第47课时 直线系与对称问题
- 格式:doc
- 大小:402.50 KB
- 文档页数:2
专题47双曲线(教学案)1.了解双曲线的定义、几何图形和标准方程及简单性质.2.了解双曲线的实际背景及双曲线的简单应用.3.理解数形结合的思想.1.双曲线的定义平面内动点与两个定点F1,F2(|F1F2|=2c>0)的距离差的绝对值等于常数(小于|F1F2|大于零),则点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0:(1)若a<c时,则集合P为双曲线;(2)若a=c时,则集合P为两条射线;(3)若a>c时,则集合P为空集.2.双曲线的标准方程和几何性质高频考点一 双曲线的定义及应用【例1】(1)设双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为e ,过F 2的直线与双曲线的右支交于A ,B 两点,若△F 1AB 是以B 为直角顶点的等腰直角三角形,则e 2=( ) A.1+2 2 B.4-2 2 C.5-2 2D.3+2 2(2)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 左支上一点,A (0,66),当△APF 周长最小时,该三角形的面积为________.解析 (1)如图所示,因为|AF 1|-|AF 2|=2a ,|BF 1|-|BF 2|=2a ,|BF 1|=|AF 2|+|BF 2|,∴|PF |=2+|PF 1|,△APF 的周长为|AF |+|AP |+|PF |=|AF |+|AP |+2+|PF 1|,△APF 周长最小即为|AP |+|PF 1|最小,当A ,P ,F 1在一条直线时最小,过AF 1的直线方程为x -3+y66=1. 与x 2-y 28=1联立,解得P 点坐标为(-2,26),此时S =S △AF 1F -S △F 1PF =12 6. 答案 (1)C (2)12 6【变式探究】(1)已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为__________________.(2)设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为________. 答案 (1)x 24-y 2=1 (2)x 216-y 29=1故曲线C 2的标准方程为x 242-y 232=1.即x 216-y 29=1. 【变式探究】(1)设P 是双曲线x 216-y 220=1上一点,F 1,F 2分别是双曲线左、右焦点,若|PF 1|=9,则|PF 2|=( )A .1B .17C .1或17D .以上答案均不对(2)已知F 是双曲线x 24-y 212=1的左焦点,A (1,4),P 是双曲线右支上的动点,则|PF |+|PA |的最小值为( )A .5B .5+4 3C .7D .9解析 (1)由双曲线定义||PF 1|-|PF 2||=8,又|PF 1|=9,∴|PF 2|=1或17,但应注意双曲线的右顶点到右焦点距离最小为c -a =6-4=2>1,∴|PF 2|=17.(2)如图所示,设双曲线的右焦点为E ,则E (4,0).由双曲线的定义及标准方程得|PF |-|PE |=4,则|PF |+|PA |=4+|PE |+|PA |.由图可得,当A ,P ,E 三点共线时,(|PE |+|PA |)min =|AE |=5,从而|PF |+|PA |的最小值为9.答案 (1)B (2)D高频考点二 双曲线的标准方程【例2】(1)(2016·全国Ⅱ卷)已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左、右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32C. 3D.2(2)(2016·天津卷)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为25,且双曲线的一条渐近线与直线2x +y=0垂直,则双曲线的方程为( ) A.x 24-y 2=1B.x 2-y 24=1C.3x 220-3y25=1 D.3x 25-3y220=1(2)由题意得c =5,b a =12,则a =2,b =1,所以双曲线的方程为x 24-y 2=1.学@科网答案 (1)A (2)A【变式探究】 (1)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A.x 25-y 220=1 B.x 220-y 25=1 C.3x 225-3y 2100=1 D.3x 2100-3y225=1 (2)设双曲线与椭圆x 227+y 236=1有共同的焦点,且与椭圆相交,一个交点的坐标为(15,4),则此双曲线的标准方程是________.解析 (1)由题意知,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线为y =2x ,所以b a=2,即b 2=4a 2.又双曲线的一个焦点是直线l 与x 轴的交点,所以该焦点的坐标为(-5,0),所以c =5,即a 2+b 2=25,联立得⎩⎪⎨⎪⎧b 2=4a 2,a 2+b 2=25, 解得a 2=5,b 2=20,故双曲线的方程为x 25-y 220=1.(2)设双曲线的方程为x 227-λ+y 236-λ=1(27<λ<36),由于双曲线过点(15,4),故1527-λ+1636-λ=1, 解得λ1=32,λ2=0.经检验λ1=32,λ2=0都是分式方程的根,但λ=0不符合题意,应舍去,所以λ=32. 故所求双曲线的方程为y 24-x 25=1.答案 (1)A (2)y 24-x 25=1【举一反三】 (1)设双曲线C 的中心为点O ,若有且只有一对相交于点O ,所成的角为60°的直线A 1B 1和A 2B 2,使|A 1B 1|=|A 2B 2|,其中A 1,B 1和A 2,B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( ) A.⎝ ⎛⎦⎥⎤233,2 B.⎣⎢⎡⎭⎪⎫233,2 C.⎝⎛⎭⎪⎫233,+∞ D.⎣⎢⎡⎭⎪⎫233,+∞ (2)已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→·PF 2→的最小值为________.所以双曲线的离心率的范围是⎝⎛⎦⎥⎤233,2. (2)由题可知A 1(-1,0),F 2(2,0).设P (x ,y )(x ≥1),则PA 1→=(-1-x ,-y ),PF 2→=(2-x ,-y ),PA 1→·PF 2→=(-1-x )(2-x )+y 2=x 2-x -2+y 2=x 2-x -2+3(x 2-1)=4x 2-x -5.因为x ≥1,函数f (x )=4x 2-x -5的图象的对称轴为x =18,所以当x =1时,PA 1→·PF 2→取得最小值-2.答案 (1)A (2)-2【方法规律】与双曲线有关的范围问题的解题思路(1)若条件中存在不等关系,则借助此关系直接变换转化求解.(2)若条件中没有不等关系,要善于发现隐含的不等关系或借助曲线中不等关系来解决. 【变式探究】 根据下列条件,求双曲线的标准方程: (1)虚轴长为12,离心率为54;(2)焦距为26,且经过点M (0,12);(3)经过两点P (-3,27)和Q (-62,-7).