1、实数的概念
- 格式:doc
- 大小:458.00 KB
- 文档页数:3
实数的概念实数的概念是由,引出来的。
现在通常所说的实数都指复数集合上的实数。
这些具体的实数对象称作实数对象或者实数域,它们分别被称作实数集、实数域或实数环等等。
但也有少数情况下使用实数域,如只讨论平面区域的几何问题时就可以不考虑其形状和大小而仅仅考察其长度,即把实数域当作无穷大。
除了特殊需求外,人们总是试图将实数集按照某种规律划分成若干个子集,最后构造成一个完整的闭合回路。
比如:将实数集合划分为若干个连续区间(空间),每一个连续区间(空间)都与原实数集合相交于一点,然后建立起闭合区间(空间)与开放区间(空间)之间的联系,从而得到全新的实数集;或者根据需要将实数域拓展到某个方向,扩充实数集的应用范围,产生新的性质等等。
有些情况下我们还会遇到多个区间(空间)的情况,此时可能很难找到简单明确且能表示各个区间(空间)特征的元素,因此人们又设想建立一个全新的元素---实数系,用它来代替原实数集中的元素。
同样,实数系也必须是闭合的。
但事实证明,这两条途径是走不通的。
经过许多学者的研究探索,目前人们已经认识到:所谓实数集的闭合性质并非绝对的,更重要的是它的一般化性质。
从某种意义上讲,区间(空间)的“结合律”才是唯一的,也是正确的。
至于拓扑结构,则早已发展成为独立的学科——拓扑学,而不再作为函数、微积分、群等数学内容的辅助工具了。
为什么要引入无理数呢?第一个原因是近代数学的需要。
众所周知,19世纪末20世纪初,人们认识到三角函数和对数运算具有极值性质,但没有证明或反例。
直到1903年,大数学家高斯才创立了极值定理和函数的单调性定理,这才证明了三角函数和对数运算的极值存在性。
在1904年,德国数学家希尔伯特首先提出著名的希尔伯特第二问题:实数域上是否存在连续函数?直接推动了实数系的建立,标志着实数域上连续函数的严格刻画。
随后,柯西利用有限差数列研究函数的连续性获得突破性进展。
一、基本概念。
实数的概念是由引出来的。
实数的定义是什么?导读:本文是关于生活中常识的,仅供参考,如果觉得很不错,欢迎点评和分享。
实数是有理数和无理数的总称。
数学上,实数定义为与数轴上的点相对应的数。
实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。
实数是有理数和无理数的总称,通常用黑正体字母R表示。
其中无理数就是无限不循环小数,有理数就包括整数和分数。
数学上,实数直观地定义为和数轴上的点一一对应的数。
本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。
所有实数的集合则可称为实数系或实数连续统。
任何一个完备的阿基米德有序域均可称为实数系。
在保序同构意义下它是惟一的,常用R表示。
由于R是定义了算数运算的运算系统,故有实数系这个名称。
实数可以用来测量连续的量。
理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。
在实际运用中,实数经常被近似成一个有限小数(保留小数点后n 位,n为正整数)。
在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
实数的运算定理1、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
可使用加法交换律、结合律。
2、减法:减去一个数等于加上这个数的相反数。
3、乘法:(1)两数相乘,同号取正,异号取负,并把绝对值相乘。
(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。
4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。
(2)除以一个数等于乘以这个数的倒数。
(3)0除以任何数都等于0,0不能做被除数。
