5.2 认识函数 (1)
- 格式:ppt
- 大小:1007.50 KB
- 文档页数:16
函数的概念知识点总结本节主要知识点(1)函数的概念.(2)函数的三要素与函数相等.(3)区间的概念及其表示.知识点一 函数的概念初中学习的函数的传统定义一般地,如果在一个变化过程中,有两个变量x 和y ,对于x 的每一个值,y 都有唯一的值与之对应,我们就说x 是自变量,y 是因变量,此时也称y 是x 的函数. 函数的近代定义设A , B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()x f 和它对应,那么就称f :B A →为从集合A 到集合B 的一个函数,记作)(x f y =,A x ∈.其中,x 叫作自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫作函数值,函数值的集合{}A x x f y y ∈=),(叫做函数的值域.显然,值域是集合B 的子集.对函数的近代定义的理解(1)只有两个非空的数集之间才可能建立函数关系.定义域或值域为空集的函数是不存在的.如x x y --=11就不是函数.(2)注意函数定义中的“三性”:任意性、存在性和唯一性.任意性:集合A 中的任意一个元素x 都要考虑到.存在性:集合A 中的任意一个元素x ,在集合B 中都存在对应元素y .唯一性:在集合B 中,与每一个元素x 对应的元素y 是唯一的.(3)集合B 不一定是函数的值域,值域是集合B 的子集.在集合B 中,可以存在元素在集合A 中没有与之对应者.例1. 讨论二次函数的定义域和值域.解:二次函数的一般式为()02≠++=a c bx ax y ,为整式函数,所以其定义域为R ,其值域的确定分为两种情况:①当0>a 时,函数的值域为⎭⎬⎫⎩⎨⎧-≥a b ac y y 442; ②当0<a 时,函数的值域为⎭⎬⎫⎩⎨⎧-≤a b ac y y 442. 注意:上面讨论二次函数值域的结果是定义在实数集R 上的,若二次函数的定义域是R 的子集,则其值域的确定要结合二次函数的性质和图象的简图来确定.经过后面的学习可以知道,求函数的值域前要先确定函数的定义域.知识点二 函数的三要素函数的三要素分别是定义域、对应关系和值域.在函数的三要素中,只要定义域和对应关系确定了,函数的值域也就确定了. 定义域 使函数解析式有意义或使实际问题有意义的x 的取值范围.确定函数定义域时,要从两个方面考虑:(1)使函数解析式有意义;(2)符合客观实际.对应关系 用f 表示,对应关系又叫对应法则,它是函数的本质特征,是沟通定义域和值域的桥梁.对应关系的作用相当于对自变量x 施以某种运算,类似于程序的作用.值域 在函数的定义域内,所有对应的函数值的集合,叫做函数的值域.例2. 讨论反比例函数()0≠=k x k y 的定义域和值域. 解:反比例函数()0≠=k xk y 的定义域为{}0≠x x ,值域为{}0≠y y . ()()A a a f ∈与()x f 的区别与联系)(a f 表示当a x =时()x f 的函数值,是其值域内的一个值,它表示的是常量;)(x f表示自变量为x 的函数,它表示的是变量.如x x f 2)(=表示的是一个函数,()63=f 是它的一个函数值,是常量.知识点三 具体函数的定义域的确定方法所谓具体函数,指的是给出解析式的函数,与之相对的是抽象函数.根据函数解析式的特点来确定函数的定义域:(1)如果函数解析式是整式,则函数的定义域是全体实数,即R .(2)如果函数解析式中含有分式,则函数的定义域是使分式的分母不等于零的实数集;(3)如果函数解析式中含有二次根式,则函数的定义域是使二次根式的被开方数为非负数的实数集;(4)如果函数解析式中含有零指数幂或负整指数幂,则函数的定义域是使底数不等于零的实数集.(5)如果函数解析式含有上述两种或两种以上的结构特点,则函数的定义域是使每一部分有意义的实数集的交集.(6)如果函数解析式是由实际问题得到的,则函数的定义域还要符合客观实际.知识点四 函数的相等只有当两个函数的定义域和对应关系分别相同时,这两个函数才相等,即为同一个函数. 对函数的相等理解时要注意:(1)当一个函数的定义域和对应关系确定了,函数的值域也就确定了,所以当两个函数的定义域和对应关系分别相同时,两个函数才相等,即表示同一个函数.