高中物理练习探究动能定理实验
- 格式:doc
- 大小:467.50 KB
- 文档页数:9
高中物理动能与动能定理的技巧及练习题及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,在某竖直平面内,光滑曲面AB 与水平面BC 平滑连接于B 点,BC 右端连接内壁光滑、半径r =0.2m 的四分之一细圆管CD ,管口D 端正下方直立一根劲度系数为k =100N/m 的轻弹簧,弹簧一端固定,另一端恰好与管口D 端平齐,一个质量为1kg 的小球放在曲面AB 上,现从距BC 的高度为h =0.6m 处静止释放小球,它与BC 间的动摩擦因数μ=0.5,小球进入管口C 端时,它对上管壁有F N =2.5mg 的相互作用力,通过CD 后,在压缩弹簧过程中滑块速度最大时弹簧弹性势能E p =0.5J 。
取重力加速度g =10m/s 2。
求: (1)小球在C 处受到的向心力大小; (2)在压缩弹簧过程中小球的最大动能E km ; (3)小球最终停止的位置。
【答案】(1)35N ;(2)6J ;(3)距离B 0.2m 或距离C 端0.3m 【解析】 【详解】(1)小球进入管口C 端时它与圆管上管壁有大小为 2.5F mg =的相互作用力 故小球受到的向心力为2.53.5 3.511035N F mg mg mg =+==⨯⨯=向(2)在C 点,由2=c v F r向代入数据得21 3.5J 2c mv = 在压缩弹簧过程中,速度最大时,合力为零,设此时滑块离D 端的距离为0x 则有0kx mg =解得00.1m mgx k== 设最大速度位置为零势能面,由机械能守恒定律有201()2c km p mg r x mv E E ++=+得201()3 3.50.56J 2km c p E mg r x mv E =++-=+-=(3)滑块从A 点运动到C 点过程,由动能定理得2132c mg r mgs mv μ⋅-=解得BC 间距离0.5m s =小球与弹簧作用后返回C 处动能不变,小滑块的动能最终消耗在与BC 水平面相互作用的过程中,设物块在BC 上的运动路程为s ',由动能定理有212c mgs mv μ-=-'解得0.7m s '=故最终小滑动距离B 为0.70.5m 0.2m -=处停下. 【点睛】经典力学问题一般先分析物理过程,然后对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
专题2 动能定理(下)1.B 如图,物体A的质量为10 kg,置于光滑水平地面上,一绳跨过定滑轮,一端与A相连,一端受到竖直向下的恒力F=2 N的作用,开始时绳子与水平面的夹角370。
当力作用一段时间后,绳与水平方向成530。
H=6 m,在这一过程中,拉力对物体做功______,若物体是从静止开始运动,不计阻力,此时物体速度为_______m/s。
2.C 均匀的薄金属片ABCD为正方形,质量为m,边长为L.在A处有光滑的水平轴把金属片悬挂起来,如图所示。
现在使金属片逆时针绕轴旋转,到AB边成竖直方向的位置。
这一过程中,至少要对它做功()A.12mgL B.2mgL C.21mgL- D.(21)mgL-3.C 一劲度系数k = 800 N/m的轻质弹簧两端分别连接着质量均为12 kg的物体A.B,将他竖直静止在水平面上,如图所示。
现将一竖直向上的变力F作用A上,使A开始向上做匀加速运动,经0.4 s物体B刚要离开地面,求:此过程中力F所做的功。
(设整个过程弹簧都在弹性限度内,取g = 10m/s2)4.C 如图所示,一木块沿竖直放置的粗糙曲面从高处滑下。
当它滑过A点的速度大小为5 m/s时,滑到B点的速度大小也为5 m/s。
若使它滑过A点的速度变为7 m/s,则它滑到B点的速度大小为()A.大于7 m/s B.等于7 m/sC.小于7 m/s D.无法确定5.B ABCD是一条和长轨道,其中AB是倾角为θ的斜面,CD段是水平的,BC是与AB和CD都相切的一小段圆弧,其长度可忽略,一质量m的小滑块在A点从静止状态释放,沿轨道下滑,最后停在D点,A 点和D点的位置如图。
现用一沿着轨道方向的力推滑块,使它缓慢地由D点推回到A点时停下,设滑块与轨道间的磨擦系数为μ,则推力对滑块做的功等于()A.mgh B.2mghC.mgμ(s+h/sinθ) D.mgsμ+mghμctgθ6.B 一汽车起动后沿水平公路匀加速行驶,速度达到vm后关闭发动机,滑行一段时间后停止运动,其v-t 图象如图所示。
高中物理动能与动能定理技巧(很有用)及练习题一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。
最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。
已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。
(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。
【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。
