=.故答案为7.28.若最简二次根式可以合并,则合并后的结果为 解:根据题意得:2543m m +=-,解得:4m =,∴+=+=+=,故答案为:。
八年级数学上册二次根式练习题(含答案解析)学校:___________姓名:___________班级:___________一、填空题1.当x =__________________.2a 的取值范围是___________.3.判断一个式子是二次根式的方法(1)含有二次根号“______ ”.(2)被开方数是_________.二者缺一不可.4在实数范围内有意义,则实数x 的取值范围是___________.5x 的取值范围___________.6.已知三角形的三边长分别为a 、b 、c ||c a b --=________.7.已知一个正数x 的两个平方根分别是1a +和27a -,则=a ______,正数x =______.二、单选题8a b =成立,且b >0,则a 取值范围是( )A .a <0B .a>0C .0a ≥D .0a ≤9.已知xy >0,化简二次根式- )AB C .D .102()x y +,则y x -的值为( )A .1-B .1C .2D .311.已知a 满足2021a a -=,则22021a -的值为( )A .0B .1C .2021D .2022三、解答题1211x +在实数范围内有意义,请确定x 的取值范围.13.计算:14.一建筑物的地面结构如图所示(图中各图形均为长方形或正方形),请根据图中的数据(单位:米),解答下列问题:(1)用含x,y的代数式表示地面总面积;(2)图中阴影部分需要铺设地砖,铺地砖每平方米的平均费用为80元,若x=6,y=2,则铺地砖的总费用为多少元?15.已知1x-的算术平方根是2,112y-的立方根是1-,求代数式x y+的平方根.参考答案:1. 6 0【分析】根据被开方数为非负数可得.【详解】∵当0a =0)a ≥的最小值为0,∵当60x -=,即6x =0.故答案为:6, 0.【点睛】本题考查了二次根式的定义,解题的关键是利用二次根式的被开方数是非负数解题.2.a ≥-4【分析】根据二次根式有意义的条件可得2a +8≥0,再解不等式即可.【详解】解:由题意得:2a +8≥0,解得:a ≥-4,故答案为:a ≥-4.【点睛】此题主要考查了二次根式的意义.关键是二次根式中的被开方数必须是非负数,否则二次根式无意义.3. 非负数(正数或0)【分析】根据二次根式的定义回答即可.【详解】解:判断一个式子是二次根式的方法是:(1)含有二次根号.(2)被开方数是非负数.二者缺一不可.a ≥0)的代数式叫做二次根式.4.x ≥8【分析】根据二次根式有意义的条件,可得x -8≥0,然后进行计算即可解答.【详解】解:由题意得:x -8≥0,解得:x ≥8.故答案为:x ≥8.0)a ≥是解题的关键.5.2x ≥-且1x ≠【分析】根据二次根式有意义的条件和分式有意义的条件,求解即可.【详解】解:根据二次根式有意义,分式有意义得:20x +≥且10x -≠,解得:2x ≥-且1x ≠.故答案为:2x ≥-且1x ≠【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式有意义:被开方数是非负数,难度不大.6.2a【分析】根据三角形的三边关系可得三角形两边之和大于第三边可得a -b +c >0,a -b -c <0,然后再根据二次根式的性质和绝对值的意义进行化简即可.【详解】∵三角形的三边长分别为a 、b 、c ,∵a +c >b ,a +b >c ,∵a -b +c >0, c -a -b <0,||()()2c a b a c b c a b a --=+----=,故答案为:2a .【点睛】此题主要考查了三角形的三边关系,二次根式的性质,绝对值的意义等知识,解决问题的关键是熟练掌握三角形两边之和大于第三边.7. 2 9【分析】根据一个正数的平方根互为相反数可得出a 的值,继而得出这个正数.【详解】解:由题意得,a +1+2a -7=0,解得:a =2,则这个数2219x =+=().故答案为:∵2;∵9.【点睛】本题考查了平方根的知识,属于基础题,解答本题的关键是掌握一个正数的平方根互为相反数.8.A00a >,则0a ->,即可求解.【详解】解:0≥a b =成立,且b >0,0a >,0a a ∴-->,0a ∴<.【点睛】本题考查了二次根式的非负性,根据二次根式的性质化简,掌握二次根式的双重非负性是解题的关键.9.B【分析】根据二沉池根式有意义的条件求出2x y -≥0,求出x 、y 的范围,再根据二根式的性质进行化简即可. 【详解】解:由二次根式有意义的条件可得20x y ->, ∵xy >0,∵x <0,y <0,∵-=故选:B .【点睛】本题考查了二次根式的性质与化简和二次根式有意义的条件,能熟记二次根式的性质是解此题的关键.10.C【分析】2()x y =+结合二次根式有意义的条件可得1,x =- 再求解1,y =再代入代数式求值即可.