(2)定义域和对应关系二者中只要有一个不相同,两个函数就不相等.(3)定义域和值域分别相同的两个函数,不一定相等.如函数2)(-=x x f 与函数x x f 2)(=的定义域都是R ,值域都是R ,但它们表示的不是同一个函数,两个函数不相等.(4)因为函数是两个非空数集之间的对应关系,所以与用什么字母表示自变量,用什么字母表示因变量没有关系.如函数1)(2+=x x f 与函数1)(2+=t t f 表示的就是同一个函数.(5)对)(x f 中x 的理解:如果两个函数解析式的右边相同,但f 施加关系的对象不同,两个函数也不相等.如函数2)(x x f =和函数2)1(x x f =-表示的就不是同一个函数.例3. 下列各组函数表示同一函数的是【 】(A )x x f =)(,()2)(x x g = (B )1)(2+=x x f ,()12+=t t g(C )1)(=x f ,xx x g =)( (D )x x f =)(,()x x g =分析:这是判断两个函数相等的问题.只有当两个函数的定义域和对应关系分别相同时,这两个函数才相等,即为同一个函数.所以,当两个函数的定义域和对应关系二者中只要有一个不相同,两个函数就不相等.解:(A )选项中,函数x x f =)(的定义域为R ,函数()2)(x x g =的定义域为{}0≥x x ,它们的定义域不相同,所以它们不是同一函数;(B )选项中,两个函数的定义域和对应关系都相同,所以它们是同一函数,与用哪个字母表示自变量没有关系;(C )选项中,函数1)(=x f 为常数函数,其图象为一条平行于x 轴的直线,其定义域为R ,函数xx x g =)(的定义域为{}0≠x x ,它们的定义域不相同,所以它们不是同一函数;(D )选项中,函数x x f =)(与函数()x x g =的定义域均为R ,但二者的对应关系不相同,它们不是同一函数.选择【 B 】.例4. 求下列函数的定义域:(1)2322---=x x x y ; (2)x x y -⋅-=11; (3)x y --=113; (4)2253x x y -+-=.分析:例4给出的三个函数均为具体函数,求具体函数的定义域的方法是使函数解析式有意义的自变量的取值的集合,要表示成集合的形式或区间的形式.解:(1)由题意可知:⎩⎨⎧≠--≥-023202x x x ,即⎪⎩⎪⎨⎧-≠≠≤2120x x x 且,解之得:x ≤0且21-≠x . ∴函数2322---=x x x y 的定义域为⎭⎬⎫⎩⎨⎧⎩⎨⎧-≠≤210x x x 且; (2)由题意可知:⎩⎨⎧≥-≥-0101x x ,解之得:1=x . ∴函数x x y -⋅-=11的定义域为{}1=x x ;(3)由题意可知:⎩⎨⎧≠--≥-01101x x ,即⎩⎨⎧≠≤01x x ,解之得:x ≤1且0≠x . ∴函数x y --=113的定义域为{}01≠≤x x x 且;(4)由题意可知:⎩⎨⎧≥-≥-050322x x ,即⎪⎩⎪⎨⎧≤≤--≤≥5533x x x 或 解之得:5-≤x ≤3-或3≤x ≤5. ∴函数2253x x y -+-=的定义域为{}5335≤≤-≤≤-x x x 或. 注意: (1)函数的定义域要表示成集合或区间的形式.(2)若函数的解析式为综合型,则定义域为解析式各部分有意义的交集.若交集在数轴上表示有两部分,则这两部分之间用“或”字.知识点五 区间的概念及其表示设b a ,是两个实数,且b a <,规定:(1)满足不等式a ≤x ≤b 的实数x 的集合,叫做闭区间,表示为[]b a ,;(2)满足不等式b x a <<的实数x 的集合,叫做开区间,表示为()b a ,;(3)满足不等式a ≤x b <或x a <≤b 的实数x 的集合,叫做半开半闭区间,分别表示为)[b a ,,](b a ,.这里的实数b a ,叫做区间的端点.在用区间表示连续的数集时,包含端点的那一端用中括号表示,不包含端点的那一端用小括号表示.区间的数轴表示(几何表示)实数集R 可以用区间表示为()+∞∞-,.“∞”读作“无穷大”,“∞-”读作“负无穷大”,“∞+”读作“正无穷大”.把满足不等式a x >,x ≥a ,b x <,x ≤b 的实数x 的集合,分别表示为()+∞,a ,)[∞+,a ,()b ,∞-,](b ,∞-.