(2)∵双曲线经过点M (0,12),∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a =12. 又2c =26,∴c =13,∴b 2=c 2-a 2=25. ∴双曲线的标准方程为y 2144-x 225=1.(3)设双曲线方程为mx 2-ny 2=1(mn >0).∴⎩⎪⎨⎪⎧9m -28n =1,72m -49n =1,解得⎩⎪⎨⎪⎧m =-175,n =-125.∴双曲线的标准方程为y 225-x 275=1.高频考点三 双曲线的几何性质例3、(2016·天津卷)已知双曲线x 24-y 2b2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( ) A.x 24-3y 24=1 B.x 24-4y 23=1 C.x 24-y 24=1D.x 24-y 212=1解析 由双曲线x 24-y 2b 2=1(b >0)知其渐近线方程为y =±b2x ,12.故双曲线的方程为x 24-y 212=1. 答案 D【感悟提升】(1)双曲线的几何性质中重点是渐近线方程和离心率,在双曲线x 2a 2-y 2b2=1(a >0,b >0)中,离心率e 与双曲线的渐近线的斜率k =±b a满足关系式e 2=1+k 2.(2)求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量a ,b ,c 的方程或不等式,利用b 2=c 2-a 2和e =c a转化为关于e 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.【变式探究】(1)设双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点是F ,左,右顶点分别是A 1,A 2,过F 作A 1A 2的垂线与双曲线交于B ,C 两点,若A 1B ⊥A 2C ,则该双曲线的渐近线的斜率为( ) A .±12 B .±22C .±1D .± 2(2)(2015·湖北)将离心率为e 1的双曲线C 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线C 2,则( ) A .对任意的a ,b ,e 1<e 2B .当a >b 时,e 1<e 2;当a <b 时,e 1>e 2C .对任意的a ,b ,e 1>e 2D .当a >b 时,e 1>e 2;当a <b 时,e 1<e 2答案 (1)C (2)B解析 (1)如图,双曲线x 2a 2-y 2b 2=1的右焦点F (c,0),左,右顶点分别为A 1(-a,0),A 2(a,0),易求B ⎝ ⎛⎭⎪⎫c ,b 2a ,C ⎝⎛⎭⎪⎫c ,-b 2a , 则kA 2C =b 2aa -c,kA 1B =b 2aa +c,又A 1B 与A 2C 垂直,则有kA 1B ·kA 2C =-1,即b 2aa +c ·b 2aa -c=-1,∴b 4a 2c 2-a2=1,∴a 2=b 2,即a =b ,∴渐近线斜率k =±b a=±1. (2)e 1=1+b 2a 2,e 2=1+b +m 2a +m2.不妨令e 1<e 2,化简得b a <b +ma +m(m >0),得bm <am ,得b <a .所以当b >a 时,有b a >b +m a +m ,即e 1>e 2;当b <a 时,有b a <b +ma +m,即e 1<e 2.故选B. 高频考点四 直线与双曲线的综合问题例4、(1)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |等于( ) A.433B .2 3 C .6 D .4 3 答案 D(2)若双曲线E :x 2a2-y 2=1(a >0)的离心率等于2,直线y =kx -1与双曲线E 的右支交于A ,B 两点.①求k 的取值范围;②若|AB |=63,点C 是双曲线上一点,且OC →=m (OA →+OB →),求k ,m 的值.解 ①由⎩⎪⎨⎪⎧c a=2,a 2=c 2-1得⎩⎪⎨⎪⎧a 2=1,c 2=2,故双曲线E 的方程为x 2-y 2=1. 设A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =kx -1,x 2-y 2=1,得(1-k 2)x 2+2kx -2=0.(*) ∵直线与双曲线右支交于A ,B 两点,故⎩⎪⎨⎪⎧k >1,Δ=k 2--k2-,即⎩⎨⎧k >1,-2<k <2,所以1<k < 2.得(x 3,y 3)=m (x 1+x 2,y 1+y 2)=(45m,8m ). ∵点C 是双曲线上一点. ∴80m 2-64m 2=1,得m =±14.故k =52,m =±14. 【感悟提升】(1)研究直线与双曲线位置关系问题的通法:将直线方程代入双曲线方程,消元,得关于x 或y 的一元二次方程.当二次项系数等于0时,直线与双曲线相交于某支上一点,这时直线平行于一条渐近线;当二次项系数不等于0时,用判别式Δ来判定.(2)用“点差法”可以解决弦中点和弦斜率的关系问题,但需要检验.【变式探究】已知双曲线C 的两个焦点分别为F 1(-2,0),F 2(2,0),双曲线C 上一点P 到F 1,F 2的距离差的绝对值等于2.(1)求双曲线C 的标准方程;(2)经过点M (2,1)作直线l 交双曲线C 的右支于A ,B 两点,且M 为AB 的中点,求直线l 的方程; (3)已知定点G (1,2),点D 是双曲线C 右支上的动点,求|DF 1|+|DG |的最小值.解 (1)依题意,得双曲线C 的实半轴长为a =1,半焦距为c =2,所以其虚半轴长b =c 2-a 2= 3. 又其焦点在x 轴上,所以双曲线C 的标准方程为x 2-y 23=1.即6x -y -11=0.学科#网 (3)由已知,得|DF 1|-|DF 2|=2, 即|DF 1|=|DF 2|+2,所以|DF 1|+|DG |=|DF 2|+|DG |+2≥|GF 2|+2,当且仅当G ,D ,F 2三点共线时取等号. 因为|GF 2|=-2+22=5,所以|DF 2|+|DG |+2≥|GF 2|+2=5+2,故|DF 1|+|DG |的最小值为5+2.1. 【2016高考新课标1卷】已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )(A )()1,3- (B )(- (C )()0,3 (D )(【答案】A【解析】由题意知:双曲线的焦点在x 轴上,所以2234m n m n ++-=,解得21m =,因为方程22113x y n n -=+-表示双曲线,所以1030n n +>⎧⎨->⎩,解得13n n >-⎧⎨<⎩,所以n 的取值范围是()1,3-,故选A . 2.【2016高考新课标2理数】已知12,F F 是双曲线2222:1x y E a b-=的左,右焦点,点M 在E 上,1MF 与x轴垂直,211sin 3MF F ∠=,则E 的离心率为( ) (A(B )32(C(D )2【答案】A【解析】因为1MF 垂直于x 轴,所以2212,2b b MF MF a a a ==+,因为211sin 3MF F ∠=,即2122132b MF ab MF a a==+,化简得b a =,故双曲线离心率e ==.