【详解】解: 2()x y =+, 1010x x 解得:1,x =-210,y解得:1,y =11 2.y x故选C 【点睛】本题考查的是二次根式有意义的条件,利用平方根的含义解方程,代数式的值,掌握“二次根式有意义的条件”是解本题的关键.11.D【分析】根据二次根式有意义的条件得到a 的取值范围,根据a 的取值范围去绝对值,化简即可得出答案.【详解】解:由题意知:20220a -≥,解得:2022a ≥,∵ 20210<-a ,∵2021a a -,∵2021a a -=2021=,∵ 220222021a -=,即220212022-=a .故选:D【点睛】本题考查了二次根式有意义的条件,出现二次根式中有未知数的题,想到二次根式有意义是解题的关键.12.32x ≥-且1x ≠- 【分析】根据二次根式的被开方数是非负数,分式的分母不等于零,即可求解.【详解】解:依题意得:23010x x +⎧⎨+≠⎩, 解得32x -,且1x ≠-. 【点睛】本题考查了分式有意义的条件和二次根式有意义的条件,解题的关键是掌握二次根式有意义的条件.13.(1)(2)6(3)127【分析】(1)根据二次根式的性质以及乘法法则计算即可;(2)根据二次根式的性质以及乘法运算法则计算即可;(3)根据二次根式的性质以及除法运算法则计算即可.(1)===(2)==;6(3)==÷12712=.7【点睛】本题主要考查了二次根式的乘法和除法运算以及二次根式的性质,熟练掌握二次根式的性质,是解题的关键.14.(1)22x x y x+-++(125832)m(2)铺地砖的总费用为8000元【分析】(1)利用长方形和正方形的面积公式分别表示出四个图形的面积,再相加即可;(2)利用代数式分别表示出两部分阴影面积之和,将x=6,y=2代入计算得出阴影部分的面积,再乘以铺地砖每平方米的平均费用为80元,即可得出结论.(1)解:图形的面积为:x2+4x+3y+8(x+4﹣y)=x2+4x+3y+8x+32﹣8y=(x2+12x﹣5y+32)m2;(2)解:阴影部分的面积为:x2+8(x+4﹣y),当x=6,y=2时,阴影部分的面积为:62+8(6+4﹣2)=36+64=100(m2).∵铺地砖每平方米的平均费用为80元,∵铺地砖的总费用为:100×80=8000(元).答:铺地砖的总费用为8000元.【点睛】本题主要考查了列代数式,求代数式的值、整式的加减,利用图示数据表示出相应的长方形的边长是解题的关键.15.【分析】根据算术平方根和立方根的定义求出x ,y 的值,求出x y +,再求它的平方根即可.【详解】解:1x -的算术平方根是2,112y -的立方根是1-, 14x ∴-=,1112y -=-, 5x ∴=,0y =,5x y ∴+=,x y ∴+的平方根为答:x y +的平方根为【点睛】本题考查了平方根,算术平方根,立方根,掌握一个正数的平方根有2个是解题的关键,不要漏解.。
八年级数学二次根式常考题型例题单选题1、实数a、b在数轴上的位置如图所示,化简√(a+1)2+√(b−1)2−√(a−b)2的结果是().A.−2B.0C.−2a D.2b答案:A解析:根据实数a和b在数轴上的位置得出其取值范围,再利用二次根式的性质和绝对值的性质即可求出答案.解:由数轴可知-2<a<-1,1<b<2,∴a+1<0,b-1>0,a-b<0,∴√(a+1)2+√(b−1)2−√(a−b)2=|a+1|+|b−1|−|a−b|=−(a+1)+(b−1)+(a−b)=-2故选A.小提示:此题主要考查了实数与数轴之间的对应关系,以及二次根式的性质,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.2、若√(3−b)2=3−b,则b的取值范围是()A.b>3B.b<3C.b≥3D.b≤3答案:D解析:根据二次根式的性质√a2=|a|可直接求解.解:∵√(3−b)2=3−b,∴|3−b|=3−b,∴3−b≥0,解得b≤3.故选D.小提示:本题主要考查二次根式的性质,熟记概念是解题的关键.3、若|x2﹣4x+4|与√2x−y−3互为相反数,则x+y的值为()A.3B.4C.6D.9答案:A解析:根据题意得:|x2–4x+4|+√2x−y−3=0,所以|x2–4x+4|=0,√2x−y−3=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故选A.4、√2×√8=()A.4√2B.4C.√10D.2√2答案:B解析:直接利用二次根式的乘法运算法则计算得出答案.解:√2×√8=√16=4.故选B.小提示:此题主要考查了二次根式的乘法运算,正确掌握运算法则是解题关键.5、下列计算正确的是()A.√8÷√2=2√2B.√9=±3C.√(−3)2=3D.√24=√2答案:C解析:根据二次根式的乘除运算法则以及利用二次根式的性质化简,逐项计算,即可判断.A、√8÷√2=√4=2,故此选项错误;B、√9=3,故此选项错误;C、√(−3)2=3,正确;D、√2×4=√22×4=2√2,故此选项错误;故选:C.小提示:本题考查了二次根式的乘除运算,熟练掌握二次根式的加减乘除运算法则以及二次根式的性质化简是解题的关键.6、式子√a+1a−2有意义,则实数a的取值范围是()A.a≥-1B.a≠2C.a≥-1且a≠2D.a>2答案:C解析:根据被开方数大于等于0,分母不等于0列式计算即可.