江苏2017届高三数学第六章数列推理与证明第二节等差数列及其前n项和课时跟踪检测理
- 格式:docx
- 大小:32.52 KB
- 文档页数:6
课时跟踪检测(三十一) 等比数列及其前n 项和一抓基础,多练小题做到眼疾手快1.若等比数列{a n }满足a 1+a 3=20,a 2+a 4=40,则公比q =________.解析:由题意,得⎩⎪⎨⎪⎧a 1+a 1q 2=20,a 1q +a 1q 3=40,解得⎩⎪⎨⎪⎧a 1=4,q =2.答案:22.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,那么a 1+a 10=________.解析:因为a 4+a 7=2,由等比数列的性质可得,a 5a 6=a 4a 7=-8,所以a 4=4,a 7=-2或a 4=-2,a 7=4.当a 4=4,a 7=-2时,q 3=-12,所以a 1=-8,a 10=1,所以a 1+a 10=-7;当a 4=-2,a 7=4时,q 3=-2,则a 10=-8,a 1=1,所以a 1+a 10=-7.综上可得a 1+a 10=-7.答案:-73.(2016·南通调研)设等比数列{a n }中,公比q =2,前n 项和为S n ,则S 4a 3=________.解析:根据等比数列的公式,得S 4a 3=a 1-q41-qa 1q2=-q4-q q2=1-24-2=154. 答案:1544.在等比数列{a n }中,若a 1·a 5=16,a 4=8,则a 6=________. 解析:由题意得,a 2·a 4=a 1·a 5=16, ∴a 2=2,∴q 2=a 4a 2=4,∴a 6=a 4q 2=32. 答案:325.若S n 为等比数列{a n }的前n 项和,且2S 4=a 5-2,2S 3=a 4-2,则数列{a n }的公比q =________.解析:将2S 4=a 5-2,2S 3=a 4-2相减得2a 4=a 5-a 4, 所以3a 4=a 5,公比q =a 5a 4=3. 答案: 3二保高考,全练题型做到高考达标1.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =________.解析:由题意得(a +1)2=(a -1)(a +4),解得a =5,故a 1=4,a 2=6,所以q =32,a n=4×⎝ ⎛⎭⎪⎫32n -1.答案:4×⎝ ⎛⎭⎪⎫32n -12.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.解析:由题意可知a 1+a 3=5,a 1a 3=4.又因为{a n }为递增的等比数列,所以a 1=1,a 3=4,则公比q =2,所以S 6=-261-2=63.答案:633.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9=________. 解析:因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.答案:184.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是________.解析:∵log 3a n +1=log 3a n +1,∴a n +1=3a n . ∴数列{a n }是以3为公比的等比数列. ∴a 2+a 4+a 6=a 2(1+q 2+q 4)=9.∴a 5+a 7+a 9=a 5(1+q 2+q 4)=a 2q 3(1+q 2+q 4)=35. ∴log 1335=-5.答案:-55.已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =9,a 2m a m =5m +1m -1,则数列{a n }的公比为________.解析:设公比为q ,若q =1,则S 2m S m =2,与题中条件矛盾,故q ≠1.∵S 2mS m =a 1-q 2m1-q a 1-qm1-q =q m+1=9,∴q m=8.∴a 2m a m =a 1q 2m -1a 1q m -1=q m =8=5m +1m -1,∴m =3,∴q 3=8, ∴q =2. 答案:26.(2015·湖南高考)设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.解析:因为3S 1,2S 2,S 3成等差数列,所以4S 2=3S 1+S 3,即4(a 1+a 2)=3a 1+a 1+a 2+a 3.化简,得a 3a 2=3,即等比数列{a n }的公比q =3,故a n =1×3n -1=3n -1.答案:3n -17.在等比数列{}a n 中,公比q =2,前99项的和S 99=30,则a 3+a 6+a 9+…+a 99=________.解析:∵S 99=30,即a 1(299-1)=30.又∵数列a 3,a 6,a 9,…,a 99也成等比数列且公比为8,∴a 3+a 6+a 9+…a 99=4a 1-8331-8=4a 199-7=47×30=1207. 答案:12078.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积数列”.若各项均为正数的等比数列{a n }是一个“2 016积数列”,且a 1>1,则当其前n 项的乘积取最大值时n 的值为________.解析:由题可知a 1a 2a 3·…·a 2 016=a 2 016, 故a 1a 2a 3·…·a 2 015=1,由于{a n }是各项均为正数的等比数列且a 1>1, 所以a 1 008=1,公比0<q <1,所以a 1 007>1且0<a 1 009<1,故当数列{a n }的前n 项的乘积取最大值时n 的值为1 007或1 008.