对区间的概念及其表示的理解:(1)区间用来表示连续的数集,并不是所有的集合都可以用区间来表示,如集合{}3,2,1就不能用区间来表示.(2)区间的左端点必须小于右端点.(3)区间符号里的两个字母或数字之间用“,”隔开.(4)在将连续的数集表示为区间时,包含端点的用中括号表示,不包含端点的,用小括号表示.(5)在用数字表示区间时,包含端点的,画成实心点,不包含端点的,画成空心点.(6)若a 为区间的左端点,b 为区间的右端点,则把a b -叫做区间的长度.区间的长度必须大于0.(因为a b >)(7)连续的数集既可以用集合表示,也可以用区间来表示.例5. 函数513)(-+-=x x x f 的定义域是【 】 (A ))[∞+,3 (B ))()[+∞,44,3(C )()+∞,3 (D ))[4,3分析:不等式(组)的解集为连续的数集时,既可以用集合表示,也可以用区间来表示.在用区间表示数集时,一定要弄清是否包含端点,包含端点的用中括号表示,不包含端点的,用小括号表示.解:由题意可知:⎩⎨⎧≠-+≥-05103x x ,即⎩⎨⎧-≠≠≥643x x x 且,解之得:x ≥3且4≠x . ∴函数513)(-+-=x x x f 的定义域用集合表示为{}43≠≥x x x 且,用区间表示为)()[+∞,44,3 .选择【 B 】.知识点六 复合函数与抽象函数复合函数的概念如果y 是u 的函数,记为)(u f y =,u 又是x 的函数,记为)(x g u =,且)(x g 的值域与)(u f 的定义域的交集非空,那么y 通过u 的联系也是自变量x 的函数,我们称y 为x 的复合函数,记为))((x g f y =.其中u 叫做中间变量,)(x g u =叫做内层函数, )(u f y =叫做外层函数.对复合函数概念的理解由复合函数的定义可知,内层函数的值域是外层函数的定义域或定义域的子集,外层函数的定义域和内层函数的值域共同确定了复合函数的定义域.例6. 下列函数中,是复合函数的是【 】(A )32)(x x x f += (B )1)(+=x x f(C )x x f =)( (D )xx f 2)(= 分析:判断一个函数是不是复合函数,就是看它是否是两个函数复合而成的. 解:函数1)(+=x x f 是由函数u y =和1+=x u 两个函数复合而成的,是复合函数.选择【 B 】.抽象函数的概念没有给出具体解析式的函数,叫做抽象函数.知识点七 求抽象函数或复合函数的定义域理解抽象函数或复合函数的定义域,要明确以下几点:(1)函数)(x f 的定义域是自变量x 的范围.(2)函数))((x g f 的定义域是自变量x 的范围,而不是)(x g 的范围.(3))(x f 、))((x g f 两个函数中,x 、)(x g 在对应关系f 下的范围相同. 求抽象函数或复合函数定义域的方法(1)已知)(x f 的定义域为A ,求))((x g f 的定义域,其实质是)(x g 的取值范围为A ,求x 的取值范围;(2)已知))((x g f 的定义域为B ,求)(x f 的定义域,其实质是已知))((x g f 中的x 的取值范围为B ,求)(x g 的范围(值域),此范围就是)(x f 的定义域.(3)已知))((x g f 的定义域,求))((x h f 的定义域,要先按(2)求出)(x f 的定义域. 例7. 已知函数xx x f 3)(+=,则函数)1(-x f 的定义域为【 】 (A ){}1,4-≠-≥x x x 且 (B ){}1,2≠-≥x x x 且(C ){}0,2≠-≥x x x 且 (D ){}1,4≠-≥x x x 且分析:本题需要根据具体函数)(x f 的解析式,先求出函数)(x f 的定义域,然后再确定抽象函数)1(-x f 的定义域:函数)(x f 中自变量x 的取值范围与()1-x 的范围相同,从而列出关于x 的不等式(组),解集即为函数)1(-x f 的定义域. 解:∵函数xx x f 3)(+= ∴⎩⎨⎧≠≥+003x x ,解之得:x ≥3-且0≠x . ∴函数xx x f 3)(+=的定义域为{}03≠-≥x x x 且. 对于函数)1(-x f ,则有:⎩⎨⎧≠--≥-0131x x ,解之得:x ≥2-且1≠x . ∴函数)1(-x f 的定义域为{}1,2≠-≥x x x 且.选择【 B 】.例8. 