高中物理专题练习-动能定理机械能守恒定律及功能关系的应用(含答案)满分:100分时间:60分钟一、单项选择题(本题共6小题,每小题5分,共30分.每小题只有一个选项符合题意.)1.(四川理综,1)在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小()A.一样大B.水平抛的最大C.斜向上抛的最大D.斜向下抛的最大2.(新课标全国卷Ⅱ,17)一汽车在平直公路上行驶.从某时刻开始计时,发动机的功率P随时间t的变化如图所示.假定汽车所受阻力的大小f恒定不变.下列描述该汽车的速度v随时间t变化的图线中,可能正确的是()3.(新课标全国卷Ⅱ,16)一物体静止在粗糙水平地面上,现用一大小为F1的水平拉力拉动物体,经过一段时间后其速度变为v,若将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v,对于上述两个过程,用W F1、W F2分别表示拉力F1、F2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则()A.W F2>4W F1,W f2>2W f1B.W F2>4W F1, W f2=2W f1C.W F2<4W F1,W f2=2W f1D.W F2<4W F1, W f2<2W f14.(新课标全国卷Ⅰ,17)如图,一半径为R、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ水平.一质量为m的质点自P点上方高度R处由静止开始下落,恰好从P点进入轨道.质点滑到轨道最低点N时,对轨道的压力为4mg,g为重力加速度的大小.用W表示质点从P点运动到N点的过程中克服摩擦力所做的功.则()A.W=12mgR,质点恰好可以到达Q点B .W >12mgR ,质点不能到达Q 点C .W =12mgR ,质点到达Q 点后,继续上升一段距离D .W <12mgR ,质点到达Q 点后,继续上升一段距离5.(海南单科,4)如图,一半径为R 的半圆形轨道竖直固定放置,轨道两端等高,质量为m 的质点自轨道端点P 由静止开始滑下,滑到最低点Q 时,对轨道的正压力为2mg ,重力加速度大小为g .质点自P 滑到Q 的过程中,克服摩擦力所做的功为( ) A.14mgR B.13mgRC.12mgRD.π4mgR 6.(天津理综,5)如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态.现让圆环由静止开始下滑,已知弹簧原长为L ,圆环下滑到最大距离时弹簧的长度变为2L (未超过弹性限度),则在圆环下滑到最大距离的过程中( ) A .圆环的机械能守恒 B .弹簧弹性势能变化了3mgLC .圆环下滑到最大距离时,所受合力为零D .圆环重力势能与弹簧弹性势能之和保持不变二、多项选择题(本题共4小题,每小题7分,共计28分.每小题有多个选项符合题意.全部选对的得7分,选对但不全的得4分,错选或不答的得0分.)7.(浙江理综,18)我国科学家正在研制航母舰载机使用的电磁弹射器.舰载机总质量为3.0×104kg,设起飞过程中发动机的推力恒为1.0×105 N ;弹射器有效作用长度为100 m,推力恒定.要求舰载机在水平弹射结束时速度大小达到80 m/s.弹射过程中舰载机所受总推力为弹射器和发动机推力之和,假设所受阻力为总推力的20%,则( ) A .弹射器的推力大小为1.1×106 N B .弹射器对舰载机所做的功为1.1×108 J C .弹射器对舰载机做功的平均功率为8.8×107 WD .舰载机在弹射过程中的加速度大小为32 m/s 28.(新课标全国卷Ⅱ,21)如图,滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上,a、b通过铰链用刚性轻杆连接,由静止开始运动,不计摩擦,a、b可视为质点,重力加速度大小为g.则() A.a落地前,轻杆对b一直做正功B.a落地时速度大小为2ghC.a下落过程中,其加速度大小始终不大于gD.a落地前,当a的机械能最小时,b对地面的压力大小为mg9.(江苏单科,9)如图所示,轻质弹簧一端固定,另一端与一质量为m、套在粗糙竖直固定杆A处的圆环相连,弹簧水平且处于原长.圆环从A处由静止开始下滑,经过B处的速度最大,到达C处的速度为零,AC=h.圆环在C处获得一竖直向上的速度v,恰好能回到A.弹簧始终在弹性限度内,重力加速度为g.则圆环()A.下滑过程中,加速度一直减小B.下滑过程中,克服摩擦力做的功为14m v2C.在C处,弹簧的弹性势能为14m v2-mghD.上滑经过B的速度大于下滑经过B的速度10.(江苏南通一模)一质点在0~15 s内竖直向上运动,其加速度-时间图象如图所示,若取竖直向下为正,g取10 m/s2,则下列说法正确的是()A.质点的机械能不断增加B.在0~5 s内质点的动能增加C.在10~15 s内质点的机械能减少D.在t=15 s时质点的机械能大于t=5 s时质点的机械能三、计算题(本题共2小题,共计42分.解答时写出必要的文字说明,方程式和重要的演算步骤,只写出最后答案的不得分.)11.(江苏单科,14)(20分)一转动装置如图所示,四根轻杆OA、OC、AB和CB与两小球及一小环通过铰链连接,轻杆长均为l,球和环的质量均为m,O端固定在竖直的轻质转轴上.套在转轴上的轻质弹簧连接在O与小环之间,原长为L.装置静止时,弹簧长为32L.转动该装置并缓慢增大转速,小环缓慢上升.弹簧始终在弹性限度内,忽略一切摩擦和空气阻力,重力加速度为g.求:(1)弹簧的劲度系数k;(2)AB杆中弹力为零时,装置转动的角速度ω0;(3)弹簧长度从32L缓慢缩短为12L的过程中,外界对转动装置所做的功W.12.(福建理综,21)(22分)如图,质量为M的小车静止在光滑水平面上,小车AB段是半径为R的四分之一圆弧光滑轨道,BC段是长为L的水平粗糙轨道,两段轨道相切于B点.一质量为m的滑块在小车上从A点由静止开始沿轨道滑下,重力加速度为g.(1)若固定小车,求滑块运动过程中对小车的最大压力;(2)若不固定小车,滑块仍从A点由静止下滑,然后滑入BC轨道,最后从C点滑出小车.已知滑块质量m=M2,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道BC间的动摩擦因数为μ,求:①滑块运动过程中,小车的最大速度大小v m;②滑块从B到C运动过程中,小车的位移大小s. 