5、乘方与开方:乘方与开方互为逆运算。
6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。
实数的概念和运算实数是数学中的一种重要概念,它包括有理数和无理数两部分。
实数运算指对实数进行加、减、乘、除等基本运算的操作。
在本文中,我们将从实数的概念入手,探讨实数的性质、分类以及基本运算规则。
一、实数的概念实数是一种可以用来表示尺寸、时间、温度、权重等具体物理量的数。
它包括有理数和无理数两个部分。
有理数是可以表示为两个整数的比值的数,而无理数则无法表示为有理数的比值。
有理数是实数的一部分,它包括整数、分数和小数。
整数是不带小数点的正负整数,分数是两个整数的比值,小数是无限位小数或者有限位小数。
有理数之间的运算满足交换律、结合律和分配律等基本运算规则。
无理数包括无限不循环小数和根号形式的数。
无限不循环小数是指小数位数无限且没有循环的小数,如圆周率π和自然对数的底数e。
根号形式的数是指无法表示为有理数的平方根或立方根等形式的数,如根号2和根号3等。
二、实数的分类实数可以分为有限实数和无限实数。
有限实数是指小数位数有限的实数,而无限实数则是指小数位数无限的实数。
在有限实数中,又可以进一步分为有理数和有限不循环小数。
有理数是可以表示为两个整数的比值,而有限不循环小数则是指小数位数有限且不出现循环的小数,如0.25和0.333等。
在无限实数中,又可以进一步分为无理数和无限不循环小数。
无理数是指无法表示为有理数的比值的数,而无限不循环小数是指小数位数无限且不出现循环的小数,如π和e等。
三、实数的基本运算规则实数的基本运算包括加法、减法、乘法和除法。
下面将分别介绍它们的运算规则。
1. 加法:实数的加法满足交换律、结合律和零元素的存在。
即对于任意实数a、b和c,满足以下规则:- 交换律:a + b = b + a- 结合律:(a + b) + c = a + (b + c)- 零元素:a + 0 = a2. 减法:实数的减法可以转化为加法运算。
即对于任意实数a、b 和c,满足以下规则:- 减法定义:a - b = a + (-b)3. 乘法:实数的乘法满足交换律、结合律和单位元素的存在。
实数的知识点实数是数学中一个基础概念,是指包括有理数和无理数的所有数的集合。
在数学中,实数的研究是非常重要的,它涉及数学的各个领域,如数论、代数、几何、微积分等。
本文将介绍实数的基本概念、性质及其在数学中的应用。
一、实数的基本概念实数是指包含有理数和无理数的所有数的集合,用R来表示。
其中有理数是可以表示为两个整数之比的数,无理数则不能表示成这种形式,如常见的$\pi$和$\sqrt{2}$。
实数集合R包括正实数、负实数、0等数。
其中正实数是大于0的实数,负实数是小于0的实数,0是同时是正数和负数的唯一实数。
二、实数的性质实数集合R具有如下性质:1. 实数具有传递性,即如果a>b,b>c,则有a>c。
2. 实数有可加性,即对于任意的实数a、b,有a+b=b+a。
3. 实数有可乘性,即对于任意的实数a、b,有ab=ba。
4. 实数有结合律和分配律,即对于任意的实数a、b、c,有a+(b+c)=(a+b)+c和a(b+c)=ab+ac。
5. 实数有数乘的结合律和分配律,即对于任意的实数a、b、c,有a(bc)=(ab)c和(a+b)c=ac+bc。
6. 实数有数乘的交换律,即对于任意的实数a、b,有ab=ba。
7. 实数有倒数和相反数,即对于任意的非零实数a,有a x1/a=1和-a是相反数。
8. 实数有加法逆元,即对于任意的实数a,有a+(-a)=0。
9. 实数有乘法逆元,即对于任意的非零实数a,有a x 1/a=1。
三、实数的应用实数在数学中的应用十分广泛,下面我们分别从代数、几何和微积分等方面来介绍它的应用。
1. 代数在代数中,实数用于求解多项式方程。