已知()12-x f 的定义域为[]3,0,则)(x f 的定义域为_________. 分析:函数()12-x f 的定义域为[]3,0,指的是x 的取值范围是[]3,0,而不是()12-x 的范围.先根据[]3,0∈x ,求出()12-x 的范围,此范围即为函数)(x f 的定义域. 解:∵()12-x f 的定义域为[]3,0∴0≤x ≤3,根据二次函数的知识可得:1-≤12-x ≤8∴)(x f 的定义域为[]8,1-.例9. 若函数()1+x f 的定义域为⎥⎦⎤⎢⎣⎡-2,21,则函数()1-x f 的定义域为__________. 分析:本题为已知已知))((x g f 的定义域,求))((x h f 的定义域,要先确定)(x f 的定义域.解:∵函数()1+x f 的定义域为⎥⎦⎤⎢⎣⎡-2,21 ∴21-≤x ≤2,∴121+-≤1+x ≤12+ ∴21≤x ≤3 ∴函数)(x f 的定义域为⎥⎦⎤⎢⎣⎡3,21. 对于函数()1-x f ,则有:⎪⎩⎪⎨⎧≤-≥-31211x x ,解之得:23≤x ≤4 ∴函数()1-x f 的定义域为⎥⎦⎤⎢⎣⎡4,23. 知识点八 求函数的函数值(1)若函数为具体函数,把自变量的值代入函数解析式即可求得对应额函数值;(2)求抽象函数的函数值,常采用赋值法求求解.例10. 已知xx f +=11)(()1-≠x ,2)(2+=x x g . (1)求)2(f 和()2g ;(2)求()()2f g ,())(x g f ;(3)若()4)(1=x g f ,求x . 分析:函数的本质是对应关系f ,()f 表示的是对括号里的内容施以某种运算.计算())(a f f 的值时,应从内到外依次计算.解:(1)31211)2(=+=f ,()62222=+=g ; (2)()()9192313122=+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=g f g ()31211)(11)(22+=++=+==x x x g x g f ;(3)∵()4)(1=x g f∴43112=+x ,432=+x ,解之得:1±=x . 例11. 已知函数()x f 对任意实数b a ,,都有()()()b f a f ab f +=成立. (1)求()0f ,()1f 的值;(2)若()()q f p f ==3,2(q p ,为常数),求()36f 的值. 解:(1)∵函数()x f 对任意实数b a ,,都有()()()b f a f ab f += ∴令0==b a ,则有:()()()000f f f += ∴()00=f .令0,1==b a ,则有:()()()010f f f += ∴()01=f .(2)∵()()q f p f ==3,2∴()()()()()p f f f f f 22222224==+=⨯=()()()()()q f f f f f 23233339==+=⨯=∴()()()()q p f f f f 22949436+=+=⨯=.例12. 已知函数()x f 的定义域为()+∞,0,对任意正实数y x ,都有()()()y f x f xy f +=,且()24=f ,则()=2f_________.解:∵()()()y f x f xy f +=,且()24=f∴令2==y x ,则有:()()()()222224=+=⨯=f f f f ,∴()12=f . 令2==y x ,则有:()()()()122222=+=⨯=f ff f∴()212=f.知识点九 求函数的值域求函数值域的方法有观察法、配方法、分离常数法、换元法、图象法、判别式法、反表示法等.方法1 观察法通过对函数解析式的简单变形,利用熟知的基本函数的值域或利用函数图象的“最高点”和“最低点”,观察求得函数的值域. 如函数211xy +=,因为12+x ≥1,所以y <0≤1,即该函数的值域为{}10≤<y y .方法2 配方法常用于求二次函数的值域.通过配方把二次函数化为顶点式,结合函数的定义域来求函数值域的一种方法.注意:在求函数的值域时,要先确定函数的定义域. 方法3 分离常数法形如bax dcx y ++=的函数常用分离常数法求值域.