答案1. A [由机械能守恒定律mgh +12m v 21=12m v 22知,落地时速度v 2的大小相等,故 A 正确.]2.A [当汽车的功率为P 1时,汽车在运动过程中满足P 1=F 1v ,因为P 1不变,v 逐渐增大,所以牵引力F 1逐渐减小,由牛顿第二定律得F 1-f =ma 1,f 不变,所以汽车做加速度减小的加速运动,当F 1=f 时速度最大,且v m =P 1F 1=P 1f .当汽车的功率突变为P 2时,汽车的牵引力突增为F 2,汽车继续加速,由P 2=F 2v 可知F 2减小,又因F 2-f =ma 2,所以加速度逐渐减小,直到F 2=f 时,速度最大v m ′=P 2f ,以后匀速运动.综合以上分析可知选项A 正确.]3.C [两次物体均做匀加速运动,由于时间相等,两次的末速度之比为1∶2,则由v =at 可知两次的加速度之比为a 1a 2=12,F 1合F 2合=12,又两次的平均速度分别为v 2、v ,故两次的位移之比为x 1x 2=12,由于两次的摩擦阻力相等,由W f =fx 可知,W f 2=2W f 1;由动能定理知W 合1W 合2=ΔE k1ΔE k2=14,因为W 合=W F -W f ,故W F =W 合+W f ;W F 2=W 合2+W f 2=4W 合1+2W f 1<4W 合1+4W f 1=4W F 1;选项C 正确.]4.C [根据动能定理得P 点动能E k P =mgR ,经过N 点时,由牛顿第二定律和向心力公式可得4mg-mg =m v 2R ,所以N 点动能为E k N =3mgR2,从P 点到N 点根据动能定理可得mgR -W =E k N -E k P ,即克服摩擦力做功W =mgR2.质点运动过程,半径方向的合力提供向心力即F N -mg cos θ=ma =m v 2R ,根据左右对称,在同一高度处,由于摩擦力做功导致在右边圆形轨道中的速度变小,轨道弹力变小,滑动摩擦力F f =μF N 变小,所以摩擦力做功变小,那么从N 到Q ,根据动能定理-mgR -W ′=E k Q -E k N ,Q 点动能E k Q =3mgR 2-mgR -W ′=12mgR -W ′,由于W ′<mgR2,所以Q 点速度仍然没有减小到0,会继续向上运动一段距离,对照选项,C 正确.]5.C [在Q 点质点受到竖直向下的重力和竖直向上的支持力,两力的合力充当向心力,所以有F N -mg =m v 2R ,F N =2mg ,联立解得v =gR ,下滑过程中,根据动能定理可得mgR -W f =12m v 2,解得W f =12mgR ,所以克服摩擦力做功 12mgR ,C 正确.]6.B [圆环在下落过程中弹簧的弹性势能增加,由能量守恒定律可知圆环的机械能减少,而圆环与弹簧组成的系统机械能守恒,故A 、D 错误;圆环下滑到最大距离时速度为零,但是加速度不为零,即合外力不为零,故C 错误;圆环重力势能减少了3mgl ,由能量守恒定律知弹簧弹性势能增加了3mgl ,故B 正确.]7.ABD [设总推力为F ,位移x ,阻力F 阻=20%F ,对舰载机加速过程由动能定理得Fx -20%F ·x=12m v 2,解得F =1.2×106 N,弹射器推力F 弹=F -F 发=1.2×106 N -1.0×105 N =1.1×106 N,A 正确;弹射器对舰载机所做的功为W =F 弹·x =1.1×106×100 J =1.1×108 J,B 正确;弹射器对舰载机做功的平均功率P -=F 弹·0+v2=4.4×107 W,C 错误;根据运动学公式v 2=2ax ,得a =v 22x =32 m/s 2,D 正确.]8.BD [滑块b 的初速度为零,末速度也为零,所以轻杆对b 先做正功,后做负功,选项A 错误;以滑块a 、b 及轻杆为研究对象,系统的机械能守恒,当a 刚落地时,b 的速度为零,则mgh =12m v 2a +0,即v a =2gh ,选项B 正确;a 、b 的先后受力如图所示.由a 的受力图可知,a 下落过程中,其加速度大小先小于g 后大于g ,选项C 错误;当a 落地前b 的加速度为零(即轻杆对b 的作用力为零)时,b 的机械能最大,a 的机械能最小,这时b 受重力、支持力,且F N b =mg ,由牛顿第三定律可知,b 对地面的压力大小为mg ,选项D 正确.] 9.BD [由题意知,圆环从A 到C 先加速后减速,到达B 处的加速度减小为零,故加速度先减小后增大,故A 错误;根据能量守恒,从A 到C 有mgh =W f +E p ,从C 到A 有12m v 2+E p =mgh +W f ,联立解得:W f =14m v 2,E p =mgh -14m v 2,所以B 正确,C 错误;根据能量守恒,从A 到B 有mgh 1=12m v 2B 1+ΔE p1+W f 1,从C 到B 有12m v 2+ΔE p2=12m v 2B 2+W f 2+mgh 2,又有12m v 2+E p =mgh +W f ,联立可得v B 2>v B 1,所以D 正确.]10.CD [质点竖直向上运动,0~15 s 内加速度方向向下,质点一直做减速运动,B 错误;0~5 s内,a=10 m/s2,质点只受重力,机械能守恒;5~10 s内,a=8 m/s2,受重力和向上的力F1,F1做正功,机械能增加;10~15 s内,a=12 m/s2,质点受重力和向下的力F2,F2做负功,机械能减少,A错误,C正确;由F合=ma可推知F1=F2,由于做减速运动,5~10 s内通过的位移大于10~15 s内通过的位移,F1做的功大于F2做的功,5~15 s内增加的机械能大于减少的机械能,所以D正确.]11.