解:由题意得,a+1≥0,a≠2解得,a≥-1且a≠2,所以答案是:C.小提示:本题考查的知识点是根据分式有意义的条件确定字母的取值范围,属于基础题目,比较容易掌握.7、下面说法正确的是()A.被开方数相同的二次根式一定是同类二次根式B.√8与√80是同类二次根式C.√2与√150不是同类二次根式D.同类二次根式是根指数为2的根式答案:A解析:试题解析:A、被开方数相同的二次根式若能化简,化简后一定被开方数相同,是同类二次根式,故本选项正确;B、∵√8=2√2;√80=4√5;∴√8与√80不是同类二次根式,故本选项错误;C、∵√150=√5050=5√250=√210,∴√2与√150是同类二次根,故本选项错误;D、同类二次根式不仅是根指数为2的根式,还要化简后被开方数相同,故本选项错误.故选A.8、式子√x−2在实数范围内有意义,则x的取值范围是()A.x≥0B.x≥−2C.x≤2D.x≥2答案:D解析:由二次根式有意义的条件列不等式可得答案.解:由式子√x−2在实数范围内有意义,∴x−2≥0,∴x≥2.故选D.小提示:本题考查的是二次根式有意义的条件,掌握二次根式的被开方数为非负数是解题的关键.填空题9、若x满足|2017-x|+ √x-2018 =x,则x-20172=________答案:2018解析:根据二次根式有意义的条件列出不等式,求解得出x的取值范围,再根据绝对值的意义化简即可得出方程√x-2018 =2017,将方程的两边同时平方即可解决问题.解:由条件知,x-2018≥0,所以x≥2018,|2017-x|=x-2017.所以x-2017+ √x-2018 =x,即√x-2018 =2017,所以x-2018=20172,所以x-20172=2018,所以答案是:2018.小提示:本题主要考查了二次根式的内容,根据二次根式有意义的条件找到x的取值范围是解题的关键.10、计算:√27⋅√83÷√12=__________.答案:12解析:根据二次根式的乘除运算计算即可;√27⋅√83÷√12=√27×83×2=√9×16=3×4=12.故答案是12.小提示:本题主要考查了二次根式的乘除运算,准确计算是解题的关键.11、若二次根式√1x−1有意义,则x的取值范围是__________.答案:x>1解析:概念二次根式被开方数大于或等于0,分母不为0求解即可.解:二次根式√1x−1有意义,则1x−1≥0且x−1≠0,解得,x>1,所以答案是:x>1.小提示:本题考查了二次根式和分式有意义的条件,解题关键是熟记二次根式和分式有意义的条件,列出不等式.12、计算:√32−√8√2=_____.答案:2解析:先把二次根式化为最简二次根式,然后把括号内合并后再进行二次根式的除法运算即可得出答案.原式=(4√2﹣2√2)÷√2=2√2÷√2=2.故答案为2.小提示:本题考查了二次根式的混合运算.把二次根式化为最简二次根式,再根据混合运算顺序进行计算是解题的关键.13、如果√(2a-1)2=1-2a,则a的取值范围是______.答案:a≤12解析:根据题意可得,2a-1≤0,解得a≤12考点:二次根式的性质解答题14、计算:(3-√7)(3+√7)+√2 (2-√2).答案:2√2解析:利用平方差公式进行计算,并化简即可.解:(3-√7)(3+√7)+√2(2-√2),=9-7+2√2-2,=2√2.小提示:本题考查了二次根式的混合运算,平方差公式,解题的关键是掌握相应的运算性质.3+√9.15、计算(√2+1)(√2−1)+√−8答案:2解析:先根据平方差公式、立方根、算术平方根进行化简,再计算即可.3+√9解: (√2+1)(√2−1)+√−8=2-1-2+3=2.小提示:本题考查了实数的运算.解题的关键是熟练掌握平方差公式、立方根、算术平方根等考点的运算.。
二次根式提高题与常考题型压轴题(含解析)一.选择题〔共13小题〕1.二次根式中x的取值范围是〔〕A.x>3 B.x≤3且x≠0C.x≤3D.x<3且x≠02.计算:﹣,正确的选项是〔〕A.4 B.C.2 D.3.如图,在长方形 ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,那么图中空白局部的面积为〔〕cm2.A.16﹣8 B.﹣12+8 C.8﹣4 D.4﹣24.假设1<x<2,那么的值为〔〕A.2x﹣4 B.﹣2C.4﹣2x D.25.以下计算正确的选项是〔〕A.=2 B.= C.=x D.=x6.以下各式变形中,正确的选项是〔〕A.x2?x3=x6B.= |x|C.〔x2﹣〕÷x=x﹣1D.x2﹣x+1=〔x﹣〕2+7.以下二次根式中,与是同类二次根式的是〔〕A.B.C.D.8.化简+﹣的结果为〔〕A.0B.2C.﹣2D.29.,ab>0,化简二次根式a的正确结果是〔〕A.B.C.﹣D.﹣.10.a的小数局部,b的小数局部.的〔〕A.+ 1 B.+1 C.1D.++111.把中根号外面的因式移到根号内的果是〔〕A.B.C.D.12.如果=2a 1,那么〔〕A.a B.a≤C.a D.a≥13.:a=,b=,a与b的关系是〔〕A.ab=1B.a+b=0 C.a b=0D.a2=b2二.填空〔共17小〕14.如果代数式有意,那么x的取范.15.