分离过程为: ()b ax a bc d a c b ax a bc d b ax a c b ax d cx y +-+=+-++=++= ∵0≠+-b ax a bcd ,∴a c y ≠ 所以函数的值域为⎭⎬⎫⎩⎨⎧≠a c y y .方法4 换元法形如d cx b ax y +++=()0≠a 的函数常用换元法求值域.具体做法是:先令d cx t +=(t ≥0),用t 表示出x ,并标明t 的取值范围,并代入函数解析式,将y 表示成关于t 的二次函数,最后用配方法求出值域.用换元法求函数的值域时,注意换元后要标明新元的取值范围.方法5 图象法有些函数的图象比较容易画出,可以通过其图象得出函数的值域.方法6 判别式法形如fex dx cbx ax y ++++=22(d a ,中至少有一个不为0)的函数常用判别式法求值域.具体做法是:先把函数转化为关于x 的一元二次方程,然后通过方程有实数根,判别式∆≥0,求出y 的取值范围,即为原函数的值域.(注意对二次项系数的讨论).方法7 反表示法根据函数解析式用y 表示出x ,根据原函数中x 的取值范围列出关于y 的不等式,不等式的解集即为原函数的值域. 例13. 求函数1-=x y 的值域. 分析:采用观察法求其值域. 解:∵x ≥0(x ≥0) ∴1-x ≥1-∴函数1-=x y 的值域为)[∞+-,1.例14. 求函数322+-=x x y 的值域,其中)[3,0∈x .分析:求二次函数的值域常用配方法.通过配方把函数的一般式转化为顶点式,根据自变量的取值范围并结合二次函数图象的简图求解. 解:∵()213222+-=+-=x x x y∴函数图象的顶点坐标为( 1 , 2 ) ∵)[3,0∈x ,1)[3,0∈ ∴函数的最小值为2.∵()()633233,303=+⨯-==f f∴函数的值域为)[6,2. 例15. 求函数312-+=x x y 的值域. 分析:求形如bax dcx y ++=的函数的值域,常用分离常数法.解:()3723732312-+=-+-=-+=x x x x x y∵037≠-x ,∴2≠y ∴函数312-+=x x y 的值域为()()+∞∞-,22, .例16. 函数12++=x x y 的值域为__________.分析:形如d cx b ax y +++=()0≠a 的函数常用换元法求值域. 解:令12+=x t ,则t ≥0∴212-=t x∴()1121211222-+=+-=++=t t t x x y ∵t ≥0,01<- ∴y 随t 的增大而增大 ∴当0=t 时,21min -=y ,无最大值.∴y ≥21-. ∴函数12++=x x y 的值域为)⎢⎣⎡∞+-,21.注意:用换元法求函数的值域时,必须要根据已知函数的定义域求新元的取值范围,例17. 求下列函数的值域:(1)123422--+-=x x x x y ;(2)3274222++-+=x x x x y . 分析:对于形如fex dx cbx ax y ++++=22(d a ,中至少有一个不为0)的函数,若分子、分母能进行因式分解并化简,在化简后再求其值域;若不能化简,常用判别式法求其值域.要求会用十字相乘法分解二次三项式.解:方法一(分离常数法):∵123422--+-=x x x x y∴()()()()()()1227211227122112312131+-=+-+=+-=+---=x x x x x x x x x y (1≠x 且21-≠x ). ∵()01227≠+x ,∴21≠y当1=x 时,3211231-=+⨯-=y∴函数的值域为⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-∞-,2121,3232, .方法二(反表示法):由上面的方法得到:123+-=x x y (1≠x ) ∴y y x 213-+=(21≠y ) ∵1≠x ,∴1213≠-+y y ,解之得:32-≠y ∴函数的值域为⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-∞-,2121,3232, .(2)∵3274222++-+=x x x x y∴整理得:()()0732222=++-+-y x y x y . 当2=y 时,0723≠+⨯,不符合题意,舍去;当2≠y 时,∵函数3274222++-+=x x x x y 的定义域为R∴()[]()()2734222-+--=∆y y y ≥0,解之得:29-≤y ≤2. 