解析(1)装置静止时,设OA、AB杆中的弹力分别为F1、T1,OA杆与转轴的夹角为θ1小环受到弹簧的弹力F弹1=k·L2小环受力平衡:F弹1=mg+2T1cos θ1小球受力平衡:F1cos θ1+T1cos θ1=mg, F1sin θ1=T1sin θ1解得k=4mg L(2)设OA、AB杆中的弹力分别为F2、T2,OA杆与转轴的夹角为θ2,弹簧长度为x 小环受到弹簧的弹力F弹2=k(x-L)小环受力平衡:F弹2=mg,得x=54L对小球:F2cos θ2=mg, F2sin θ2=mω20l sin θ2且cos θ2=x 2l解得ω0=8g 5L(3)弹簧长度为L2时,设OA、AB杆中的弹力分别为F3、T3,OA杆与弹簧的夹角为θ3小环受到弹簧的弹力F弹3=k·L2小环受力平衡:2T3cos θ3=mg+F弹3,且cos θ3=L 4l对小球:F3cos θ3=T3cos θ3+mg;F3sin θ3+T3sin θ3=mω23l sin θ3解得ω3=16g L整个过程弹簧弹性势能变化为零,则弹力做的功为零, 由动能定理:W -mg ⎝ ⎛⎭⎪⎫3L 2-L 2-2mg ⎝ ⎛⎭⎪⎫3L 4-L 4=2×12m (ω3l sin θ3)2解得:W =mgL +16mgl 2L 答案 (1)4mgL (2)8g 5L (3)mgL +16mgl 2L12.解析 (1)滑块滑到B 点时对小车压力最大,从A 到B 机械能守恒mgR =12m v 2B ①滑块在B 点处,由牛顿第二定律知 N -mg =m v 2B R ② 解得N =3mg ③ 由牛顿第三定律知 N ′=3mg ④(2)①滑块下滑到达B 点时,小车速度最大.由机械能守恒 mgR =12M v 2m +12m (2v m )2⑤ 解得v m =gR3⑥②设滑块运动到C 点时,小车速度大小为v C ,由功能关系 mgR -μmgL =12M v 2C +12m (2v C )2⑦ 设滑块从B 到C 过程中,小车运动加速度大小为a ,由牛顿第二定律 μmg =Ma ⑧ 由运动学规律v 2C -v 2m =-2as ⑨解得s =13L ⑩ 答案 (1)3mg (2)①gR 3 ②13L1.运用功能关系分析问题的基本思路(1)选定研究对象或系统,弄清物理过程;(2)分析受力情况,看有什么力在做功,弄清系统内有多少种形式的能在参与转化;(3)仔细分析系统内各种能量的变化情况、变化数量.2.功能关系。
高三物理教案动能定理及其应用(5篇)高三物理教案动能定理及其应用(5篇)作为一位兢兢业业的人民教师,前方等待着我们的是新的机遇和挑战,有必要进行细致的教案准备工作,促进思维能力的发展。
怎样写教学设计才更能起到其作用呢?下面是小编收集整理的教案范文。
欢迎分享!高三物理教案动能定理及其应用(精选篇1)1、研究带电物体在电场中运动的两条主要途径带电物体在电场中的运动,是一个综合力和能量的力学问题,研究的方法与质点动力学相同(仅仅增加了电场力),它同样遵循运动的合成与分解、力的独立作用原理、牛顿运动定律、动能定理、功能原理等力学规律.研究时,主要可以按以下两条途径分析:(1)力和运动的关系--牛顿第二定律根据带电物体受到的电场力和其它力,用牛顿第二定律求出加速度,结合运动学公式确定带电物体的速度、位移等.这条线索通常适用于恒力作用下做匀变速运动的情况.(2)功和能的关系--动能定理根据电场力对带电物体所做的功,引起带电物体的能量发生变化,利用动能定理或从全过程中能量的转化,研究带电物体的速度变化,经历的位移等.这条线索同样也适用于不均匀的电场.2、研究带电物体在电场中运动的两类重要方法(1)类比与等效电场力和重力都是恒力,在电场力作用下的运动可与重力作用下的运动类比.例如,垂直射入平行板电场中的带电物体的运动可类比于平抛,带电单摆在竖直方向匀强电场中的运动可等效于重力场强度g值的变化等.(2)整体法(全过程法)电荷间的相互作用是成对出现的,把电荷系统的整体作为研究对象,就可以不必考虑其间的相互作用.电场力的功与重力的功一样,都只与始末位置有关,与路径无关.它们分别引起电荷电势能的变化和重力势能的变化,从电荷运动的全过程中功能关系出发(尤其从静止出发末速度为零的问题)往往能迅速找到解题切入点或简化计算高三物理教案动能定理及其应用(精选篇2)1、与技能:掌握运用动量守恒定律的一般步骤。
2、过程与:知道运用动量守恒定律解决问题应注意的问题,并知道运用动量守恒定律解决有关问题的优点。
高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.某物理小组为了研究过山车的原理提出了下列的设想:取一个与水平方向夹角为θ=53°,长为L 1=7.5m 的倾斜轨道AB ,通过微小圆弧与足够长的光滑水平轨道BC 相连,然后在C 处连接一个竖直的光滑圆轨道.如图所示.高为h =0.8m 光滑的平台上有一根轻质弹簧,一端被固定在左面的墙上,另一端通过一个可视为质点的质量m =1kg 的小球压紧弹簧,现由静止释放小球,小球离开台面时已离开弹簧,到达A 点时速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小物块与AB 间的动摩擦因数为μ=0.5,g 取10m/s 2,sin53°=0.8.求:(1)弹簧被压缩时的弹性势能; (2)小球到达C 点时速度v C 的大小;(3)小球进入圆轨道后,要使其不脱离轨道,则竖直圆弧轨道的半径R 应该满足什么条件. 【答案】(1)4.5J ;(2)10m/s ;(3)R ≥5m 或0<R ≤2m 。