选A. 3.【2016高考浙江理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 【答案】A4.【2016高考天津理数】已知双曲线2224=1x y b -(b >0),以原点为圆心,双曲线的实半轴长为半径 长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为( )(A )22443=1y x -(B )22344=1y x -(C )2224=1x y b -(D )2224=11x y -【答案】D【解析】根据对称性,不妨设A 在第一象限,(,)A x y,∴22422x x y bb y x y ⎧=⎧+=⎪⎪⎪⇒⎨⎨=⎪⎪=⎩⎪⎩, ∴221612422b b xy b b =⋅=⇒=+,故双曲线的方程为221412x y -=,故选D. 5.【2016高考山东理数】已知双曲线E :22221x y a b-= (a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______.【答案】2【解析】假设点A 在第一象限,点B 在第二象限,则2b A(c,)a ,2b B(c,)a -,所以22b |AB |a=,|BC |2c =,由2AB 3BC =,222c a b =+得离心率e 2=或1e 2=-(舍去),所以E 的离心率为2. 6.【2016年高考北京理数】双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =_______________. 【答案】27.【2016高考江苏卷】在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是________▲________.【答案】【解析】222227,3,7310,2a b c a b c c ==∴=+=+=∴==焦距为2c[故答案应填: 8. 【2016高考上海理数】双曲线2221(0)y x b b-=>的左、右焦点分别为12F F 、,直线l 过2F 且与双曲线交于A B 、两点。
第47课时 直线的方程编者:刘智娟 审核:陈彩余 第一部分 预习案一、学习目标1. 理解并掌握直线的斜率与倾斜角;2. 掌握直线方程的几种形式,会根据已知条件求直线方程。
二、考纲要求B 级要求:直线的斜率和倾斜角C 级要求:直线方程三、知识回顾1.直线的倾斜角与斜率(1)直线的倾斜角①定义:在平面直角坐标系中,对于一条与 相交的直线,把 所在的直线绕着交点按 方向旋转到和直线重合时所转过的 称为这条直线的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为 .②倾斜角的范围为(2)直线的斜率①定义:一条直线的倾斜角α(α≠90°)的 叫做这条直线的斜率,斜率常用小写字母k 表示,即k = ,倾斜角是90°的直线斜率不存在. ②过两点的直线的斜率公式经过两点P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2)的直线的斜率公式为k =班级_________ 学号_________姓名_________四、基础训练1.若直线斜率的绝对值等于1,则直线的倾斜角为_____.2.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为______.3.下列命题中正确的序号是 .(1)经过定点),(000y x P 的直线都可以用方程)(00x x k y y -=-表示;(2)经过任意两个不同的点),(),,(222111y x P y x P 的直线都可以用方程))(())((121121y y x x x x y y --=--表示;(3)不经过原点的直线都可以用方程1=+by a x 表示; (4)经过点),0(b A 的直线都可以用方程b kx y +=表示.4.如果A ·C <0,且B ·C <0,那么直线Ax +By +C =0不通过第_______象限.5.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是 .第二部分 探究案探究一 直线的倾斜角与斜率问题1、(1)经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点,求直线l 的倾斜角α与斜率k 的范围.(2)直线x cos α+3y +2=0的倾斜角的范围是_______.探究二 求直线的方程问题2、求适合下列条件的直线方程:(1)过点P (2,1),它在x 轴上的截距是在y 轴上的截距的2倍;(2)过点P (2,1),它的倾斜角是直线l :3x +4y +5=0的倾斜角的一半;(3)过点P (2,1)且与原点距离为2;(4)两条直线0111=++y b x a 和0122=++y b x a 都过点P(2,1),求过两点()111,b a P ,()222,b a P 的直线的方程.探究三直线方程的综合应用问题3、已知直线l:kx-y+1-2k=0(k∈R).(1)证明:直线l过定点;(2)若直线不经过第四象限,求k的取值范围;(3)若直线l交x轴正半轴,y轴正半轴于A、B两点,记定点为P,求使:①△AOB的面积最小时直线l的方程;②OBOA+最小时直线l的方程;③PBPA∙最小时直线l的方程;④PBPA+最小时直线l的方程.我的收获第三部分训练案见附页。
课时作业(四十七) 第47讲 直线与圆、圆与圆的位置关系时间:45分钟 分值:100分基础热身1.直线x +3y -2=0被圆(x -1)2+y 2=1截得的线段的长为( )A .1 B. 2 C. 3 D .22.从原点向圆x 2+y 2-12y +27=0作两条切线,则该圆夹在两条切线间的劣弧长为( ) A .π B .2π C .4π D .6π3.2011·哈尔滨九中二模 已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是( )A .(-22,22)B .(-2,2)C.⎝ ⎛⎭⎪⎫-24,24 D.⎝⎛⎭⎫-18,18 4.集合A ={(x ,y )|x 2+y 2=4},B ={(x ,y )|(x -3)2+(y -4)2=r 2},其中r >0,若A ∩B 中有且仅有一个元素,则r 的取值集合为( )A .{3}B .{7}C .{3,7}D .{2,7} 能力提升5.2011·山东实验中学二模 圆2x 2+2y 2=1与直线x sin θ+y -1=0⎝⎛⎭⎫θ≠π2+k π,k ∈Z 的位置关系是( )A .相离B .相切C .相交D .不能确定6.2011·重庆卷 在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .5 2B .10 2C .15 2D .20 27.2011·吉林一中冲刺 曲线y =1+4-x 2(|x |≤2)与直线y =k (x -2)+4有两个交点时,实数k 的取值范围是( )A.⎝⎛⎦⎤512,34B.⎝⎛⎭⎫512,+∞ C.⎝⎛⎭⎫13,34 D.⎝⎛⎭⎫0,512 8.2010·江西卷 直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎡⎦⎤-34,0 B.⎝⎛⎦⎤-∞,-34∪0,+∞)C.