综上,函数的值域为)⎢⎣⎡-2,29.例18. 已知函数41)(xx x f -+=,求函数)(x f 的值域. 分析:先把函数解析式里面的绝对值去掉,化为分段函数的形式,然后画出函数的图象,由图象得出函数的值域.解:∵41)(xx x f -+= ∴()()⎪⎩⎪⎨⎧<+≥=021101)(x x x x f ,其图象如图所示.由图象可知,函数的只有为](1,∞-.例19. 求函数122+--=x x xx y 的值域.解:方法一(配方法):∵122+--=x x xx y∴4321111111112222+⎪⎭⎫ ⎝⎛--=+--=+--+-=x x x x x x x y ∵43212+⎪⎭⎫ ⎝⎛-x ≥43,∴4321102+⎪⎭⎫ ⎝⎛-<x ≤34∴31-≤14321112<+⎪⎭⎫ ⎝⎛--x ∴函数的值域为)⎢⎣⎡-1,31.方法二(判别式法):∵122+--=x x xx y∴x x y xy y x -=+-22,整理得:()()0112=+-+-y x y x y∵函数122+--=x x xx y 的定义域为R∴关于x 的方程()()0112=+-+-y x y x y 有实数根.当1=y 时,01≠,不符合题意,舍去;当1≠y 时,有()()1412---=∆y y y ≥0,解之得:31-≤y ≤1综上,31-≤1<y∴函数的值域为)⎢⎣⎡-1,31.★例20. 已知)(x f 的值域为⎥⎦⎤⎢⎣⎡94,83,试求())(21)(x f x f x F -+=的值域.解:∵)(x f 的值域为⎥⎦⎤⎢⎣⎡94,83∴83≤)(x f ≤94,∴98-≤)(2x f -≤43-,∴91≤1)(2x f -≤41 ∴31≤)(21x f -≤21. 令)(21x f t -=,则⎥⎦⎤⎢⎣⎡∈21,31t ,∴()212t x f -=∴()()112121)(22+--=+-==t t t t F x F . ∵⎥⎦⎤⎢⎣⎡∈21,31t ,∴)(t F 随着t 的增大而增大.∴当31=t 时,()971131212min =+⎪⎭⎫ ⎝⎛-⨯-=t F当21=t 时,()871121212max =+⎪⎭⎫ ⎝⎛-⨯-=t F ∴)(t F 的值域即()x F 的值域为⎥⎦⎤⎢⎣⎡87,97.。
浙教版数学八年级上册5.2《认识函数》教案(1)一. 教材分析《认识函数》是浙教版数学八年级上册第五章第二节的内容。
本节课主要让学生初步认识函数的概念,了解函数的性质,以及会运用函数解决一些实际问题。
教材通过引入实际例子,引导学生探究函数的定义,进而总结出函数的性质。
本节课的内容是学生进一步学习函数的重要基础,对于培养学生的数学思维和解决问题的能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经学习了代数基础知识,对变量、常量、有理表达式等概念有一定的了解。
但函数的概念对学生来说比较抽象,不易理解。
因此,在教学过程中,需要结合学生的实际情况,从他们熟悉的生活实例出发,引导学生逐步理解函数的概念和性质。
三. 教学目标1.理解函数的概念,掌握函数的性质。
2.能够运用函数解决一些实际问题。
3.培养学生的数学思维和解决问题的能力。
四. 教学重难点1.函数的概念和性质。
2.运用函数解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过生活实例引导学生提出问题,探究函数的定义和性质,并在解决问题的过程中,培养学生的数学思维和团队合作能力。
六. 教学准备1.准备相关的生活实例和案例。
2.设计好问题引导和小组合作学习的内容。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)通过一个生活实例引入本节课的主题,如“汽车的油量与行驶路程之间的关系”。
引导学生观察这个实例,并提出问题:“油量与路程之间是否存在某种关系?”2.呈现(10分钟)呈现教材中关于函数的定义和性质的内容。
通过讲解和举例,让学生理解函数的概念,并掌握函数的性质。
同时,引导学生总结函数的三个要素:自变量、因变量和对应关系。
3.操练(10分钟)让学生分组讨论,选取一个案例,如“某商品的销售额与销售价格之间的关系”,运用函数的知识进行分析。