【解析】 【分析】 【详解】(1)小球离开台面到达A 点的过程做平抛运动,故有02 3m/s tan y v ghv θ=== 小球在平台上运动,只有弹簧弹力做功,故由动能定理可得:弹簧被压缩时的弹性势能为201 4.5J 2p E mv ==; (2)小球在A 处的速度为5m/s cos A v v θ== 小球从A 到C 的运动过程只有重力、摩擦力做功,故由动能定理可得221111sin cos 22C A mgL mgL mv mv θμθ-=- 解得()212sin cos 10m/s C A v v gL θμθ=+-=;(3)小球进入圆轨道后,要使小球不脱离轨道,即小球能通过圆轨道最高点,或小球能在圆轨道上到达的最大高度小于半径;那么对小球能通过最高点时,在最高点应用牛顿第二定律可得21v mg m R≤;对小球从C 到最高点应用机械能守恒可得2211152222C mv mgR mv mgR =+≥ 解得202m 5Cv R g<≤=;对小球能在圆轨道上到达的最大高度小于半径的情况应用机械能守恒可得212C mv mgh mgR =≤ 解得2=5m 2C v R g≥;故小球进入圆轨道后,要使小球不脱离轨道,则竖直圆弧轨道的半径R ≥5m 或0<R ≤2m ;2.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:(1)物块与传送带间的动摩擦因数;(2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】3-3.75 J 【解析】解:(1)由图象可知,物块在前0.5 s 的加速度为:2111a =8?m/s v t = 后0.5 s 的加速度为:222222?/v v a m s t -== 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得:1mgsin mgcos ma θμθ+=物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得:2mgsin mgcos ma θμθ-=联立解得:3μ=(2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:1112v t x =则摩擦力对物块做功:11·W mgcos x μθ= 在后0.5 s ,物块对地位移为:12122v v x t +=则摩擦力对物块做功22·W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J3.我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1-所示,质量m =60 kg 的运动员从长直助滑道AB 的A 处由静止开始以加速度a =3.6 m/s 2匀加速滑下,到达助滑道末端B 时速度v B =24 m/s ,A 与B 的竖直高度差H =48 m .为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C 处附近是一段以O 为圆心的圆弧.助滑道末端B 与滑道最低点C 的高度差h =5 m ,运动员在B 、C 间运动时阻力做功W =-1530 J ,g 取10 m/s 2.(1)求运动员在AB 段下滑时受到阻力F f 的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大?【答案】(1)144 N (2)12.5 m 【解析】试题分析:(1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,斜面的倾角为α,则有 v B 2=2ax根据牛顿第二定律得 mgsinα﹣F f =ma 又 sinα=Hx由以上三式联立解得 F f =144N(2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理有 mgh+W=12mv C 2-12mv B 2 设运动员在C 点所受的支持力为F N ,由牛顿第二定律得 F N ﹣mg=m 2Cv R由运动员能承受的最大压力为其所受重力的6倍,即有 F N=6mg 联立解得 R=12.5m考点:牛顿第二定律;动能定理【名师点睛】本题中运动员先做匀加速运动,后做圆周运动,是牛顿第二定律、运动学公式、动能定理和向心力的综合应用,要知道圆周运动向心力的来源,涉及力在空间的效果,可考虑动能定理.4.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6m,始终以v0=6m/s的速度顺时针运动.将一个质量m=1kg 的物块由距斜面底端高度h1=5.4m的A点静止滑下,物块通过B点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H=5m,g取10m/s2,sin37°=0.6,cos37°=0.8.⑴求物块由A点运动到C点的时间;⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m【解析】试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1,代入数据解得,t 1=3s.所以滑到B点的速度:v B=a1t1=2×3m/s=6m/s,物块在传送带上匀速运动到C,所以物块由A到C的时间:t=t1+t2=3s+1s=4s(2)斜面上由根据动能定理.解得v=4m/s<6m/s,设物块在传送带先做匀加速运动达v0,运动位移为x,则:,,x=5m<6m所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动s=v 0t0,H=解得 s=6m.(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有v C=v0①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:,解得h 3=1.8m②当离传送带高度为h 4时物块进入传送带后一直匀减速运动,h 4=9.0m所以当离传送带高度在1.8m ~9.0m 的范围内均能满足要求 即1.8m≤h≤9.0m5.