对于一元多项式$f(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0$,其中$a_i(i=0,1,...,n)$是实数,其解为实数或虚数。
在求解实数根时,可以用有理根定理求得多项式的整数根和分数根,然后利用余式定理计算余下的一元多项式,再用求根公式求解即可。
实数的概念
实数是数学中的一个重要概念,它包括有理数和无理数两种数的集合。
实数可以用来表示数量、度量、顺序和比较。
在实数集合中,包含了所有可能的数,无论是整数、分数还是无限不循环小数。
实数的定义相对简单,但却蕴含着丰富的数学道理。
根据Cauchy序列或Dedekind划分的定义,一个实数可以被表示为所有比它小的数的集合。
这个定义确保了实数的连续性和完备性。
实数的集合可以表示为R,其中R是实数的拉丁字母缩写。
R包含了有理数和无理数,有理数是可以表示为两个整数的比值,而无理数则是不能表示为有理数的比值。
无理数包括了诸如根号2、π和自然常数e等数。
实数集合的特性很多,其中最重要的是实数的稠密性、有序性和连续性。
实数的稠密性意味着在任意两个实数之间都存在一个实数,这保证了实数的无限性和密集性。
实数的有序性则意味着任意两个实数之间都可以比较大小。
实数的连续性则意味着在实数集合中没有任何间断。
实数在数学中具有广泛的应用领域,如代数、几何、分析学和概率论等。
实数的加法、减法、乘法和除法运算规则成为数学的基础。
实数的顺序关系使我们能够进行比较和排序。
实数的连续性帮助我们解决方程和证明定理。
总之,实数是数学中一个非常重要的概念。
它包含了所有的有理数和无理数,具有稠密性、有序性和连续性等特性。
实数的定义使用Cauchy序列或Dedekind划分,它在数学的各个领域中具有广泛的应用。
对于理解数学和解决实际问题,实数是一个必不可少的概念。
实数的名词解释实数是数学中的一个重要概念,它是指包括有理数和无理数在内的一类数。
在数轴上,实数代表了所有可能的点,它们既可以是有理数上的点,也可以是无理数上的点。
本文将对实数进行名词解释,从数学定义到实际应用进行探究。
一、实数的定义和性质实数的定义可以从两个角度来考虑。
从数学上看,实数是一种无限的数集,包括有理数和无理数。
有理数是可以用两个整数的比例表示的数,如正整数、负整数、分数。
无理数则是无法被有理数表示为比例的数,如无限不循环小数等。
从几何上看,实数是数轴上的点,每一个点都对应一个实数,反之亦然。
实数的性质是实数理论的基石之一。
首先,实数满足加法和乘法的封闭性,即两个实数相加或相乘的结果仍为实数。
其次,实数的加法和乘法满足交换律、结合律和分配律。
再者,实数集上有一种次序关系,可以通过大小比较来对实数进行排序,这被称为实数的次序性。
最后,实数上存在着完备性,即实数集中的任何非空有上界的子集都有一个上确界,也就是实数集中的“空隙”被填满。
二、实数的应用实数不仅仅是数学中的概念,它在现实生活中有着广泛的应用。
首先,实数在科学研究中扮演着重要的角色。
例如,在自然科学中,测量和观测往往涉及到无限小数的计算,而无限小数就是无理数的一种表现形式。
这使得实数成为物理学、化学、生物学等学科中不可或缺的工具。
同时,实数还广泛应用于金融领域,用来计算利息、汇率等经济指标。
此外,实数还在信息科学、工程技术等领域中有重要的应用,如信号处理、图像压缩等。
三、实数的伊辛堡-格登瓦定理伊辛堡-格登瓦定理是实数理论中的一项重要成果,它指出实数是不可数的。
这一定理的证明十分巧妙,依赖于对实数的分割和二进制表示。
简单来说,这个定理通过构造一个递归的过程,将实数集分割成若干段,每一段中都不存在实数,从而说明实数的数量无穷无尽。
这个结果反直觉,因为实数似乎是可以通过有理数的组合得到的,有理数是可数的。
但实数的无穷性和稠密性使得它与有理数有着本质的区别。
实数基本概念实数基本概念及应用一、实数的定义与性质1.1 实数的定义实数是由有理数和无理数组成的数。
其中,有理数包括整数和分数,无理数则是无法表示为有限小数或无限循环小数的数。