⎣⎢⎡⎦⎥⎤-33,33 D.⎣⎡⎦⎤-23,0 9.2011·郑州三模 若函数f (x )=1be ax 的图像在x =0处的切线l 与圆C :x 2+y 2=1相离,则P (a ,b )与圆C 的位置关系是( )A .点在圆外B .点在圆内C .点在圆上D .不能确定10.2011·吉林一中冲刺 在平面直角坐标系xOy 中,已知x 2+y 2=4圆上有且仅有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________.11.2010·山东卷 已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l :y =x -1被圆C 所截得的弦长为22,则过圆心且与直线l 垂直的直线的方程为________.12.已知直线x +y +m =0与圆x 2+y 2=2交于不同的两点A 、B ,O 是坐标原点,|+|≥||,那么实数m 的取值范围是________.13.2011·江苏卷 设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪m 2≤(x -2)2+y 2≤m 2,x ,y ∈R,B ={(x ,y )|2m ≤x +y ≤2m +1,x ,y ∈R },若A ∩B ≠∅,则实数m 的取值范围是________.14.(10分)求与圆x 2+y 2-2x =0外切且与直线x +3y =0相切于点M (3,-3)的圆的方程.15.(13分)已知圆C :x 2+y 2-2x +4y -4=0,是否存在斜率为1的直线m ,使m 被圆C 截得的弦为AB ,且以AB 为直径的圆过原点?若存在,求出直线m 的方程;若不存在,说明理由.难点突破16.(12分)已知与圆C :x 2+y 2-2x -2y +1=0相切的直线l 交x 轴,y 轴于A ,B 两点,|OA |=a ,|OB |=b (a >2,b >2).(1)求证:(a -2)(b -2)=2; (2)求线段AB 中点的轨迹方程; (3)求△AOB 面积的最小值.课时作业(四十七)【基础热身】1.C 解析 圆心到直线的距离d =|1+0-2|12+(3)2=12, ∴弦长l =2r 2-d 2= 3.2.B 解析 圆即x 2+(y -6)2=32,数形结合知所求的圆弧长为圆周长的三分之一,即13×(2π)×3=2π.3.C 解析 圆心坐标是(1,0),圆的半径是1,直线方程是y =k (x +2),即kx -y +2k =0,根据点线距离公式得|k +2k |k 2+1<1,即k 2<18,解得-24<k <24.4.C 解析 集合A ,B 表示两个圆,A ∩B 中有且仅有一个元素即两圆相切,有内切和外切两种情况,由题意,外切时,r =3;内切时,r =7,即r 的值是3或7.【能力提升】5.A 解析 圆心到直线的距离d =11+sin 2θ,根据θ的取值范围,0≤sin 2θ<1,故d >12=r ⎝⎛⎭⎫注意条件θ≠π2+k π,k ∈Z 时,sin θ≠±1..6.B 解析 将圆方程配方得(x -1)2+(y -3)2=10. 设圆心为G ,易知G (1,3).最长弦AC 为过E 的直径,则|AC |=210.最短弦BD 为与GE 垂直的弦,如图1-2所示. 易知|BG |=10,|EG |=(0-1)2+(1-3)2=5, |BD |=2|BE |=2BG 2-EG 2=2 5.所以四边形ABCD 的面积为S =12|AC ||BD |=10 2.故选B.7.A 解析 曲线y =1+4-x 2为一个半圆,直线y =k (x -2)+4为过定点的直线系,数形结合、再通过简单计算即可.曲线和直线系如图,当直线与半圆相切时,由|-2k -1+4|1+k2=2,解得k =512,又k AP =34,所以k 的取值范围是⎝⎛⎦⎤512,34.8.C 解析 直线过定点(0,3)d =1,再由点到线的距离公式可得|2k -3+3|1+k 2k ∈⎣⎢⎡⎦⎥⎤-33,33时,弦长|MN |≥2 3.9.B 解析 f ′(x )=a b e ax,所以在x =0处的切线斜率为k =a b⎝⎛⎭⎫0,1b ,切线方程为y -1b =abx ,即ax -by +1=0,它与圆x 2+y 2=1相离,所以圆心到该直线的距离大于1,即1a 2+b2>1,即a 2+b 2<1,所以点在圆内.10.(-13,13) 解析 直线12x -5y +c =0是平行直线系,当圆x 2+y 2=4上有且只有四个点到该直线的距离等于1时,得保证圆心到直线的距离小于1,即|c |13<1,故-13<c <13.11.x +y -3=0 解析 由题意,设所求的直线方程为x +y +m =0,设圆心坐标为(a,0),则由题意知: ⎝ ⎛⎭⎪⎫|a -1|22+2=(a -1)2,解得a =3或-1,又因为圆心在x 轴的正半轴上,所以a =3,故圆心坐标为(3,0).因为圆心(3,0)在所求的直线上,所以有3+0+m =0,即m =-3,故所求的直线方程为x +y -3=0.12.(-2,-2∪2,2) 解析 方法1:将直线方程代入圆的方程得2x 2+2mx +m 2-2=0,Δ=4m 2-8(m2-2)>0得m 2<4,即-2<m <2.设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-m ,x 1x 2=m 2-22,|+|≥||即|+|≥|-|,平方得·≥0,即x 1x 2+y 1y 2≥0,即x 1x 2+(m +x 1)(m +x 2)≥0,即2x 1x 2+m (x 1+x 2)+m 2≥0,即2×m 2-22+m (-m )+m 2≥0,即m 2≥2,即m ≥2或m ≤- 2.综合知-2<m ≤-2或2≤m <2.方法2:根据向量加减法的几何意义|+|≥||等价于向量,的夹角为锐角或者直角,由于点A ,B 是直线x+y +m =0与圆x 2+y 2=2的交点,故只要圆心到直线的距离大于或者等于1即可,也即m 满足1≤|m |2<2,即-2<m ≤-2或者2≤m <2.13.12≤m ≤2+ 2 解析 若m <0,则符合题的条件是:直线x +y =2m +1与圆(x -2)2+y 2=m 2有交点,从而由|2-2m -1|2≤|m |,解之得2-22≤m ≤2+22,矛盾;若m =0,则代入后可知矛盾;若m >0,则当m 2≤m 2,即m ≥12时,集合A 表示一个环形区域,且大圆半径不小于12,即直径不小于1,集合B表示一个带形区域,且两直线间距离为22, 从而当直线x +y =2m 与x +y =2m +1中至少有一条与圆(x -2)2+y 2=m 2有交点,即可符合题意,从而有 |2-2m |2≤|m |或|2-2m -1|2≤|m |,解之得2-22≤m ≤2+2,所以综上所述,实数m 的取值范围是12≤m ≤2+ 2.14.解答 设所求圆的方程为(x -a )2+(y -b )2=r 2(r >0),由题知所求圆与圆x 2+y 2-2x =0外切, 则(a -1)2+b 2=r +1.①又所求圆过点M 的切线为直线x +3y =0, 故b +3a -3= 3.② |a +3b |2=r .③ 解由①②③组成的方程组得a =4,b =0,r =2或a =0,b =-43,r =6. 故所求圆的方程为(x -4)2+y 2=4或x 2+(y +43)2=36. 15.