如图所示,质量m =2.0×10-4 kg 、电荷量q =1.0×10-6 C 的带正电微粒静止在空间范围足够大的电场强度为E1的匀强电场中.取g =10 m/s 2. (1)求匀强电场的电场强度 E1的大小和方向;(2)在t =0时刻,匀强电场强度大小突然变为E2=4.0×103N/C ,且方向不变.求在t =0.20 s 时间内电场力做的功;(3)在t =0.20 s 时刻突然撤掉第(2)问中的电场,求带电微粒回到出发点时的动能.【答案】(1)2.0×103N/C ,方向向上 (2)8.0×10-4J (3)8.0×10-4J【解析】 【详解】(1)设电场强度为E ,则:Eq mg =,代入数据解得:4362.01010/ 2.010/1010mg E N C N C q --⨯⨯===⨯⨯,方向向上 (2)在0t =时刻,电场强度突然变化为:32 4.010/E N C =⨯,设微粒的加速度为a ,在0.20t s =时间内上升高度为h ,电场力做功为W ,则:21qE mg ma -=解得:2110/a m s =根据:2112h a t =,解得:0.20=h m 电场力做功:428.010J W qE h -==⨯(3)设在0.20t s =时刻突然撤掉电场时粒子的速度大小为v ,回到出发点时的动能为k E ,则:v at =,212k E mgh mv =+解得:48.010J k E -=⨯6.如图所示,一质量为m 的小球从半径为R 的竖直四分之一圆弧轨道的顶端无初速释放,圆弧轨道的底端水平,离地面高度为R 。
【物理】物理动能与动能定理练习题含答案及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。
最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。
已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。
(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。
【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,在娱乐节目中,一质量为m =60 kg 的选手以v 0=7 m/s 的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A 时速度刚好水平,并在传送带上滑行,传送带以v =2 m/s 匀速向右运动.已知绳子的悬挂点到抓手的距离为L =6 m ,传送带两端点A 、B 间的距离s =7 m ,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小; (2)选手在传送带上从A 运动到B 的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】(1)5 m/s (2)3 s (3)360 J 【解析】试题分析:(1)设选手放开抓手时的速度为v 1,则-mg (L -Lcosθ)=mv 12-mv 02,v 1=5m/s(2)设选手放开抓手时的水平速度为v 2,v 2=v 1cosθ① 选手在传送带上减速过程中 a =-μg② v =v 2+at 1③④匀速运动的时间t 2,s -x 1=vt 2⑤ 选手在传送带上的运动时间t =t 1+t 2⑥ 联立①②③④⑤⑥得:t =3s(3)由动能定理得W f =mv 2-mv 22,解得:W f =-360J 故克服摩擦力做功为360J . 考点:动能定理的应用3.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。
第5章第4讲一、选择题1.在“验证机械能守恒定律”的实验中,下列物理量中需要用工具测量的有( ) A.重锤的质量B.重力加速度C.重锤下落的高度D.与重锤下落高度对应的重锤的瞬时速度[答案] C[解析] 由机械能守恒定律列方程,等式两边都有质量可消去,故不用测质量,只需测重锤下落高度,计算出对应点的速度,故选C.2.某同学在做利用橡皮筋探究功与速度变化关系的实验时,拖着纸带的小车在橡皮筋的作用下由静止运动到木板底端,在此过程中打点计时器在纸带上打下的相邻点间的距离变化情况是( )A.始终是均匀的B.先减小后增大C.先增大后减小D.先增大后均匀不变[答案] D[解析] 橡皮筋对小车作用过程中小车速度增大,所以点间距增大,当小车离开橡皮筋后做匀速直线运动,点的间距不再变化,所以选D.3.用如图所示实验装置来验证机械能守恒定律时,某同学的以下说法中正确的是( )A.必须用秒表测出重物下落的时间B.实验操作时,注意手提着纸带使重物靠近计时器,先接通计时器电源,然后松开纸带C.如果打点计时器不竖直,重物下落时,其重力势能有一部分消耗在纸带摩擦上,就会造成重力势能的变化小于动能的变化D.验证时,可以不测量重物的质量或重力[答案] BD[解析] 因为实验中运用打点计时器, 不需要测时间,A 错误;打点计时器不竖直,重物下落时,其重力势能有一部分消耗在纸带摩擦上,造成重力势能的减少大于动能的增量,C 错误;实验时,为节约纸带,便于测量,应使重物靠近计时器,应先通电后放手,B 正确;因为动能和势能表达式中都含有质量,可以消去,故不需测质量,D 正确.4.用橡皮筋探究功与速度变化的实验中小车会受到阻力,可以使木板倾斜作为补偿,则下面操作正确的是( )A .使拖着纸带的小车由静止释放,小车不下滑即可B .使拖着纸带的小车由静止释放,小车能下滑即可C .沿木板推小车(后面拖着纸带),打点计时器在纸带上打下的点均匀分布D .