1.2 实数的性质实数具有连续性、完备性、有序性等性质。
连续性指实数在数轴上是可以无限接近的,没有间隙;完备性指实数可以表示为任意精确程度的有限小数或无限循环小数;有序性指实数可以按照大小进行比较,可以排序。
二、实数的表示方法2.1 有限小数表示法有限小数表示法是指用小数点后几位数字来表示实数的方法。
例如,123.45表示为有限小数123.45。
2.2 无限小数表示法无限小数表示法包括无限循环小数和无限不循环小数。
无限循环小数是指小数点后的数字重复出现,例如1/3=0.3333……。
无限不循环小数是指小数点后的数字不重复出现,例如π=3.141592……。
三、实数的运算3.1 加法运算实数的加法运算按照加法交换律和结合律进行。
即a+b=b+a,(a+b)+c=a+(b+c)。
3.2 减法运算实数的减法运算按照加法交换律和结合律进行。
即a-b=a+(-b),a-b-c=a+(-b)+(-c)。
3.3 乘法运算实数的乘法运算按照乘法交换律和结合律进行。
即a×b=b×a,(a×b)×c=a×(b×c)。
3.4 除法运算实数的除法运算按照乘法交换律和结合律进行。
即a/b=c,则ac=bc,c/a=b,则ca=cb。
3.5 指数运算实数的指数运算可以使用幂运算进行。
即a^b=c,则log(a)c=b。
3.6 对数运算实数的对数运算可以使用指数运算进行。
即log(a)b=x,则a^x=b。
四、实数在生活中的应用4.1 测量中的应用实数在测量中有着广泛的应用。
例如,长度、面积、体积等都可以用实数来表示。
4.2 工程中的应用在工程中,实数被广泛应用于计算各种物理量。
例如,物体的质量、速度、加速度等都可以用实数来表示。
实数的基本概念与运算实数是数学中的一个基本概念,它包括了整数、有理数和无理数。
实数的运算是数学中的重要内容,包括加法、减法、乘法和除法等。
本文将介绍实数的基本概念以及实数的运算法则。
一、实数的基本概念实数是用于表示现实世界中各种物质和现象的数,它包括了整数、有理数和无理数。
整数由正整数、负整数和零组成,例如-3、-2、-1、0、1、2、3等。
有理数是可以表示为两个整数之商的数,例如2/3、-4/5、1等。
无理数是不能表示为两个整数之商的数,例如π和√2等。
二、实数的加法与减法运算实数的加法是指将两个实数相加得到一个新的实数。
加法运算满足交换律、结合律和零元律。
例如,对于任意实数a、b和c,有以下等式成立:1. 交换律:a + b = b + a2. 结合律:(a + b) + c = a + (b + c)3. 零元律:a + 0 = a实数的减法是指将一个实数减去另一个实数得到一个新的实数。
减法运算可以看作是加法运算的逆运算。
例如,对于任意实数a、b和c,有以下等式成立:a -b = a + (-b)三、实数的乘法与除法运算实数的乘法是指将两个实数相乘得到一个新的实数。
乘法运算满足交换律、结合律和单位元律。
例如,对于任意实数a、b和c,有以下等式成立:1. 交换律:a × b = b × a2. 结合律:(a × b) × c = a × (b × c)3. 单位元律:a × 1 = a实数的除法是指将一个实数除以另一个非零实数得到一个新的实数。
除法运算可以看作是乘法运算的逆运算。
例如,对于任意实数a、b和c(其中b≠0),有以下等式成立:a ÷b = a × (1/b)四、实数的运算性质实数的运算满足分配律、零因子律和单位元律等性质。
1. 分配律:对于任意实数a、b和c,有以下等式成立:a × (b + c) = (a × b) + (a × c)a × (b - c) = (a × b) - (a × c)2. 零因子律:如果两个实数的乘积等于零,则其中至少一个实数为零。
关于实数的知识点总结一、基本概念1.1 实数的定义实数是一切有理数和无理数的总称。
有理数指整数和分数的集合,无理数指不能表示为分数形式的数。