解答 设存在直线方程为y =x +b 满足条件,代入圆的方程得2x 2+2(b +1)x +b 2+4b -4=0,直线与该圆相交则Δ=4(b +1)2-8(b 2+4b -4)>0,解得-3-32<b <-3+3 2.设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-(b +1),x 1x 2=b 2+4b -42,以AB 为直径的圆过原点时,AO ⊥BO ,即x 1x 2+y 1y 2=0,即2x 1x 2+b (x 1+x 2)+b 2=0,把上面式子代入得b2+4b -4-b (b +1)+b 2=0,即b 2+3b -4=0,解得b =-4或b =1,都在-3-32<b <-3+32内,故所求的直线是y =x -4或y =x +1.【难点突破】16.解答 (1)证明:圆的标准方程是(x -1)2+(y -1)2=1,设直线方程为x a +y b=1,即bx +ay -ab =0,圆心到该直线的距离d =|a +b -ab |a 2+b21,即a 2+b 2+a 2b 2+2ab -2a 2b -2ab 2=a 2+b 2,即a 2b 2+2ab -2a 2b -2ab 2=0,即ab +2-2a -2b =0,即(a -2)(b -2)=2.(2)设AB 中点M (x ,y ),则a =2x ,b =2y ,代入(a -2)(b -2)=2,得(x -1)(y -1)=12(x >1,y >1).(3)由(a -2)(b -2)=2得ab +2=2(a +b )≥4ab ,解得ab ≥2+2(舍去ab ≤2-2),当且仅当a =b 时,ab 取最小值6+42,所以△AOB 面积的最小值是3+2 2.。
第47讲 两条直线的位置关系一、课程标准1.能根据两条直线的斜率判定这两条直线平行或垂直;2.能用解方程组的方法求两条相交直线的交点坐标;3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离 二、基础知识回顾 知识梳理1. 斜率存在的两条直线平行与垂直 若l 1:y =k 1x +b 1,l 2:y =k 2x +b 2, 则l 1∥l 2⇔k 1=k 2,b 1≠b 2; l 1⊥l 2⇔k 1·k 2=-1;l 1与l 2重合⇔k 1=k 2,b 1=b 2.2. 直线的一般式方程中的平行与垂直条件若直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(其中A 1,B 1不同时为0,A 2,B 2不同时为0),则l 1∥l 2⇔A 1B 2=A 2B 1且A 1C 2≠A 2C 1;l 1⊥l 2⇔A 1A 2+B 1B 2=0.3. 两直线的交点直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应. (1)相交⇔方程组有一组解; (2)平行⇔方程组无解; (3)重合⇔方程组有无数组解.4. 已知两点P 1(x 1,y 1),P 2(x 2,y 2),则两点间的距离为d =(x 1-x 2)2+(y 1-y 2)2.5. 设点P(x 0,y 0),直线l :Ax +By +C =0(A ,B 不同时为0),则点P 到直线l 的距离为d =||Ax 0+By 0+C A 2+B 2.6. 两条平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0(A ,B 不同时为0)之间的距离d =||C 1-C 2A 2+B 2.三、自主热身、归纳总结1、 若直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则实数m 的值为( )A. 2B. -3C. 2或-3D. -2或-3 【答案】 C【解析】 直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2,故m =2或m =-3.故选C.2、 若直线ax +2y -1=0与直线2x -3y -1=0垂直,则a 的值为( )A. -3B. -43 C. 2 D. 3【答案】 D【解析】 直线ax +2y -1=0的斜率k 1=-a 2,直线2x -3y -1=0的斜率k 2=23.因为两直线垂直,所以-a 2×23=-1,即a =3.3、直线2x +2y +1=0,x +y +2=0之间的距离是( )A .324 B . 2 C . 22D . 1 【答案】A【解析】 先将2x +2y +1=0化为x +y +12=0,则两平行线间的距离为d =⎪⎪⎪⎪2-122=324.故选A .4、若三条直线2x +y +3=0,2x -y -1=0和x +3ky +k +1=0相交于一点,则实数k =____. 【答案】110【解析】 由2x +y +3=0,2x -y -1=0两直线交于点(-12,-2),再将此点代入直线方程x +3ky +k +1=0中,求得k =110.5、若直线(3a +2)x +(1-4a)y +8=0与(5a -2)x +(a +4)y -7=0垂直,则a =____. 【答案】0或1【解析】 由两直线垂直的充要条件,得(3a +2)(5a -2)+(1-4a)(a +4)=0,解得a =0或a =1.四、例题选讲考点一 两条直线的位置关系例1、已知直线l 1:ax +2y +3=0和直线l 2:x +(a -1)y +a 2-1=0.(1) 当l 1∥l 2时,求实数a 的值; (2) 当l 1⊥l 2时,求实数a 的值.【解析】 (1)(方法1)当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2; 当a≠1且a≠0时,两直线可化为l 1:y =-a2x -3,l 2:y =11-ax -(a +1),l 1∥l 2⇔⎩⎪⎨⎪⎧-a 2=11-a ,-3≠-(a +1)解得a =-1,综上可知,当a =-1时,l 1∥l 2.(方法2)∵l 1∥l 2∴⎩⎪⎨⎪⎧a (a -1)-1×2=0,a (a 2-1)-1×6≠0⇔⎩⎪⎨⎪⎧a 2-a -2=0,a (a 2-1)≠6解得a =-1, 故当a =-1时,l 1∥l 2.(2)(方法1)当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1与l 2不垂直,故a =1不成立; 当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2,故a =0不成立;当a≠1且a≠0时,l 1:y =-a 2x -3,l 2:y =11-a x -(a +1)由⎝⎛⎭⎫-a 2·11-a =-1,得a =23. (方法2)∵l 1⊥l 2,∴a +2(a -1)=0,解得a =23.变式1、(1)(江苏省丹阳高级中学2019届模拟)已知过点A (-2,m )和点B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( )A .-10B .-2C .0D .8(2)(浙江绍兴一中2019届模拟)设不同直线l 1:2x -my -1=0,l 2:(m -1)x -y +1=0,则“m =2”是“l 1∥l 2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】(1)A (2)C【解析】(1)因为l 1∥l 2,所以4-mm +2=-2(m ≠-2),解得m =-8(经检验,l 1与l 2不重合).