在数上表示数 a的点如所示,化+|a 2|的果.16.算:=.17.察以下等式:第1个等式:a1=,=1第2个等式:a2=,=第3个等式:a3=2,=第4个等式:a4=,=2按上述律,答复以下:〔1〕写出第n个等式:a n=;2〕a1+a2+a3+⋯+a n=.18.算2的果是.19.算〔+〕〔〕的果等于..20.化简:〔0<a<1〕=.21.如果最简二次根式与可以合并,那么使有意义的x的取值范围是.22.a,b是正整数,且满足是整数,那么这样的有序数对〔a,b〕共有对.23.对正实数a,b作定义a*b=﹣a,假设2*x=6,那么x=..x+y=,x﹣y=4﹣y4=.24,那么x 25.=﹣〔x,y为有理数〕,那么x﹣y=.26.是正整数,那么实数n的最大值为.27.三角形的三边长分别为3、m、5,化简﹣=.28.假设实数m满足=m+1,且0<m<,那么m的值为.29.计算以下各式的值:;;;.观察所得结果,总结存在的规律,应用得到的规律可得=.30.观察以下各式:=11+3×1+1,=22+3×2+1,=32+3×3+1,猜测:=.三.解答题〔共10小题〕31.计算〔1〕﹣4+÷〔2〕〔1﹣〕〔1+〕+〔1+〕2.32.假设1<a<2,求+的值.33.x,y都是有理数,并且满足,求的值.34.先化简,再求值:,其中x=﹣3﹣〔π﹣3〕0..35.〔1〕|2021﹣x|+=x,求x﹣20212的值;〔2〕a>0,b>0且〔+〕=3〔+5〕.求的值.36.观察以下各式及其验证过程:〔1〕按照上述两个等式及其验证过程的根本思路,猜测的变形结果并进行验证;2〕针对上述各式反响的规律,写出用n〔n为任意自然数,且n≥2〕表示的等式,并说明它成立.37.先化简,再求值:〔+〕÷,其中a=+1.38.求不等式组的整数解.39.阅读与计算:请阅读以下材料,并完成相应的任务.古希腊的几何学家海伦在他的?度量?一书中给出了利用三角形的三边求三角形面积的“海伦公式〞:如果一个三角形的三边长分别为a、b、c,设p=,那么三角形的面积S=.我国南宋著名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式〞〔三斜求积术〕:如果一个三角形的三边长分别为a、b、c,那么三角形的面积S=.〔1〕假设一个三角形的三边长分别是5,6,7,那么这个三角形的面积等于.〔2〕假设一个三角形的三边长分别是,求这个三角形的面积..40.:y=++,求﹣的值..二次根式提高题与常考题型压轴题(含解析)参考答案与试题解析一.选择题〔共13小题〕1.〔2021春?启东市月考〕二次根式中x的取值范围是〔〕A.x>3B.x≤3且x≠0C.x≤3D.x<3且x≠0【分析】根据二次根式有意义的条件和分式有意义的条件得出3﹣x≥0且x≠0,求出即可.【解答】解:要使有意义,必须3﹣x≥0且x≠0,解得:x≤3且x≠0,应选B.【点评】此题考查了二次根式有意义的条件和分式有意义的条件等知识点,能根据题意得出3﹣x≥0且x≠0是解此题的关键.2.〔2021春?萧山区校级月考〕计算:﹣,正确的选项是〔〕A.4B.C.2D.【分析】直接化简二次根式进而合并求出答案.【解答】解:﹣=2﹣=.应选:D.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.3.〔2021春?嵊州市月考〕如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,那么图中空白局部的面积为〔〕cm2.A.16﹣8B.﹣12+8C.8﹣4D.4﹣2.【分析】根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白局部的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.【解答】解:∵两张正方形纸片的面积分别为16cm2和12cm2,∴它们的边长分别为=4cm,=2 cm,AB=4cm,BC=〔2+4〕cm,∴空白局部的面积=〔2+4〕×4﹣12﹣16,=8 +16﹣12﹣16,=〔﹣12+8〕cm2.应选B.【点评】此题考查了二次根式的应用,算术平方根的定义,解题的关键在于根据正方形的面积求出两个正方形的边长.4.〔2021?呼伦贝尔〕假设1<x<2,那么的值为〔〕A.2x﹣4 B.﹣2C.4﹣2x D.2【分析】1<x<2,可判断x﹣3<0,x﹣1>0,根据绝对值,二次根式的性质解答.【解答】解:∵1<x<2,x﹣3<0,x﹣1>0,原式=|x﹣3|+=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2.应选D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如〔a≥0〕的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时,=0;当a小于0时,非二次根式〔假设根号下为负数,那么无实数根〕.2、性质:=|a|..5.〔2021?南充〕以下计算正确的选项是〔〕A.=2B.=C.=x D.=x【分析】直接利用二次根式的性质分别化简求出答案.