实数包括了整数、有理数和无理数三种类型的数。
1.2 实数的表示实数可以用十进制、分数、无限不循环小数等形式表示。
其中,十进制形式是常见的实数表示形式,可以直观地表示出实数的大小。
1.3 实数的性质实数具有加法、减法、乘法、除法等运算性质,满足交换律、结合律、分配律等基本性质。
此外,实数还满足最大值和最小值的性质,即任何有上界的非空有限实数集合必有上确界,并且同样地有下确界。
二、实数的子集2.1 有理数集有理数包括整数和分数,其中整数是不含小数部分的数,分数是两个整数的比,可以用分数形式表示。
2.2 无理数集无理数是不能表示为有理数的数,其十进制表示形式为无限不循环小数。
无理数包括了无限多的十进制无限不循环小数,如$\sqrt{2}$、$\pi$等。
2.3 实数集实数集是有理数和无理数的总称,它包括了一切可以表示为十进制数的数。
三、实数的运算3.1 加法和减法实数的加法和减法满足交换律和结合律,对任意两个实数a和b,有a+b=b+a,a-b≠b-a。
3.2 乘法和除法实数的乘法和除法满足交换律和结合律,对任意两个实数a和b,有a×b=b×a,a/b≠b/a。
3.3 幂运算实数的幂运算是指a的n次方,其中a是实数,n是自然数。
幂运算的性质包括a的m 次方与a的n次方的乘积等。
3.4 开方实数的开方是指对任意非负实数a,存在唯一的非负实数b,使得b的平方等于a。
开方的性质包括平方根存在性和唯一性等。
四、实数的序关系4.1 实数的大小比较实数之间可以进行大小比较,对于任意两个实数a和b,有a<b、a>b或a=b中的一种关系。
4.2 实数的绝对值实数a的绝对值是指a到原点的距离,用|a|表示。
如果a≥0,则|a|=a;如果a<0,则|a|=-a。
第一课时 实数的有关概念一、学习目标1. 使学生复习巩固有理数、实数的有关概念.2. 了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。
3. 会求一个数的相反数和绝对值,会比较实数的大小4. 画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。
二、实数的有关概念 (1)实数的组成{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数(2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。
数轴上任一点对应的数总大于这个点左边的点对应的数, (3)相反数实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反效是零). 从数轴上看,互为相反数的两个数所对应的点关于原点对称. (4)绝对值⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 (5)倒数实数a(a ≠0)的倒数是a1(乘积为1的两个数,叫做互为倒数);零没有倒数. 三、知识点填空1、 和 统称为有理数。
有理数还可以分为 、 和 三类。
2、数轴的三要素是: 、 、 。
3、一个数的绝对值是指在数轴上表示这个数的点到原点的 。
正数的绝对值是 ,负数的绝对值是 ,0的绝对值是 。
4、 相同、 不同的两个数互为相反数,0的相反数是 。
5、乘方运算:na 读作 ,它表示 相乘,它的运算结果叫做 ,底数是 ,指数是 。
6、科学记数法:把一个数表示成 na 10⨯ 的形式,其中a 的取值范围是 7、有理数混合运算的顺序是:先算 ,再算 ,最后算 。