因为l 2⊥l 3,所以2×1+1×n =0,即n =-2.所以m +n =-10.(2)当m =2时,代入两直线方程中,易知两直线平行,即充分性成立;当l 1∥l 2时,显然m ≠0,从而有2m =m -1,解得m =2或m =-1,但当m =-1时,两直线重合,不合要求,故必要性成立.故选C. 变式2、已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 【解析】 (1)由已知可得l 2的斜率存在,且k 2=1-a.若k 2=0,则1-a =0,a =1.∵l 1⊥l 2,直线l 1的斜率k 1不存在,即b =0.又∵l 1过点(-3,-1),∴-3a+4=0,即a =43(矛盾),∴此种情况不存在,∴k 2≠0,即k 1,k 2都存在且不为0.∵k 2=1-a ,k 1=a b ,l 1⊥l 2,∴k 1k 2=-1,即ab (1-a)=-1.(*)又∵l 1过点(-3,-1),∴-3a +b +4=0.(**)由(*)(**)联立,解得a =2,b =2.(2)∵l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在,k 1=k 2,即ab =1-a ,①又∵坐标原点到这两条直线的距离相等,且l 1∥l 2,∴l 1,l 2在y 轴上的截距互为相反数,即4b =b ,②联立①②,解得⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23,b =2∴a =2,b =-2或a =23,b =2.方法总结:(1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件.(2)在判断两直线平行、垂直时,也可直接利用直线方程系数间的关系得出结论.考点二 两条直线的交点问题例2 已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是__________.【答案】 ⎝⎛⎭⎫-16,12 【解析】 如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A(4,0),B(0,2).直线y =kx +2k +1可变形为y -1=k(x +2),表示这是一条过定点P(-2,1),斜率为k 的动直线.因为两直线的交点在第一象限,所以两直线的交点必在线段AB 上(不包括端点),所以动直线的斜率k 需满足k PA <k <k PB .因为k PA =-16,k PB=12,所以-16<k <12.变式1、(1)三条直线l 1:x -y =0,l 2:x +y -2=0,l 3:5x -ky -15=0构成一个三角形,则k 的取值范围是( )A .k ∈RB .k ∈R 且k ≠±1,k ≠0C .k ∈R 且k ≠±5,k ≠-10D .k ∈R 且k ≠±5,k ≠1(2)求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程为__________. 【答案】(1)C (2)5x +3y -1=0【解析】(1)由l 1∥l 3得k =5;由l 2∥l 3,得k =-5;由x -y =0与x +y -2=0,得x =1,y =1,若l 1,l 2的交点(1,1)在l 3上,则k =-10.若l 1,l 2,l 3能构成一个三角形,则k ≠±5,且k ≠-10,故选C.(2)解方程组⎩⎪⎨⎪⎧3x +2y -1=0,5x +2y +1=0得l 1,l 2的交点坐标为(-1,2).由于l ⊥l 3,故l 是直线系5x +3y +C =0中的一条,而l 过l 1,l 2的交点(-1,2),故5×(-1)+3×2+C =0,由此求出C =-1.故直线l 的方程为5x +3y -1=0.变式2、下面三条直线l 1:4x +y -4=0,l 2:mx +y =0,l 3:2x -3my -4=0不能构成三角形,求实数m 的取值集合.【解析】 当三条直线交于一点时:由⎩⎪⎨⎪⎧4x +y -4=0,mx +y =0,解得l 1和l 2的交点A 的坐标⎝ ⎛⎭⎪⎫44-m ,-4m 4-m ,由A在l 3上可得2×44-m -3m×⎝ ⎛⎭⎪⎫-4m 4-m =4,解得m =23或m =-1. 至少两条直线平行或重合时:l 1、l 2、l 3至少两条直线斜率相等,当m =4时,l 1∥l 2;当m =-16时,l 1∥l 3;若l 2∥l 3,则需有m 2=1-3m ,m 2=-23不可能.综合(1)、(2)可知,m =-1,-16,23,4时,这三条直线不能组成三角形,∴m 的取值集合是⎩⎨⎧⎭⎬⎫-1,-16,23,4.方法总结:(1)求两直线的交点坐标,就是解由两直线方程联立组成的方程组,得到的方程组的解,即交点的坐标.(2)求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.也可借助直线系方程,利用待定系数法求出直线方程,常用的直线系方程如下:①与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ∈R ,且m ≠C );②与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m ∈R );③过直线l 1:A 1x +B 1y +C 1 =0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2. 考点三、 两直线的距离问题 例3、已知点P(2,-1).(1)求过点P 且与原点距离为2的直线l 的方程.(2)求过点P 且与原点距离最大的直线l 的方程,并求出最大距离.(3)是否存在过点P 且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.【解析】 (1)过点P 的直线l 与原点距离为2,而P 点坐标为(2,-1),可见过P(2,-1)垂直于x 轴的直线满足条件.此时l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k(x -2),即kx -y -2k -1=0.由已知得||-2k -1k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)过点P 与原点O 距离最大的直线是过点P 且与PO 垂直的直线,由l ⊥OP ,得k l k OP =-1.∴k l =-1k OP=2.由直线的点斜式方程得y +1=2(x -2),即2x -y -5=0,最大距离为||-55= 5.(3)由(2)可知,过P 点不存在与原点距离超过5的直线,∴不存在过P 点且与原点距离为6的直线.变式1、(1)过点P (2,1)且与原点O 距离最远的直线方程为( )A .2x +y -5=0B .2x -y -3=0C .x +2y -4=0D .x -2y =0(2)若两平行直线l 1:x -2y +m =0(m >0)与l 2:2x +ny -6=0之间的距离是 5,则m +n =( ) A .0 B .1 C .-2D .