每组给出自己的结论,并选代表进行汇报。
4.巩固(5分钟)针对学生汇报的内容,进行点评和讲解。
5.2 三角函数的概念教案一、内容和内容解析1.内容三角函数的概念;三角函数的基本性质:三角函数值的符号、诱导公式一、同角三角函数的基本关系.本单元的知识结构:本单元建议用3课时:第一课时,三角函数的概念;第二课时,三角函数的基本性质;第三课时,概念和性质的简单应用.2.内容解析三角函数是一类最典型的周期函数,是解决实际问题的重要工具,是学习数学和物理、天文等其他学科的重要基础.传统上,人们习惯把三角函数看成是锐角三角函数的推广,利用象限角终边上点的坐标比定义三角函数.由于这一定义方法出自欧拉,因此更显出它的权威性.然而,锐角三角函数的研究对象是三角形,是三角形中边与角的定量关系(三角比)的反映;而任意角三角函数的现实背景是周期变化现象,是“周而复始”变化规律的数学刻画.如果以锐角三角函数为基础进行推广,那么三角函数概念发生发展过程的完整性将受到破坏.因此,整体上,任意角三角函数知识体系的建立,应与其他基本初等函数类似,强调以周期变化现象为背景,构建从抽象研究对象(即定义三角函数概念)到研究它的图象、性质再到实际应用的过程,与锐角三角函数的联系可以在给出任意角三角函数定义后再进行考察.一般地,概念的形成应按“事实—概念”的路径,即学生要经历“背景—研究对象—对应关系的本质—定义”的过程.本单元的学习中,学生在经历这个过程而形成三角函数概念的同时,“顺便”就可得到值域、函数值的符号、诱导公式一及同角三角函数的基本关系等性质.根据上述分析,确定本单元的教学重点是:正弦函数、余弦函数、正切函数的定义,诱导公式一,同角三角函数的基本关系.其中,正弦函数、余弦函数的定义是重中之重.二、目标和目标解析1.目标(1)了解三角函数的背景,体会三角函数与现实世界的密切联系;(2)经历三角函数概念的抽象过程,借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义,发展数学抽象素养;(3)掌握三角函数值的符号;(4)掌握诱导公式一,初步体会三角函数的周期性;(5)理解同角三角函数的基本关系式:,体会三角函数的内在联系性,通过运用基本关系式进行三角恒等变换,发展数学运算素养.2.目标解析达成上述目标的标志是:(1)学生能像了解线性函数、反比例函数、二次函数、幂函数、指数函数、对数函数的现实背景那样,知道三角函数是刻画现实世界中“周而复始”变化规律的数学工具,能体会到匀速圆周运动在“周而复始”变化现象中的代表性.(2)学生在经历“周期现象—圆周运动—单位圆上点的旋转运动”的抽象活动中,明确研究的问题(单位圆⊙O上的点P以A为起点作旋转运动,建立一个数学模型,刻画点P的位置变化情况),使研究对象简单化、本质化;学生能分析单位圆上点的旋转中涉及的量及其相互关系,获得对应关系并抽象出三角函数概念;能根据定义求给定角的三角函数值.(3)学生能根据定义得出三角函数在各象限取值的符号规律.(4)学生能根据定义,结合终边相同的角的表示,得出诱导公式一,并能据此描述三角函数周而复始的取值规律,求某些角(特殊角)的三角函数值.(5)学生能利用定义以及单位圆上点的横、纵坐标之间的关系,发现并提出“同角三角函数的基本关系”,并能用于三角恒等变换.三、教学问题诊断分析三角函数概念的学习,其认知基础是函数的一般观念以及对幂函数、指数函数和对数函数的研究经验,另外还有圆的有关知识.这些认知准备对于分析“周而复始”变化现象中涉及的量及其关系、认识其中的对应关系并给出定义等都能起到思路引领作用.然而,前面学习的基本初等函数,涉及的量(常量与变量)较少,解析式都有明确的运算含义,而三角函数中,影响单位圆上点的坐标变化的因素较多,对应关系不以“代数运算”为媒介,是“α与x,y直接对应”,无须计算.虽然α,x,y 都是实数,但实际上是“几何元素间的对应”.所以,三角函数中的对应关系,与学生的已有经验距离较大,由此产生第一个学习难点:理解三角函数的对应关系,包括影响单位圆上点的坐标变化的因素分析,以及三角函数的定义方式的理解.为了破除学生在“对应关系”认识上的定势,帮助他们搞清三角函数的“三要素”,应该根据一般函数概念引导下的“下位学习”的特点,先让学生明确“给定一个角,如何得到对应的函数值”的操作过程,然后再下定义,这样不仅使三角函数定义的引入更自然,而且由三角函数对应关系的独特性,可以使学生再一次认识函数的本质.