【解答】解:A、=2,正确;B、=,故此选项错误;C、=﹣x,故此选项错误;D、=|x|,故此选项错误;应选:A.【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.6.〔2021?杭州〕以下各式变形中,正确的选项是〔〕A.x2?x3=x6B.=|x|C.〔x2﹣〕÷x=x﹣1D.x2﹣x+1=〔x﹣〕2+【分析】直接利用二次根式的性质以及同底数幂的乘法运算法那么和分式的混合运算法那么分别化简求出答案.【解答】解:A、x2?x3=x5,故此选项错误;B、=|x|,正确;C、〔x2﹣〕÷x=x﹣,故此选项错误;D、x2﹣x+1=〔x﹣〕2+,故此选项错误;应选:B.【点评】此题主要考查了二次根式的性质以及同底数幂的乘法运算和分式的混合运算等知识,正确掌握相关运算法那么是解题关键.7.〔2021?巴中〕以下二次根式中,与是同类二次根式的是〔〕A.B.C.D..【分析】直接利用同类二次根式的定义分别化简二次根式求出答案.【解答】解:A、=3,与不是同类二次根式,故此选项错误;B、=,与,是同类二次根式,故此选项正确;C、=2,与不是同类二次根式,故此选项错误;D、==,与不是同类二次根式,故此选项错误;应选:B.【点评】此题主要考查了同类二次根式,正确化简二次根式是解题关键.8.〔2021?营口〕化简+﹣的结果为〔〕A.0B.2C.﹣2D.2【分析】根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:+﹣=3 +﹣2=2,应选:D.【点评】此题考查了二次根式的加减,先化简,再加减运算.9.〔2021?安徽校级自主招生〕,ab>0,化简二次根式 a的正确结果是〔〕A.B.C.﹣D.﹣【分析】直接利用二次根式的性质进而化简得出答案.【解答】解:∵ab>0,∴a=a×=﹣.应选:D.【点评】此题主要考查了二次根式的性质与化简,正确应用二次根式的性质是解题关键.10.〔2021?邯郸校级自主招生〕设a为﹣的小数局部,b为.﹣的小数局部.那么﹣的值为〔〕A. +﹣1B.﹣+1 C.﹣﹣1D.++1【分析】首先分别化简所给的两个二次根式,分别求出a、b对应的小数局部,然后代、化简、运算、求值,即可解决问题.【解答】解:∵﹣=﹣==,∴a的小数局部=﹣1;∵﹣==,∴b的小数局部=﹣2,∴﹣====.应选B.【点评】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二次根式的运算法那么来分析、判断、解答.11.〔2021?柘城县校级一模〕把中根号外面的因式移到根号内的结果是〔〕A.B.C.D.【分析】先根据被开方数大于等于0判断出a是负数,然后平方后移到根号内约.分即可得解.【解答】解:根据被开方数非负数得,﹣>0,解得a<0,﹣a==.应选A.【点评】此题考查了二次根式的性质与化简,先根据被开方数大于等于0求出a的取值范围是解题的关键,也是此题最容易出错的地方.12.〔2021?杨浦区三模〕如果=2a﹣1,那么〔〕A.a B.a≤C.a D.a≥【分析】由二次根式的化简公式得到1﹣2a为非正数,即可求出a的范围.【解答】解:∵=|1﹣2a|=2a﹣1,1﹣2a≤0,解得:a≥.应选D【点评】此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解此题的关键.13.〔2021?临朐县一模〕:a=,b=,那么a与b的关系是〔〕A.ab=1B.a+b=0C.a﹣b=0D.a2=b2【分析】先分母有理化求出a、b,再分别代入求出ab、a+b、a﹣b、a2、b2,求出每个式子的值,即可得出选项.【解答】解:a===2+,b===2﹣,A、ab=〔2+〕×〔2﹣〕=4﹣3=1,故本选项正确;B、a+b=〔2+〕+〔2﹣〕=4,故本选项错误;.C、a﹣b=〔2+〕﹣〔2﹣〕=2,故本选项错误;D、∵a2=〔2+〕2=4+4+3=7+4,b2=〔2﹣〕2=4﹣4+3=7﹣4,a2≠b2,故本选项错误;应选A.【点评】此题考查了分母有理化的应用,能求出每个式子的值是解此题的关键.二.填空题〔共17小题〕14.〔2021?静安区一模〕如果代数式有意义,那么x的取值范围为x>﹣.【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+2>0,解得,x>﹣2,故答案为:x>﹣2.【点评】此题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.15.〔2021?乐山〕在数轴上表示实数a的点如下图,化简+|a﹣2|的结果为3.【分析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.【解答】解:由数轴可得:a﹣5<0,a﹣2>0,那么+|a﹣2|=5﹣a+a﹣2=3.故答案为:3.【点评】此题主要考查了二次根式的性质以及绝对值的性质,正确掌握掌握相关性质是解题关键..16.〔2021?聊城〕算:=12.【分析】直接利用二次根式乘除运算法化求出答案.【解答】解:=3×÷=3=12.故答案:12.