-1【答案】 (1)A (2)C【解析】 (1)过点P (2,1)且与原点O 距离最远的直线为过点P (2,1)且与OP 垂直的直线,因为直线OP 的斜率为1-02-0=12,所以所求直线的斜率为-2,故所求直线方程为2x +y -5=0. (2)因为l 1,l 2平行,所以1×n =2×(-2),1×(-6)≠2×m ,解得n =-4,m ≠-3,所以直线l 2:x -2y -3=0.又l 1,l 2之间的距离是 5,所以|m +3|1+4=5,解得m =2或m =-8(舍去),所以m +n =-2,故选C.变式2、已知直线l 经过直线l 1:2x +y -5=0与l 2:x -2y =0的交点P.(1) 若点A(5,0)到直线l 的距离为3,求直线l 的方程; (2) 求点A(5,0)到直线l 距离的最大值.【解析】 (1) 由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得⎩⎪⎨⎪⎧x =2,y =1,所以P(2,1).当直线l 的斜率不存在时,其方程为x =2,符合题意;若直线l 的斜率存在,设l 的方程为y -1=k(x -2),即kx -y -2k +1=0.由已知点A(5,0)到直线l 的距离为3,得|3k +1|k 2+1=3,解得k =43,此时直线l 的方程为4x -3y -5=0.综上所述,直线l 的方程为x =2或4x -3y -5=0. (2) 由(1)可知交点P(2,1),如图,过P 作任一直线l , 设d 为点A 到直线l 的距离,则d≤PA(当l ⊥PA 时等号成立), 所以d max =PA =(5-2)2+(0-1)2=10.方法总结:1.点到直线的距离的求法可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式. 2.两平行线间的距离的求法(1)利用“转化法”将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离.(2)利用两平行线间的距离公式.考点四 直线的对称性例4、(1)已知直线l :x +2y -2=0.①求直线l 1:y =x -2关于直线l 对称的直线l 2的方程; ②求直线l 关于点A (1,1)对称的直线方程.(2)光线由点A (-5,3)入射到x 轴上的点B (-2,0),又反射到y 轴上的点M ,再经y 轴反射,求第二次反射线所在直线l 的方程.【解析】(1)①由⎩⎪⎨⎪⎧y =x -2,x +2y -2=0解得交点P (2,0).在l 1上取点M (0,-2), M 关于l 的对称点设为N (a ,b ),则⎩⎨⎧a 2+2·b -22-2=0,⎝⎛⎭⎫-12·b +2a =-1,解得N ⎝⎛⎭⎫125,145,所以kl 2=145-0125-2=7, 又直线l 2过点P (2,0),所以直线l 2的方程为7x -y -14=0.②直线l 关于点A (1,1)对称的直线和直线l 平行,所以设所求的直线方程为x +2y +m =0.在l 上取点B (0,1),则点B (0,1)关于点A (1,1)的对称点C (2,1)必在所求的直线上,所以m =-4,即所求的直线方程为x +2y -4=0.(2)点A (-5,3)关于x 轴的对称点A ′(-5,-3)在反射光线所在的直线BM 上, 可知l BM :y =33(x +2), 所以M ⎝⎛⎭⎫0,233.又第二次反射线的斜率k =k AB =-33,所以第二次反射线所在直线l 的方程为y =-33x +233,即x +3y -2=0.变式、(1)如图,已知A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是___.(2)已知直线l :2x -3y +1=0,求直线m :3x -2y -6=0关于直线l 的对称直线m′的方程. 【答案】(1)210 (2)9x -46y +102=0.【解析】 (1)直线AB 的方程为x +y=4,点P(2,0)关于直线AB 的对称点为D(4,2),关于y 轴的对称点为C(-2,0),则光线经过的路程为CD =62+22=210. (2)在直线m 上任取一点,如M(2,0),则M(2,0)关于直线l 的对称点M′必在直线m′上. 设对称点M′(a ,b),则⎩⎪⎨⎪⎧2×⎝⎛⎭⎫a +22-3×⎝⎛⎭⎫b +02+1=0,b -0a -2×23=-1解得⎩⎨⎧a =613,b =3013, ∴M′⎝⎛⎭⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0得N(4,3).又∵直线m′经过点N(4,3),∴由两点式得直线m′的方程为9x -46y +102=0.方法总结:对称性问题有三类:一是点关于点对称;二是点关于线对称;三是线关于线对称;点关于点对称问题比较简单,只要用中点坐标公式即可;点关于线对称要用到两个条件,一是已知点和对称点的连线与已知直线垂直,二是已知点和对称点的中点在已知直线上;线关于线对称问题,一般是在某一条直线上找两个点,求出这两个点关于另一条直线的对称点,然后用两点式求出其方程.通常情况下会用到两直线的交点.五、优化提升与真题演练1、已知直线l 的倾斜角为3π4,直线l 1经过点A (3,2)和B (a ,-1),且直线l 与l 1平行,则实数a 的值为( )A .0B .1C .6D .0或6【答案】C【解析】由直线l 的倾斜角为3π4得l 的斜率为-1,因为直线l 与l 1平行,所以l 1的斜率为-1.又直线l 1经过点A (3,2)和B (a ,-1),所以l 1的斜率为33-a ,故33-a=-1,解得a =6.2、(多选)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则实数c 的值是( )A .2B .-4C .5D .-6【答案】AD【解析】 依题意知,63=a -2≠c -1,解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x -2y +c2=0,又两平行线之间的距离为21313,所以⎪⎪⎪⎪c 2+132+-22=21313,解得c =2或-6.3、已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.【答案】 ⎝⎛⎭⎫-16,12 【解析】由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k 2k +1,y =6k +12k +1.∴交点坐标为⎝ ⎛⎭⎪⎫2-4k 2k +1,6k +12k +1. 又∵交点位于第一象限,∴⎩⎪⎨⎪⎧2-4k2k +1>0,6k +12k +1>0,解得-16<k <12.4、(一题两空)已知直线l 1:ax +y -1=0,直线l 2:x -y -3=0,若直线l 1的倾斜角为π4,则a =________;若l 1⊥l 2,则a =________. 【答案】 -1 1【解析】若直线l 1的倾斜角为π4,则-a =tan π4=1,故a =-1;若l 1⊥l 2,则a ×1+1×(-1)=0,故a =1.5、 过点P(0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段恰好被点P 平分,求直线l 的方程.