答案:1 007或1 0089.设数列{a n }的前n 项和为S n ,a 1=1,且数列{S n }是以2为公比的等比数列. (1)求数列{a n }的通项公式; (2)求a 1+a 3+…+a 2n +1. 解:(1)∵S 1=a 1=1,且数列{S n }是以2为公比的等比数列, ∴S n =2n -1,又当n ≥2时,a n =S n -S n -1=2n -1-2n -2=2n -2.当n =1时a 1=1,不适合上式.∴a n =⎩⎪⎨⎪⎧1,n =1,2n -2,n ≥2.(2)a 3,a 5,…,a 2n +1是以2为首项,以4为公比的等比数列, ∴a 3+a 5+…+a 2n +1=-4n1-4=n-3.∴a 1+a 3+…+a 2n +1=1+n -3=22n +1+13. 10.(2016·苏州调研)已知数列{a n }的前n 项和为S n ,a 1=1,且3a n +1+2S n =3(n 为正整数).(1)求数列{a n }的通项公式;(2)对任意正整数n ,是否存在k ∈R ,使得k ≤S n 恒成立?若存在,求实数k 的最大值;若不存在,说明理由.解:(1)因为3a n +1+2S n =3,① 所以n ≥2时,3a n +2S n -1=3,②由①-②得3a n +1-3a n +2a n =0,所以a n +1=13a n (n ≥2).又a 1=1,3a 2+2a 1=3,得a 2=13,所以a 2=13a 1,故数列{a n }是首项为1,公比q =13的等比数列,所以a n =a 1·qn -1=⎝ ⎛⎭⎪⎫13n -1. (2)假设存在满足题设条件的实数k ,使得k ≤S n 恒成立.由(1)知S n =a 1-q n1-q=1-⎝ ⎛⎭⎪⎫13n 1-13=32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n ,由题意知,对任意正整数n 恒有k ≤32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n ,又数列⎩⎨⎧⎭⎬⎫1-⎝ ⎛⎭⎪⎫13n 单调递增,所以当n =1时数列中的最小项为23,则必有k ≤1,即实数k最大值为1.三上台阶,自主选做志在冲刺名校1.已知等比数列{a n }共有奇数项,所有奇数项和S 奇=255,所有偶数项和S 偶=-126,末项是192,则首项a 1=________.解析:设共有2k +1(k ∈N *)项,公比为q ,其中奇数项有k +1项,偶数项有k 项,则有⎩⎪⎨⎪⎧a 1-q2k1-q2+192=255,a 2-q 2k1-q2=-126,解得q =-2,又S 奇=a 1-q2k +21-q2=a 1-a 2k +1q 21-q2, 即a 1-192×41-4=255,解得a 1=3.答案:32.已知数列{a n },{b n }中,a 1=a ,{b n }是公比为23的等比数列.记b n =a n -2a n -1(n ∈N *),若不等式a n >a n +1对一切n ∈N *恒成立,则实数a 的取值范围是________.解析:因为b n =a n -2a n -1(n ∈N *),所以a n =b n -2b n -1. 所以a n +1-a n =b n +1-2b n +1-1-b n -2b n -1=1b n -1-1b n +1-1=b n +1-b n-b n +1-b n=-13b n⎝ ⎛⎭⎪⎫1-23b n -b n<0, 解得b n >32或0<b n <1.若b n >32,则b 1⎝ ⎛⎭⎪⎫23n -1>32对一切正整数n 成立,显然不可能;若0<b n <1,则0<b 1⎝ ⎛⎭⎪⎫23n -1<1对一切正整数n 成立,只要0<b 1<1即可,即0<a 1-2a 1-1<1,解得a 1=a >2.即实数a 的取值范围是(2,+∞). 答案:(2,+∞)3.已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2). (1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式;解:(1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). ∵a 1=5,a 2=5, ∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2),∴a n+1+2a na n+2a n-1=3(n≥2),∴数列{a n+1+2a n}是以15为首项,3为公比的等比数列.(2)由(1)得a n+1+2a n=15×3n-1=5×3n,则a n+1=-2a n+5×3n,∴a n+1-3n+1=-2(a n-3n).又∵a1-3=2,∴a n-3n≠0,∴{a n-3n}是以2为首项,-2为公比的等比数列.∴a n-3n=2×(-2)n-1,即a n=2×(-2)n-1+3n.。