【点】此主要考了二次根式的乘除运算,正确化二次根式是解关.17.〔2021?黄石〕察以下等式:第1个等式:a1==1,第2个等式:a2==,第3个等式:a3=2,=第4个等式:a4=,=2按上述律,答复以下:〔1〕写出第n个等式:a n==;;〔2〕a123⋯n1.+a+a++a=【分析】〔1〕根据意可知,a1==,2=,3=2 1a=a=,a4==,⋯由此得出第n个等式:n=;2a=〔2〕将每一个等式化即可求得答案.【解答】解:〔1〕∵第1个等式:a1=,=1第2个等式:a2=,=第3个等式:a3=2,=第4个等式:a4=,=2 .∴第n个等式:a n==;2〕a1+a2+a3+⋯+a n=〔1〕+〔〕+〔2〕+〔2〕+⋯+〔〕1.故答案=;1.【点】此考数字的化律以及分母有理化,要求学生首先分析意,找到律,并行推得出答案.18.〔2021?哈〕算2的果是2.【分析】先将各个二次根式化成最二次根式,再把同二次根式行合并求解即可.【解答】解:原式=2×33= 2,故答案:2.【点】本考了二次根式的加减法,解答本的关在于掌握二次根式的化与同二次根式合并.19.〔2021?天津〕算〔+〕〔〕的果等于2.【分析】先套用平方差公式,再根据二次根式的性算可得.【解答】解:原式=〔〕2〔〕2=53=2,故答案:2.【点】本考了二次根式的混合运算的用,熟掌握平方差公式与二次根式的性是关..20.〔2021?博野县校级自主招生〕化简:〔0<a<1〕=﹣a.【分析】结合二次根式的性质进行化简求解即可.【解答】解:==|a﹣|.0<a<1,∴a2﹣1<0,∴a﹣=<0,∴原式=|a﹣|=﹣〔a﹣〕=﹣a.故答案为:﹣a.【点评】此题考查了二次根式的性质与化简,解答此题的关键在于熟练掌握二次根式的性质及二次根式的化简.21.〔2021?绵阳校级自主招生〕如果最简二次根式与可以合并,那么使有意义的x的取值范围是x≤10.【分析】根据二次根式可合并,可得同类二次根式,根据同类二次根式,可得a 的值,根据被开方数是非负数,可得答案.【解答】解:由最简二次根式与可以合并,得3a﹣8=17﹣2a.解得a=5.由有意义,得20﹣2x≥0,解得x≤10,故答案为:x≤10.【点评】此题考查了同类二次根式,利用同类二次根式得出关于a的方程是解题关键..22.〔2021?温州校级自主招生〕a,b是正整数,且满足是整数,那么这样的有序数对〔a,b〕共有7对.【分析】A,B只能是15n2,然后分别讨论及的取值,最终可确定有序数对的个数.【解答】解:15只能约分成3,5那么A,B只能是15n2先考虑A这边:①,那么B可以这边可以是1或者,此时有:〔15,60〕,〔15,15〕,〔60,15〕,②,只能B这边也是,此时有:〔60,60〕,③,那么B这边也只能是,∴2×〔+〕=1,此时有:〔240,240〕④的话,那么B这边只能是,那么2〔+〕=1,此时有:〔135,540〕,〔540,135〕.综上可得共有7对.故答案为:7.【点评】此题考查二次根式的化简求值,难度较大,关键是根据题意分别讨论及的取值.23.〔2021?福州自主招生〕对正实数a,b作定义a*b=﹣a,假设2*x=6,那么x=.【分析】根据定义把2*x=6化为普通方程,求解即可.【解答】解:.∵a*b=﹣a,∴2*x=﹣2,∴方程2*x=6可化为﹣2=6,解得x=32,故答案为:32【点评】此题主要考查二次根式的化简,利用新定义把方程化为普通方程是解题的关键.24.〔2021?黄冈校级自主招生〕x+y=,x﹣y=,那么x4﹣y4=.【分析】把所给式子两边平方再相加可先求得x2+y2,再求得x2﹣y2,可求得答案.【解答】解:∵x+y=,x﹣y=,∴〔x+y〕22+2xy+y2〔〕2+,〔﹣〕22﹣2xy+y2=x==x y=x=〔〕2=﹣,∴x2+y2=,又x2﹣y2=〔x+y〕〔x﹣y〕=〔〕〔〕==1,∴x4﹣y4〔2+y2〕〔x2﹣y2〕=,=x故答案为:.【点评】此题主要考查二次根式的化简,利用乘法公式分别求得x2+y2和x2﹣y2的值是解题的关键.25.〔2021?黄冈校级自主招生〕=﹣〔x,y为有理数〕,那么x﹣y=1.【分析】把条件两边平方,整理可得到x+y﹣2,结合x、y均为有理数,可求得x、y的值,可求得答案.【解答】解:.∵=,∴〔〕2=〔〕2,即23= x+ y 2,∴x+y 2=2= +2,∵x,y有理数,x+y=+,xy=×,由条件可知x>y,x=,y=,xy=1,故答案:1.【点】本主要考二次根式的化,由条件求得x、y的是解的关.26.〔2021春?固始期末〕是正整数,数n的最大 11.【分析】根据二次根式的意可知12n≥0,解得n≤12,且12n开方后是正整数,符合条件的12n的有1、4、9⋯,其中1最小,此n的最大.【解答】解:由意可知12n是一个完全平方数,且不0,最小1,所以n的最大121=11.【点】主要考了二次根式有意的条件,二次根式的被开方数是非数.27.〔2021?山西模〕三角形的三分3、m、5,化=2m 10.【分析】先利用三角形的三关系求出m的取范,再化求解即可.【解答】解:∵三角形的三分3、m、5,2<m<8,∴=m 2〔8 m〕=2m 10.故答案:2m 10.【点】本主要考了二次根式的性与化及三角形三关系,解的关是熟三角形的三关系..28.