【解析】 设l 1与l 的交点为A(a ,8-2a),则由题意知,点A 关于点P 的对称点B(-a ,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A(4,0)在直线l 上,∴直线l 的方程为x +4y -4=0.6、已知三条直线:l 1:2x -y +a =0(a >0);l 2:4x -2y -1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510. (1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12; ③点P 到l 1的距离与点P 到l 3的距离之比是2∶ 5.若能,求点P 的坐标;若不能,请说明理由.【解析】:(1)直线l 2:2x -y -12=0,所以两条平行直线l 1与l 2间的距离为d =⎪⎪⎪⎪a -⎝⎛⎭⎫-1222+-12=7510, 所以⎪⎪⎪⎪a +125=7510,即⎪⎪⎪⎪a +12=72, 又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0).若点P 满足条件②,则点P 在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12×⎪⎪⎪⎪c +125,即c =132或116, 所以直线l ′的方程为2x 0-y 0+132=0或2x 0-y 0+116=0; 若点P 满足条件③,由点到直线的距离公式,有|2x 0-y 0+3|5=25×|x 0+y 0-1|2, 即|2x 0-y 0+3|=|x 0+y 0-1|,所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能.联立方程得⎩⎪⎨⎪⎧2x 0-y 0+132=0,x 0-2y 0+4=0, 解得⎩⎪⎨⎪⎧ x 0=-3,y 0=12(舍去); 联立方程得⎩⎪⎨⎪⎧ 2x 0-y 0+116=0,x 0-2y 0+4=0, 解得⎩⎨⎧x 0=19,y 0=3718. 所以存在点P ⎝⎛⎭⎫19,3718同时满足三个条件.。
Course Education Research课程教育研究2022年第5期理论·探索数学当中的对称现象较多,无论是图形还是公式当中都具有一定的对称性。
利用对称性解决数学问题可以丰富解题思路、减轻解题工作量,为此本文将对数学中的对称性及其应用进行简要分析。
1.对称概述对称指的是某种意义下的平衡、对等[1]。
从某种角度来看,对称象征着协调、和谐。
日常生活中的对称现象有很多,如太阳、埃菲尔铁塔等,具有较强的美感。
数学本身就是研究客观世界中空间形式与数量关系的学科,而客观世界中有大量的对称现象,所以对称性也是数学研究的重点。
在古希腊时期,人们就开始研究数学中的对称性。
例如,泰勒斯应用比例原理检测了金字塔的高度。
欧几里得所著的《原本》描述了大量的对称性命题,而赫尔曼·外尔在《对称》一书当中描述了多种对称形式,如旋转对称性、双侧对称性、结晶对称性等。
我国对数学中的对称性也有深入研究,例如《九章算术》中的“盈不足术”就分析了平面图形与立体图形的对称性。
2.对称性在初等数学中的表现形式与应用从义务教育到高等教育,数学一直是重点学科。
而对称性在数学中也占据着重要地位,例如对称性在初等数学中发挥着重要作用。
对称性与初等数学息息相关,无论是平面几何还是立体几何当中都包含大量的对称性内容,且代数知识当中也展现出了大量的对称性。
2.1对称性在初等数学中的表现形式对称性在初等数学中的表现主要体现在平面几何、立体几何以及公式、定理等方面。
(1)对称性在平面几何中的表现形式。
从平面几何来看,轴对称图形、中心对称图形以及平移对称图形当中都蕴含了对称性知识。
第一,轴对称图形。
轴对称图形指的是若沿着平面上的一条直线对一个平面图形进行折叠,且图形在直线两边的部分能够完全重合,这一平面图形就属于轴对称图形,而平面上的这条直线就属于对称轴。
从轴对称的定义来看,对称轴可以将图形分为相等的两部分,且在镜面反射过程中也不会出现变化。
(二)典例分析:
问题1.(06湖北联考)一条光线经过点()2,3P ,射在直线l :10x y ++=上,
反射后穿过点()1,1Q .()1求入射光线的方程;()2求这条光线从点P 到点Q 的长度.
问题2.求直线1
l
:23y x =+关于直线l :1y x =+对称的直线2l 的方程.
问题3.根据下列条件,求直线的直线方程
()1求通过两条直线3100x y +-=和30x y -
=的交点,且到原点距离为1;
()2经过点()3,2A ,且与直线420x y +
-=平行;
()3经过点()3,0B ,且与直线250x y +-=垂直.
问题4.()1已知方程1x
kx =+有一正根而没有负根,求实数k 的范围
()2若直线1l :2y kx k =++与2l :24y x =-+的交点在第一象限,求k 的取值范围. ()3 已知定点()2,1P --和直线l :()()()1312250x y λλλ+++-+=()R λ∈
求证:不论λ取何值,点P 到直线l
1.方程()()()14232140k x k y k +--+-=表示的直线必经过点
.A ()2,2 .B ()2,2- .C ()6,2- .D 3422,55⎛⎫ ⎪⎝⎭
2.直线2360x y +-=关于点()1,1-对称的直线方程是 .A 3220x y -+= .B 2370
x y ++= .C 32120x y --= .D 2380x y ++=
3.曲线24y x =关于直线20x y -+=对称的曲线方程是
4.()
{}.A x y y a x =
=,()
{}
,B x y y x a =
=+,A B 仅有两个元素,则实数a 的范围是
5.求经过直线3260x y ++=和2570x y +-=的交点,且在两坐标轴上的截距相等的直线方程
6.已知A B C △的顶点为()1,4A --,,B C ∠∠的平分线所在直线的方程分别是1l :
10y +=与2l :10x y ++=,求B C 边所在直线的方程.
7.已知直线130kx y k -+-=,当k 变化时所得的直线都经过的定点为 8.求证:不论m 取何实数,直线()()1215m x m y m -+-=-总通过一定点
9.求点P ()1,1关于直线l :20x y ++=的对称点Q 的坐标
10.已知:(),P a b 与()1,1Q b a -+,()1a b ≠-是对称的两点,求对称轴的方程
11.光线沿直线1l :250x y -+=射入,遇到直线2l :3270x y -+=反射,求反射光线所在的直线3l 的
方程
12.已知点()3,5A -,()2,15B ,试在直线l :3440x y -+=上找一点P ,使PA PB + 最小,并求出
最小值.
(四)走向高考:
1.(04安徽春)已知直线l :10x y --=,1l :220x y --=.若直线2l 与1l 关于l 对称,则2l 的方程为
.A 210x y -+= .B 210
x y --= .C 10x y +-= .D 210x y +-=
2.(05上海)直线12
y x =关于直线1x =对称的直线方程是
3.(07上海文)圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是
.A 2
1)2()3(2
2=
-++y x .B 2
1)2()3(2
2=
++-y x
.C 2)2()3(22=-++y x .D 2)2()3(22=++-y x。