不用挂纸带,轻推小车,小车能匀速下滑即可 [答案] C[解析] 因为纸带在运动中也会受到摩擦力,恰好平衡摩擦力的情况,应是小车拴有纸带时所受的阻力与重力的分力平衡,故D 错C 对;平衡摩擦力后小车应是匀速下滑,A 、B 不能说明小车处于受力平衡状态,所以不正确.5.某同学在进行“验证机械能守恒定律”实验时,获得了数条纸带,则正确的是( ) A .必须挑选第一、二两点间的距离接近2mm 的纸带进行测量 B .在纸带上选取点迹清楚的、方便测量的某点作计数点的始点C .用毫米刻度尺量出各计数点到始点点迹之间的距离,得出重物下落的相应高度h 1、h 2…h nD .用公式v n =h n +1-h n -12T,计算出各计数点对应的重物的瞬时速度 [答案] CD[解析] 由实验的原理和操作知道,CD 都是正确的,对于A ,无论何时释放纸带,只要方法正确,则仍能验证机械能守恒定律,不必选第一、二两点之间的距离接近2mm 的纸带,故A 错.始点应是打的第一个点,不能从中间选取,故B 错.6.(2010·厦门)“验证机械能守恒定律”的实验中,使用电磁式打点计时器(所用交流电的频率为50Hz),得到如图所示的纸带.图中的点为计数点,相邻两计数点间还有四个点未画出来,下列说法正确的是( )A .实验时应先放开纸带再接通电源B .(s 6-s 1)等于(s 2-s 1)的6倍C .由纸带可求出计数点B 对应的速率D .相邻两个计数点间的时间间隔为0.02s[答案] C[解析] 使用打点计时器时应先接通电源后松开纸带,选项A 错;T =5×150s =0.1s ,s 6-s 1=5aT 2,s 2-s 1=aT 2,所以(s 6-s 1)=5(s 2-s 1),选项BD 错误;由于s 2、s 3已知,计数点间的时间T =0.1s ,所以可求得计数点B 对应的速度,选项C 正确.二、非选择题7.(1)用公式12mv 2=mgh 时对纸带上起点的要求是____,为此,所选择的纸带第一、第二两点间距离应接近________.(2)若实验中所用重物的质量m =1kg ,打点纸带如图甲所示,打点时间间隔为0.02s ,则记录B 点时,重物的速度v B =________,重物动能E kB =________.从开始下落到至B 点,重物的重力势能减少量是________,因此可得出的结论是________.(3)根据纸带算出相关各点的速度v ,量出下落距离h ,则以v 22为纵轴,以h 为横轴画出的图线应是如图乙中的________.[答案] (1)初速为零 2mm (2)0.59m/s 0.17J 0.17J在实验误差范围内,重物动能的增加等于重物重力势能的减少 (3)C[解析] (1)若重物是从初速度为零开始下落,由自由落体运动规律s =12gt 2,t 取0.02s ,g 取9.8m/s 2,可计算得s =1.96mm≈2mm.(2)由匀变速直线运动规律可知v B =AC /2T ,E kB =12mv B 2,ΔE pB =mgOB由此可求得v B =0.59m/sE kB =0.17J ;ΔE pB =0.17J在实验误差范围内,重物动能的增加等于重物重力势能的减少.(3)因为12mv 2=mgh ,约去m ,得v 22=gh ,所以v22-h 图象应是一条过原点的有斜率的直线,直线的斜率大小等于g ,所以C 正确.8.(2010·安徽理综)利用图示装置进行验证机械能守恒定律的实验时,需要测量物体由静止开始自由下落到某点时的瞬时速度v 和下落高度h .某班同学利用实验得到的纸带,设计了以下四种测量方案:a .用刻度尺测出物体下落的高度h ,并测出下落时间t ,通过v =gt 计算出瞬时速度v .b .用刻度尺测出物体下落的高度h ,并通过v =2gh 计算出瞬时速度v .c .根据做匀变速直线运动时纸带上某点的瞬时速度,等于这点前后相邻两点间的平均速度,测算出瞬时速度v ,并通过h =v 22g计算出高度h .d .用刻度尺测出物体下落的高度h ,根据做匀变速直线运动时纸带上某点的瞬时速度,等于这点前后相邻两点间的平均速度,测算出瞬时速度v .以上方案中只有一种正确,正确的是________.(填入相应的字母) [答案] d[解析] 本题考查验证机械能守恒定律实验的原理.根据实验原理,h 是用刻度尺从纸带测量得到的,而某点速度由相邻两点的平均速度相等得出的,故选项d 正确.9.(2010·淄博)(1)在“探究功与物体速度变化的关系”的实验中,为了平衡小车运动中受到的阻力,应该采用下面所述的________方法(填“a ”、“b ”或“c ”).(a )逐步调节木板的倾斜程度,使静止的小车开始运动 (b )逐步调节木板的倾斜程度,使小车在木板上保持静止(c )逐步调节木板的倾斜程度,使夹在小车后面的纸带上所打的点间隔均匀(2)在上述实验操作中,打点计时器使用的交流电频率为50Hz.某同学打出的一段纸带如图所示,O 、A 、B ……E 为打点计时器连续打出的计时点,则小车匀速运动时的速度大小为________m/s.(计算结果保留3位有效数字)(3)若某同学分别用1根、2根…5根相同橡皮筋进行实验,测得小车匀速运动时的速度分别为0.52m/s、0.78m/s、0.96m/s、1.08m/s、1.22m/s.请根据实验数据在下面的坐标纸上画出橡皮筋所做功(W)与小车获得的速度(v)之间的关系图象.[答案] (1)C (2)1.40 (3)如图所示10.(2010·安徽省级名校联考)某实验小组用“落体法”验证机械能守恒定律,在用正确的方法进行实验后:(1)有关该实验的注意事项及结论,下列说法正确的是( )A.打点计时器安装时,必须使纸带跟两限位孔在同一竖直线上,以减小摩擦阻力B.实验时,需保持提纸带的手不动,待接通电源,让打点计时器正常工作后再松开纸带让重锤下落C.