〔2021?武侯区模拟〕假设实数m满足=m+1,且0<m<,那么m的值为.【分析】直接利用二次根式的性质化简进而得出关于m的等式即可得出答案.【解答】解:∵=m+1,且0<m<,2﹣m=m+1,解得:m=.故答案为:.【点评】此题主要考查了二次根式的性质与化简,正确开平方是解题关键.29.〔2021?龙岩模拟〕计算以下各式的值:;;;.观察所得结果,总结存在的规律,应用得到的规律可得=102021.【分析】直接利用数据计算得出结果的变化规律进而得出答案.【解答】解:=10;=100=102;=1000=103;=10000=104,可得=102021.故答案为:102021.【点评】此题主要考查了二次根式的性质与化简,正确得出结果变化规律是解题关键.30.〔2021?丹东模拟〕观察以下各式:=11+3×1+1,=22+3×2+1,=32+3×3+1,猜测:=20212+3×2021+1..【分析】根据题意得出数字变换规律进而得出答案.【解答】解:由题意可得:=20212+3×2021+1.故答案为:20212+3×2021+1.【点评】此题主要考查了二次根式的化简,正确得出数字变化规律是解题关键.三.解答题〔共10小题〕31.〔2021春?临沭县校级月考〕计算〔1〕﹣4+÷〔2〕〔1﹣〕〔1+〕+〔1+〕2.【分析】〔1〕先进行二次根式的除法运算,然后化简后合并即可;2〕利用完全平方公式和平方差公式计算.【解答】解:〔1〕原式=3﹣2+=3 ﹣2+2=3;〔2〕原式=1﹣5+1+2+5=2+2.【点评】此题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.32.〔2021春?沂源县校级月考〕假设1<a<2,求+的值.【分析】根据a的范围即可确定a﹣2和a﹣1的符号,然后根据算术平根的意义进行化简求值.【解答】解:∵1<a<2,a﹣2<0,a﹣1>0.那么原式=+.+=﹣1+1=0.【点评】此题考查了二次根式的化简求值,正确理解算术平方根的意义,理解=|a|是关键.33.〔2021春?启东市月考〕x,y都是有理数,并且满足,求的值.【分析】观察式子,需求出x,y的值,因此,将等式变形:,x,y都是有理数,可得,求解并使原式有意义即可.【解答】解:∵,∴.x,y都是有理数,∴x2+2y﹣17与y+4也是有理数,∴解得∵有意义的条件是x≥y,∴取x=5,y=﹣4,∴.【点评】此类问题求解,或是转换式子,求出各个未知数的值,然后代入求解.或是将所求式子转化为值的式子,然后整体代入求解.34.〔2021?锦州〕先化简,再求值:,其中x=﹣3﹣〔π﹣3〕0.【分析】先根据分式混合运算的法那么把原式进行化简,再把化简后x的值代入进.行计算即可.【解答】解:,=÷,=×,=.x=﹣3﹣〔π﹣3〕0,×4﹣﹣1,=2 ﹣﹣1,﹣1.把x=﹣1代入得到:==.即=.【点评】此题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.35.〔2021?湖北校级自主招生〕〔1〕|2021﹣x|+=x,求x﹣20212的值;〔2〕a>0,b>0且〔+〕=3〔+5〕.求的值.【分析】〔1〕由二次根式有意义的条件可知x≥2021,然后化简得=2021,由算术平方根的定义可知:x﹣2021=20212,最后结合平方差公式可求得答案.〔2〕根据单项式乘多项式的法那么把〔+〕=3〔+5〕进行整理,得出a﹣2﹣15b=0,再进行因式分解得出〔﹣5〕〔+3〕=0,然后∴根据a>0,b>0,得出﹣5=0,求出a=25b,最后代入要求的式子约分即可得出答案.【解答】解:〔1〕∵x﹣2021≥0,x≥2021.x﹣2021+=x..∴=2021.x﹣2021=20212.x=20212+2021.x﹣20212=20212﹣20212+2021=﹣〔2021+2021〕+2021=﹣2021.〔2〕∵〔+〕=3〔+5〕,∴a+=3+15b,a﹣2﹣15b=0,∴〔﹣5〕〔+3〕=0,a>0,b>0,∴﹣5=0,∴a=25b,∴原式===2.【点评】此题主要考查的是二次根式的混合运算,用到的知识点是二次根式有意义的条件、绝对值的化简、算术平方根的性质、平方差公式的应用,第〔1〕题求得x﹣2021=20212,第〔2〕求出a=25b是解题的关键.36.〔2021?山西模拟〕观察以下各式及其验证过程:〔1〕按照上述两个等式及其验证过程的根本思路,猜测的变形结果并进行验证;.2〕针对上述各式反响的规律,写出用n〔n为任意自然数,且n≥2〕表示的等式,并说明它成立.【分析】根据观察,可得规律,根据规律,可得答案.【解答】解:〔1〕5=验证:5====;〔2〕n=,证明:n====.【点评】此题考查了二次根式的性质与化简,运用n=的规律是解题关键.37.〔2021?仙游县校级模拟〕先化简,再求值:〔+〕÷,其中a=+1.【分析】利用通分、平方差公式等将原式化简为,代入a的值即可得出结论.【解答】解:原式=〔+〕÷,=?,=?,.当a= +1时,原式==.【点评】此题考查了分式的化简求值,解题的关键是将原式化简成.此题属于根底题,难度不大,解决该题型题目时,先将原代数式进行化简,再代入数据求值是关键..38.