第2讲 等差数列及前n 项和考纲展示 命题探究1 等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,定义的表达式为a n +1-a n =d ,d 为常数.2 等差中项如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,且A =a +b 2.3 等差数列的通项公式及其变形通项公式:a n =a 1+(n -1)d ,其中a 1是首项,d 是公差.通项公式的变形:a n =a m +(n -m )d ,m ,n ∈N *.4 等差数列的前n 项和等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . 5 等差数列的单调性当d >0时,数列{a n }为递增数列;当d <0时,数列{a n }为递减数列;当d =0时,数列{a n }为常数列.注意点 定义法证明等差数列时的注意事项(1)证明等差数列时,切忌只通过计算数列的a 2-a 1,a 3-a 2,a 4-a 3等有限的几个项的差后,发现它们都等于同一个常数,就断言数列{a n }为等差数列.(2)用定义法证明等差数列时,常采用a n +1-a n =d ,若采用a n -a n -1=d ,则n ≥2,否则n =1时无意义.1.思维辨析(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(5)等差数列的前n 项和公式是常数项为0的二次函数.( ) 答案 (1)× (2)√ (3)√ (4)× (5)×2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于( )A .1 B.53 C .2D .3答案 C解析 因为S 3=(a 1+a 3)×32=6,而a 3=4.所以a 1=0,所以d =a 3-a 12=2.3.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .14 答案 C解析 ∵S 3=3(a 1+a 3)2=3a 2=12,∴a 2=4. ∵a 1=2,∴d =a 2-a 1=4-2=2.∴a 6=a 1+5d =12.故选C.[考法综述] 等差数列的定义,通项公式及前n 项和公式是高考中常考内容,用定义判断或证明等差数列,由n ,a n ,S n ,a 1,d 五个量之间的关系考查基本运算能力.命题法1 等差数列的基本运算典例1 等差数列{a n }的前n 项和记为S n .已知a 10=30,a 20=50.(1)求通项a n ;(2)若S n =242,求n .[解] (1)由a n =a 1+(n -1)d ,a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧a 1+9d =30,a 1+19d =50. 解得a 1=12,d =2.所以a n =2n +10;(2)由S n =na 1+n (n -1)2d ,S n =242,得方程12n +n (n -1)2×2=242,解得n =11或n =-22(舍去).【解题法】 等差数列计算中的两个技巧(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.命题法2 等差数列的判定与证明典例2 数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2.(1)设b n =a n +1-a n ,证明{b n }是等差数列;(2)求{a n }的通项公式.[解] (1)证明:∵a n +2=2a n +1-a n +2,∴b n +1-b n =a n +2-a n +1-(a n +1-a n )=2a n +1-a n +2-2a n +1+a n =2.∴{b n }是以1为首项,2为公差的等差数列.(2)由(1)得b n =1+2(n -1),即a n +1-a n =2n -1,∴a 2-a 1=1,a 3-a 2=3,a 4-a 3=5,…,a n -a n -1=2n -3,累加法可得a n -a 1=1+3+5+…+(2n -3)=(n -1)2,∴a n =n 2-2n +2.【解题法】 等差数列的判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数.(2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立.(3)通项公式法:验证a n =pn +q .(4)前n 项和公式法:验证S n =An 2+Bn .1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( )A .-1B .0C .1D .6答案 B解析 设数列{a n }的公差为d ,由a 4=a 2+2d ,a 2=4,a 4=2,得2=4+2d ,d =-1,∴a 6=a 4+2d =0.故选B.2.已知{a n }是等差数列,公差d 不为零,前n 项和是S n .若a 3,a 4,a 8成等比数列,则( )扫一扫·听名师解题A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0答案 B解析 由a 24=a 3a 8,得(a 1+2d )(a 1+7d )=(a 1+3d )2,整理得d (5d +3a 1)=0,又d ≠0,∴a 1=-53d ,则a 1d =-53d 2<0,又∵S 4=4a 1+6d =-23d ,∴dS 4=-23d 2<0,故选B.3.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.答案 -12解析由已知得S1=a1,S2=a1+a2=2a1-1,S4=4a1+4×32×(-1)=4a1-6,而S1,S2,S4成等比数列,所以(2a1-1)2=a1(4a1-6),整理得2a1+1=0,解得a1=-1 2.4.已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.解(1)证明:由题设,a n a n+1=λS n-1,a n+1a n+2=λS n+1-1.