四、【典型例题】例1.右图是我市2月份某天24 小时内的气温变化图,则该天的 最大温差是_____ ℃. (2006连云港)例2.2006年5月12日20时19分,我国单机容量最大的核电站———江苏田湾核电站的1号机组成功并网发电,它将为华东电网新增1060000千瓦的供电能力.“1060000”用科学记数法可表示为 .(2006连云港)例3.a 、b 两数在一条隐去原点的数轴上的位置如图所示,下列4个式子中一定成立..的是 .(只填写序号)(2006连云港) ①a -b <0;②a +b <0;③a b <0;④a b +a +b +1<0.例4.观察下列各等式中的数字特征:85358535⨯=-,1192911929⨯=-,17107101710710⨯=-,…… 将你所发现的规律用含字母a ,b 的等式表示出来: .(2006连云港)例5.计算:-22-[-5+(0.2×31-1)÷(57-)]例6.股民李明上星期六买进春兰公司股票1000股,每股27元,下表为本周内每日该股票的涨跌(1(2)本周内最高价是每股多少元?最低价每股多少元?(3)已知李明买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果李明在星期六收盘前将全部股票卖出,他的收益情况如何? 五、考查题型: 以填空和选择题为主。
如 一、考查题型:1. -1的相反数的倒数是2. 已知|a+3|+b+1 =0,则实数(a+b )的相反数 3. 数-3.14与-Л的大小关系是 4. 和数轴上的点成一一对应关系的是5. 和数轴上表示数-3的点A 距离等于2.5的B 所表示的数是 6. 在实数中Л,-25 ,0, 3 ,-3.14, 4 无理数有( )(A )1 个 (B )2个 (C )3个 (D )4个 7.一个数的绝对值等于这个数的相反数,这样的数是( ) (A )非负数 (B )非正数 (C )负数 (D )正数 8.若x <-3,则|x +3|等于( )(A )x +3 (B )-x -3 (C )-x +3 (D )x -3 9.下列说法正确是( )(A ) 有理数都是实数 (B )实数都是有理数(B ) 带根号的数都是无理数 (D )无理数都是开方开不尽的数 10.实数在数轴上的对应点的位置如图,比较下列每组数的大小: (1) c-b 和d-a (2) bc 和ad 六、考点训练: 1.判断题:(1)如果a 为实数,那么-a 一定是负数;( ) (2)对于任何实数a 与b,|a -b|=|b -a|恒成立;( ) (3)两个无理数之和一定是无理数;( ) (4)两个无理数之积不一定是无理数;( )(5)任何有理数都有倒数;( ) (6)最小的负数是-1;( ) (7)a 的相反数的绝对值是它本身;( ) (8)若|a|=2,|b|=3且ab>0,则a -b=-1;( ) 2.把下列各数分别填入相应的集合里-|-3|,21.3,-1.234,-227 ,0,sin60°º,-9 ,-3-18 , -Л2 ,8 ,( 2 - 3 )0,3-2,ctg45°,1.2121121112......中无理数集合{ } 负分数集合{ } 整数集合 { } 非负数集合{ } 3.已知1<x<2,则|x -3|+(1-x)2等于( )(A )-2x (B )2 (C )2x (D )-24.下列各数中,哪些互为相反数?哪些互为倒数?哪些互为负倒数?-3, 2 -1, 3, - 0.3, 3-1, 1 + 2 , 313互为相反数: 互为倒数: 互为负倒数:5.已知x、y是实数,且(X - 2 )2和|y+2|互为相反数,求x,y 的值 6.a,b 互为相反数,c,d 互为倒数,m 的绝对值是2,求|a+b|2m 2+1 +4m-3cd= 。
7.已知(a-3b)2+|a2-4|a+2 =0,求a+b= 。
七、解题指导: 1.下列语句正确的是( )(A )无尽小数都是无理数 (B )无理数都是无尽小数(C )带拫号的数都是无理数 (D )不带拫号的数一定不是无理数。