具体的,可让学生先完成“给定一个特殊角,求它的终边与单位圆交点坐标”的任务.例如“当时,找出相应点P的坐标”并让学生明确点P的坐标的唯一确定性,再借助信息技术,让学生观察任意给定一个角α∈R,它的终边与单位圆的交点坐标是否唯一,从而为理解三角函数的对应关系奠定基础.利用信息技术,可以很容易地建立单位圆上点的横坐标、纵坐标、角、弧之间的联系,并且可以在角的变化过程中进行观察,发现其中的规律性.所以,信息技术可以帮助学生更好地理解三角函数的本质.对于定义“设α是一个任意角,它的终边与单位圆交于点P(x,y),那么y叫做α的正弦函数,记作sinα,即y= sinα;x叫做α的余弦函数,记作cosα,即x= cosα”,可以通过如下几点帮助学生理解:第一,α是一个任意角,同时也是一个实数(弧度数),所以“设α是一个任意角”的意义实际上是“对于R中的任意一个数”;第二,“它的终边与单位圆交于点P(x,y)”,实际上给出了两个对应关系,即(1)实数α(弧度)对应于点P的纵坐标y,(2)实数α(弧度)对应于点P的横坐标x,其中y,x∈[-1,1].因为对于R中的任意一个数α,它的终边唯一确定,所以交点P(x,y)也唯一确定,也就是纵坐标y和横坐标x都由α唯一确定,所以对应关系(1)(2)分别确定了一个函数,这是理解三角函数定义的关键.第三,引进符号sinα,cosα分别表示“α的终边与单位圆交点的纵坐标”、“α的终边与单位圆交点的横坐标”,于是:对于任意一个实数α,按对应关系(1),在集合B={z|-1≤z≤1}中都有唯一确定的数sinα与之对应;按对应关系(2),在集合B中都有唯一确定的数cosα与之对应.所以,sinα,cosα都是一个由α所唯一确定的实数.这里,对符号sinα,cosα和tanα的认识是第二个难点.可以通过类比引进符号logab表示ax=b 中的x,说明引进这些符号的意义.本单元的第三个学习难点是对三角函数内在联系性的认识.出现这个难点的主要原因在于三角函数联系方式的特殊性,学生在已有的基本初等函数学习中没有这种经验,以及学生从联系的观点看问题的经验不足,对“如何发现函数的性质”的认识不充分等而导致的发现和提出性质的能力不强.为此,教学中应在思想方法上加强引导。
函数概念与知识点总结一、函数的概念1.1 函数的定义函数是数学中的一个基本概念,它描述了一种对应关系,将一个或多个输入参数映射到一个输出结果。
在数学中,函数通常表示为f(x),其中x是输入参数,f(x)是输出结果。
函数也可以表示为y=f(x),其中y是输出结果,x是输入参数。
函数还可以表示为y=f(x1,x2, ..., xn),其中x1, x2, ..., xn是多个输入参数。
1.2 函数的特性函数具有一些特性,包括单值性、有限性、定义域和值域。
单值性表示对于每个输入参数,函数有且只有一个输出结果。
有限性表示函数的定义域和值域都是有限的。
定义域是函数能接受的输入参数的集合,而值域是函数输出结果的集合。
1.3 函数的分类函数可以根据其形式、性质和用途进行分类。
常见的函数包括线性函数、二次函数、指数函数、对数函数、三角函数、双曲函数等。
函数还可以根据其定义域和值域的不同进行分类,如有界函数、无界函数、周期函数等。
二、函数的性质与图像2.1 函数的奇偶性函数可以根据其图像的对称性来判断奇偶性。
若函数的图像关于原点对称,则函数是奇函数;若函数的图像关于y轴对称,则函数是偶函数。
2.2 函数的增减性函数的增减性描述了函数在定义域内的增加和减少情况。
若对于定义域内的任意两个值x1和x2,若x1<x2,则f(x1)<f(x2),则函数是单调递增的;若x1<x2,则f(x1)>f(x2),则函数是单调递减的。
2.3 函数的最值函数的最值指在定义域内的最大值和最小值。
函数的最值可以通过求导数或利用一阶导数的性质进行判断。
2.4 函数的图像函数的图像是函数在平面直角坐标系中的表示。
通过绘制函数的图像,可以直观地理解函数的性质和变化规律。
例如,线性函数的图像是一条直线,二次函数的图像是一个抛物线。
三、函数的运算3.1 函数的加减运算当两个函数f(x)和g(x)相加或相减时,可以将它们的对应项相加或相减,得到一个新的函数h(x)=f(x)±g(x)。