两式相减得a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得数列{a n}为等差数列.等差数列及其前n项和的性质已知{a n}为等差数列,d为公差,S n为该数列的前n项和.(1)有穷等差数列中与首末两项等距离的两项的和相等,即a1+a n=a2+a n-1=a3+a n-2=…=a k+a n-k+1=….(2)等差数列{a n}中,当m+n=p+q时,a m+a n=a p+a q(m,n,p,q∈N*).特别地,若m+n=2p,则2a p=a m+a n(m,n,p∈N*).(3)相隔等距离的项组成的数列是等差数列,即a k,a k+m,a k+2m,…仍是等差数列,公差为md(k,m∈N*).(4)S n,S2n-S n,S3n-S2n,…也成等差数列,公差为n2d.(5)⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }的公差的12.(6)在等差数列{a n }中,①若项数为偶数2n ,则S 2n =n (a 1+a 2n )=n (a n +a n +1);S 偶-S 奇=nd ;S 奇S 偶=a n a n +1. ②若项数为奇数2n -1,则S 2n -1=(2n -1)a n ;S 奇-S 偶=a n ;S 奇S 偶=n n -1. (7)若数列{a n }与{b n }均为等差数列,且前n 项和分别是S n 和T n ,则S 2m -1T 2m -1=a m b m. (8)若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.注意点 前n 项和性质的理解等差数列{a n }中,设前n 项和为S n ,则S n ,S 2n ,S 3n 的关系为2(S 2n -S n )=S n +(S 3n -S 2n )不要理解为2S 2n =S n +S 3n .1.思维辨析(1)等差数列{a n }中,有a 1+a 7=a 2+a 6.( )(2)若已知四个数成等差数列,则这四个数可设为a -2d ,a -d ,a +d ,a +2d .( )(3)若三个数成等差数列,则这三个数可设为:a -d ,a ,a +d .( )(4)求等差数列的前n 项和的最值时,只需将它的前n 项和进行配方,即得顶点为其最值处.( )答案 (1)√ (2)× (3)√ (4)×2.若S n 是等差数列{a n }的前n 项和,a 2+a 10=4,则S 11的值为( )A .12B .18C .22D .44答案 C 解析 由题可知S 11=11(a 1+a 11)2=11(a 2+a 10)2=11×42=22,故选C.3.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=90,则a 10-13a 14的值为( )A .12B .14C .16D .18答案 A解析 由题意知5a 8=90,a 8=18,a 10-13a 14=a 1+9d -13(a 1+13d )=23a 8=12,选A 项.[考法综述] 等差数列的性质是高考中的常考内容,灵活应用由概念推导出的重要性质,在解题过程中可以达到避繁就简的目的.命题法1 等差数列性质的应用典例1 等差数列{a n }中,如果a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和为( )A .297B .144C .99D .66[解析] 由a 1+a 4+a 7=39,得3a 4=39,a 4=13.由a 3+a 6+a 9=27,得3a 6=27,a 6=9.所以S 9=9(a 1+a 9)2=9(a 4+a 6)2=9×(13+9)2=9×11=99,故选C.[答案] C【解题法】 应用等差数列性质应注意(1)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n=a m +(n -m )d ,d =a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等. (2)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q ( m ,n ,p ,q ∈N *).一般地,a m +a n ≠a m +n ,必须是两项相加,当然也可以是a m -n +a m +n =2a m .因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件.命题法2 与等差数列前n 项和有关的最值问题典例2 等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?[解] 解法一:由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d=-213a 1.从而S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1,又a 1>0,所以-a 113<0.故当n =7时,S n 最大.解法二:由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由解法一可知a =-a 113<0,故当n =7时,S n 最大.解法三:由解法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0, 即⎩⎪⎨⎪⎧ a 1+(n -1)⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,≤n ≤n =7时,S n 最大.