2.和数轴上的点一一对应的数是( )(A )整数 (B )有理数 (C )无理数 (D )实数 3.零是( )(A ) 最小的有理数 (B )绝对值最小的实数 (C )最小的自然数 (D )最小的整数4.如果a 是实数,下列四种说法:(1)a2和|a|都是正数,(2)|a|=-a,那么a一定是负数,(3)a的倒数是1a ,(4)a和-a的两个分别在原点的两侧,其中正确的是( )(A )0 (B )1 (C )2 (D )35.比较下列各组数的大小:(1)34 45 (2) 323 时, 1a 1b6.若a,b 满足|4-a 2|+a+b a+2 =0,则2a+3ba的值是7.实数a,b,c 在数轴上的对应点如图,其中O 是原点,且|a|=|c|(1) 判定a+b, a+c, c-b 的符号 (2) 化简|a|-|a+b|+|a+c|+|c-b|8.数轴上点A 表示数-1,若AB =3,则点B 所表示的数为 9.已知x<0,y>0,且y<|x|,用"<"连结x ,-x ,-|y|,y 。
10.最大负整数、最小的正整数、最小的自然数、绝对值最小的实数各是什么? 11.绝对值、相反数、倒数、平方数、算术平方根、立方根是它本身的数各是什么? 12.把下列语句译成式子:(1)a 是负数 ;(2)a 、b 两数异号 ;(3)a 、b 互为相反数 ; (4) a 、b 互为倒数 ;(5)x 与y 的平方和是非负数 ; (6)c 、d 两数中至少有一个为零 ;(7)a 、b 两数均不为0 。
13.数轴上作出表示 2 , 3 ,- 5 的点。
八.独立训练:1.0的相反数是 ,3-л的相反数是 ,3-8 的相反数是 ;-л的绝对值是 ,0 的绝对值是 , 2 - 3 的倒数是 2.数轴上表示-3.2的点它离开原点的距离是 。
A 表示的数是-12 ,且AB =13,则点B 表示的数是 。
3 -33 ,л,(1- 2 )º,-227,0.1313…,2cos60º, -3-1,1.101001000…(两1之间依次多一个0),中无理数有 ,整数有 ,负数有 。
4. 若a 的相反数是27,则|a|= ;5.若|a|= 2 ,则a=5.若实数x ,y 满足等式(x +3)2+|4-y |=0,则x +y 的值是 6.实数可分为( )(A )正数和零(B )有理数和无理数(C )负数和零 (D )正数和负数 7.若2a 与1-a 互为相反数,则a 等于( ) (A )1 (B )-1 (C )12 (D )138.当a 为实数时,a 2=-a 在数轴上对应的点在( )(C ) 原点右侧(B )原点左侧(C )原点或原点的右侧(D )原点或原点左侧 *9.代数式a|a| +b|b| +ab|ab|的所有可能的值有( )(A )2个 (B )3个 (C )4个 (D )无数个 10.已知实数a 、b 在数轴上对应点的位置如图 (1)比较a -b 与a+b 的大小(2)化简|b -a|+|a+b|11.实数a、b、c在数轴上的对应点如图所示,其中|a|=|c|试化简:|b-c|-|b-a|+|a-c-2b|-|c-a|12.已知等腰三角形一边长为a,一边长b,且(2a-b)2+|9-a2|=0 。
求它的周长。
*13.若3,m,5为三角形三边,化简:(2-m)2-(m-8)214.有一张厚度是0.1mm 的纸,将它对折一次后,厚度为2×0.1mm. (1)对折4次后,厚度是多少毫米? (2)对折15次后,厚度是多少毫米?(3)若一层楼高约为3m ,则对折15次后,纸的厚度与一层楼高比,谁高? 15.一张长方形桌子可坐6人,按下图方式将桌子拼在一起.(1)两张桌子拼在一起可坐多少人?三张桌子呢?n 张桌子呢?(2)一家餐厅有40张这样的长方形桌子,按照上图的方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐多少人?(3)在(2)中,若改为每8张桌子拼成1张桌子,则共可坐多少人? 16.若()2210xy y -+-= (1)求x 、y 的值. (2)求y2006+(-y )2007的值.(2)求()()()()1111122xy x y x y +++++++…()()120072007x y ++的值。