〔2021?高邮市一模〕求不等式组的整数解.【分析】首先解不等式组,注意系数化“1时〞,这两个不等式的系数为负数,不等号的方向要改变.还要注意题目的要求,按要求解题.【解答】解:整理不等式组,得∴∴∴;∴不等式组的整数解为﹣2,﹣1,0.【点评】此题考查了一元一次不等式组的解法.要注意系数化“1时〞,系数是正还是负,正不等号的方向不变,负不等号的方向改变.还要注意审题,根据题意解题.39.〔2021?太原一模〕阅读与计算:请阅读以下材料,并完成相应的任务.古希腊的几何学家海伦在他的?度量?一书中给出了利用三角形的三边求三角形面积的“海伦公式〞:如果一个三角形的三边长分别为a、b、c,设p=,那么三角形的面积S=.我国南宋著名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式〞〔三斜求积术〕:如果一个三角形的三边长分别为a、b、c,那么三角形的面积S=.〔1〕假设一个三角形的三边长分别是5,6,7,那么这个三角形的面积等于6.〔2〕假设一个三角形的三边长分别是,求这个三角形的面积..【分析】〔1〕把a、b、c的长代入求出S2,再开方计算即可得解;〔2〕把a、b、c的长代入求出S2,再开方计算即可得解.【解答】解:〔1〕p===9,S===6.答:这个三角形的面积等于6.2〕S====.答:这个三角形的面积是.故答案为:6.【点评】此题考查了二次根式的应用,难点在于对各项整理利用算术平方根的定义计算.40.〔2021春?饶平县期末〕:y=++,求﹣的值.【分析】首先根据二次根式中的被开方数必须是非负数,求出x的值是多少,进而求出y的值是多少;然后把求出的x、y的值代入化简后的算式即可.【解答】解:∵+有意义,.∴,解得x=8,∴y=++=++=0+0+=∴﹣=﹣=﹣=﹣﹣=【点评】此题主要考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数必须是非负数,否那么二次根式无意义.单纯的课本内容,并不能满足学生的需要,通过补充,到达内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。
二次根式提高测试题
一、选择题
2.一个自然数的算术平方根为()0a a >,则与这个自然数相邻的两个自然数的算术平方根为( )
(A )1,1a a -+(B (C D )221,1a a -+
3.若0x <x 等于( )
(A )0 (B )2x - (C )2x (D )0或2x
4.若0,0a b <> )
(A )-(B )-(C )(D )a
5m
=,则2
1y y +的结果为( )
(A )22m + (B )22m - (C 2 (D 2
6.已知,a b b a =-,则a 与b 的大小关系是( )
(A )a b < (B )a b > (C )a b ≥ (D )a b ≤
7.已知下列命题:
2=- 36π-=;
③()()()22333a a a +-=+-; a b +.
其中正确的有( )
(A )0个 (B )1个 (C )2个 (D )3个
8.若m 的值为( )
(A )203 (B )5126 (C )138 (D )158
9.当12a ≤21a -等于( ) (A )2 (B )24a - (C )a (D )0
102得( ) (A )2 (B )44x -+ (C )2- (D )44x -
二、填空题
1
有意义的x 的取值范围是( )
11.若21x +的平方根是5±_____=.
12.当_____x
13与a 的被开方数相同,则_____a b +=.
14.若x 是y ____x =,_____y =.
15=,且0x y <<,则满足上式的整数对(),x y 有_____.
16.若11x -<<1_____x +=.
17.若0xy ≠=-成立的条件是_____.
18.若01x <<等于_____. 三、解答题
1 9.计算下列各题:
(1⎛ ⎝;
(23a
22.若42--y x 与()212+-y x 互为相反数,求代数式32341y y x x ++的值.
23.若a b S 、、满足7,S ==,求S 的最大值和最小值.
二次根式的计算与化简(提高)
1、已知m
(30)a >
4、先化简,再求值:22,其中1,39a b ==。
5、计算:)
...1
6、已知1a =,222214164821442
a a a a a a a a a --+++÷-+-+-,再求值。
8、已知:232
3-+=a ,232
3+-=b ,求代数式223b ab a +-的值。
9、已知30≤≤x ,化简9622+-+x x x
10、已知2a =a
a a a a
a a a 112121222--+---+-
11、①已知2222x y x xy y ==++求:的值。
③)57(9
64222x x y x y +-+ ④3)2733(3a a a ÷-
12、计算及化简:
⑴. 22
- ⑵
⑷-
13、已知:11a a +=+221a a +的值。
14、已知1
1039322++=+-+-y x x x y x ,求的值。