解法四:由S 3=S 11,可得2a 1+13d =0,即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.【解题法】 求等差数列前n 项和的最值的方法(1)二次函数法:用求二次函数最值的方法(配方法)求其前n 项和的最值,但要注意n ∈N *.(2)图象法:利用二次函数图象的对称性来确定n 的值,使S n 取得最值.(3)项的符号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a n ≥0a n +1≤0的项数n ,使S n 取最大值;当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1 ≥0的项数n ,使S n 取最小值,即正项变负项处最大,负项变正项处最小,若有零项,则使S n 取最值的n 有两个.1.设{a n }是等差数列.下列结论中正确的是( )A .若a 1+a 2>0,则a 2+a 3>0B .若a 1+a 3<0,则a 1+a 2<0C .若0<a 1<a 2,则a 2>a 1a 3D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0答案 C解析 若{a n }是递减的等差数列,则选项A 、B 都不一定正确.若{a n }为公差为0的等差数列,则选项D 不正确.对于C 选项,由条件可知{a n }为公差不为0的正项数列,由等差中项的性质得a 2=a 1+a 32,由基本不等式得a 1+a 32>a 1a 3,所以C 正确.2.在等差数列{a n }中,a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,则使S n >0成立的最大自然数n 是( )A .4025B .4024C .4023D .4022答案 B解析 ∵等差数列{a n }的首项a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,假设a 2012<0<a 2013,则d >0,而a 1>0,可得a 2012=a 1+2011d >0,矛盾,故不可能.∴a 2012>0,a 2013<0.再根据S 4024=4024(a 1+a 4024)2=2012(a 2012+a 2013)>0, 而S 4025=4025a 2013<0,因此使前n 项和S n >0成立的最大自然数n 为4024.3.已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n=2n 3n +1,则a n b n=( ) A.23B.2n -13n -1C.2n +13n +1D.2n -13n +4 答案 B解析 a n b n =2a n 2b n=2n -12(a 1+a 2n -1)2n -12(b 1+b 2n -1)=S 2n -1T 2n -1=2(2n -1)3(2n -1)+1=2n -13n -1.故选B.4.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.答案 10解析 由a 3+a 4+a 5+a 6+a 7=25,得5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.5.中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________.答案 5解析 设等差数列的首项为a 1,根据等差数列的性质可得,a 1+2015=2×1010,解得a 1=5.6.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫-1,-78 解析 由题意知d <0且⎩⎪⎨⎪⎧ a 8>0,a 9<0,即⎩⎪⎨⎪⎧7+7d >0,7+8d <0,解得-1<d <-78.7.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案 8解析 根据题意知a 7+a 8+a 9=3a 8>0,即a 8>0.又a 8+a 9=a 7+a 10<0,∴a 9<0,∴当n =8时,{a n }的前n 项和最大.8.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求通项a n ; (2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S nn +c ,求非零常数c .解 (1)因为数列{a n }为等差数列, 所以a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4, 所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧a 1=1,d =4.所以通项a n =4n -3. (2)由(1)知a 1=1,d =4.所以S n =na 1+n (n -1)2×d =2n 2-n =2⎝ ⎛⎭⎪⎫n -142-18.所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c,所以b 1=11+c ,b 2=62+c ,b 3=153+c .因为数列{b n }是等差数列, 所以2b 2=b 1+b 3, 即62+c ×2=11+c +153+c , 所以2c 2+c =0,所以c =-12或c =0(舍去), 故c =-12.已知等差数列{a n }的前n 项和为S n ,且a 5=9,S 5=15,则使其前n 项和S n 取得最小值时的n =________.