由于摩擦和空气阻力的影响,本实验的系统误差总是重力势能的减少量小于动能的增加量D.为了增加实验的可靠性,可以重复多次实验(2)实验小组中有同学提出,在处理实验数据时,所选纸带必须要求第一、二点间距离接近2mm且第一个点迹要清楚,你是否赞同这位同学的观点?说出你的理由________________________________________________________________________ ________________________________________________________________________.[答案] (1)ABD (2)不赞同[解析] (1)ABD(2)因为纸带上某两点(不一定包含第一个点)的距离等于重物下落的高度,这样就能计算出重物下落过程中重力势能的减少量,如果再分别算出这两点的速度,便可以算出这两点对应重锤的动能,进一步计算出此过程中动能的增加量,若在实验误差允许的范围内,重力势能的减少量和相应过程动能的增加量相等,便可以验证机械能守恒定律.这样,重力势能减少的计算不必从起始点开始计算.于是,纸带打出的起始点O 后的第一个0.02s 内的位移是否接近2mm ,以及第一个点是否清晰也就无关紧要了.11.(2010·江苏南通一模)某同学利用如图甲所示的实验装置验证机械能守恒定律.该同学经正确操作得到打点纸带,在纸带后段每两个计时间隔取一个计数点,依次为1、2、3、4、5、6、7,测量各计数点到第一个打点的距离h ,并正确求出打相应点时的速度v .各计数点对应的数据见下表:________m/s 2(保留三位有效数字);(2)若当地的重力加速度g =9.80m/s 2,根据作出的图线,能粗略验证自由下落的重锤机械能守恒的依据是________.[答案] (1)如图所示 9.75(9.69~9.79均可)(2)g ′ 与g 基本相等[解析] 由机械能守恒定律得,12mv 2=mg ′h ,即v 2=2g ′h ,图线的斜率k =2g ′=Δv 2Δh ,代入数据,得g ′=9.75m/s 2.12.如图所示,两个质量各为m 1和m 2的小物块A 和B ,分别系在一条跨过定滑轮的软绳两端,已知m 1>m 2,现要利用此装置验证机械能守恒定律.(1)若选定物块A 从静止开始下落的过程进行测量,则需要测量的物理量有________(填选项前编号).①物块的质量m 1、m 2;②物块A 下落的距离及下落这段距离所用的时间; ③物块B 上升的距离及上升这段距离所用的时间; ④绳子的长度.(2)为提高实验结果的准确程度,某小组同学对此实验提出以下建议: ①绳的质量要轻;②在“轻质绳”的前提下,绳子越长越好; ③尽量保证物块只沿竖直方向运动,不要摇晃; ④两个物块的质量之差要尽可能小.以上建议中确实对提高准确程度有作用的是______(填选项前编号).(3)写出一条上面没有提到的对提高实验结果准确程度有益的建议:________________________________________________________________________.[答案] (1)①②或①③ (2)①③(3)例如:“对同一高度进行多次测量取平均值”;“选取受力后相对伸长尽量小的绳”等.(任选一条即可)[解析] A 和B 在运动过程中,速度大小始终相等.需要验证的式子为(m 1-m 2)gh =12m 1v2+12m 2v 2 即(m 1-m 2)gh =12(m 1+m 2)v 2因此,必须测出m 1、m 2、h 并利用v =at 求得速度,其中由于m 1g -F T =m 1a ,F T -m 2g =m 2a ,所以a =m 1-m 2m 1+m 2g .因此选①②或①③均可.结合此实验原理易知绳子适当长一些便于操作,但不可过长;m 1与m 2越接近,摩擦力等阻力对实验测量的影响越明显,为提高实验结果的准确度,应选①③.多次测量求平均值的方法在测量型实验中经常应用.另外选取受力后相对伸长尽量小的绳也可提高实验结果准确程度.13.为了“探究外力做功与物体动能变化的关系”,查资料得知,弹簧的弹性势能E p=12kx 2,其中k 是弹簧的劲度系数,x 是弹簧长度的变化量. 某同学就设想用压缩的弹簧推静止的小球(质量为m )运动来探究这一问题.为了研究方便,把小铁球O 放在水平桌面上做实验,让小球O 在弹力作用下运动,即只有弹簧推力做功.该同学设计实验如下:首先进行如图甲所示的实验:将轻质弹簧竖直挂起来,在弹簧的另一端挂上小铁球O ,静止时测得弹簧的伸长量为d .在此步骤中,目的是要确定物理量________,用m 、d 、g 表示为________.接着进行如图乙所示的实验:将这根弹簧水平放在桌面上,一端固定,另一端被小铁球O 压缩,测得压缩量为x ,释放弹簧后,小铁球O 被推出去,从高为h 的水平桌面上抛出,小铁球O 在空中运动的水平距离为L .小铁球O 的初动能E k 1=________. 小铁球O 的末动能E k 2=________.弹簧对小铁球O 做的功W =________.(用m 、x 、d 、g 表示)对比W 和E k 2-E k 1就可以得出“外力做功与物体动能变化的关系”,即在实验误差允许范围内,外力所做的功等于物体动能的变化.[答案] 弹簧劲度系数k mg d 0 mgL 24h mgx 22d[解析] 该题也是探究做功与物体动能变化的关系,但是在课本实验的基础上进行了变化和创新,主要考查了灵活应用知识的能力和创新能力.在图甲所示的步骤中,目的是确定弹簧的劲度系数k ,由平衡条件得:mg =kd 即k =mgd.在图乙所示的实验中,小铁球的初动能E k 1=0. 又根据小球做平抛运动得:h =12gt 2 L =vt所以EK 2=12mv 2=12m (L g /2h )2=mgL 24h弹簧对小铁球做的功等于弹性势能的减少1 2kx2=mgx22d.所以W=。