[错解][错因分析] 等差数列的前n 项和最值问题,可以通过找对称轴来确定,本题只关注到n ∈N *,并未关注到n =1与n =2时,S 1=S 2,导致错误.[正解] ∵a 5=9,S 5=15,∴a 1=-3,d =3. ∴a n =3n -6,S n =32n 2-92n .把S n 看作是关于n 的二次函数,其对称轴为n =32. ∴当n =1或n =2时,S 1=S 2且最小. [心得体会]………………………………………………………………………………………………时间:60分钟基础组1.[2016·冀州中学猜题]已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是( )A .15B .30C .31D .64答案 A解析 由题意可知2a 8=a 7+a 9=16⇒a 8=8,S 11=11(a 1+a 11)2=11×2a 62=11a 6=992,a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15,故选A.2.[2016·武邑中学仿真]已知S n 表示数列{a n }的前n 项和,若对任意的n ∈N *满足a n +1=a n +a 2,且a 3=2,则S 2014=( )A .1006×2013B .1006×2014C .1007×2013D .1007×2014答案 C解析 在a n +1=a n +a 2中,令n =1,则a 2=a 1+a 2,a 1=0,令n =2,则a 3=2=2a 2,a 2=1,于是a n +1-a n =1,故数列{a n }是首项为0,公差为1的等差数列,S 2014=2014×20132=1007×2013.故选C. 3.[2016·冀州中学期末]在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( ) A .a n =1n B .a n =2n +1C .a n =2n +2D .a n =3n答案 A 解析 由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知⎩⎨⎧⎭⎬⎫1a n是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n .4.[2016·衡水中学预测]设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=( )A .63B .45C .36D .27答案 B解析 S 3=9,S 6-S 3=36-9=27,根据S 3,S 6-S 3,S 9-S 6成等差数列,S 9-S 6=45,S 9-S 6=a 7+a 8+a 9=45,故选B.5.[2016·衡水二中期中]已知等差数列{a n }中,前四项和为60,最后四项和为260,且S n =520,则a 7=( )A .20B .40C .60D .80答案 B解析 前四项的和是60,后四项的和是260,若有偶数项,则中间两项的和是(60+260)÷4=80.S n =520,520÷80不能整除,说明没有偶数项,有奇数项,则中间项是(60+260)÷8=40.所以共有520÷40=13项,因此a 7是中间项,所以a 7=40.6.[2016·枣强中学模拟]已知等差数列{a n }的前n 项和为S n ,且S 4S2=4,则S 6S 4=( )A.94B.32C.53 D .4答案 A解析 由S 4S 2=4,可设S 2=x ,S 4=4x .∵S 2,S 4-S 2,S 6-S 4成等差数列,∴2(S 4-S 2)=S 2+(S 6-S 4).则S 6=3S 4-3S 2=12x -3x =9x ,因此,S 6S 4=9x 4x =94.7.[2016·衡水二中热身]设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k =-12,则正整数k =______.答案 13解析 由S k +1=S k +a k +1=-12+32=-212,又S k +1=(k +1)(a 1+a k +1)2=(k +1)⎝ ⎛⎭⎪⎫-3+322=-212,解得k =13.8.[2016·武邑中学期末]设正项数列{a n }的前n 项和是S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 1=________.答案 14解析 设等差数列{a n }的公差为d , 则S n =d 2n 2+(a 1-d2)n , ∴S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,数列{S n }是等差数列,则S n 是关于n 的一次函数(或者是常数),则a 1-d2=0,S n =d2n ,从而数列{S n }的公差是d2,那么有d 2=d ,d =0(舍去)或d =12,故a 1=14.9.[2016·衡水中学周测]已知等差数列{a n }的前n 项和为S n ,若S 2=10,S 5=55,则a 10=________.答案 39解析 设等差数列{a n }的公差为d ,由题意可得⎩⎨⎧a 1+(a 1+d )=10,5a 1+5×42d =55,即⎩⎪⎨⎪⎧2a 1+d =10,a 1+2d =11,解得a 1=3,d =4,a 10=a 1+(10-1)d =39.10.[2016·冀州中学月考]设数列{a n }为等差数列,数列{b n }为等比数列.若a 1<a 2,b 1<b 2,且b i =a 2i (i =1,2,3),则数列{b n }的公比为________.答案 3+2 2解析 设a 1,a 2,a 3分别为a -d ,a ,a +d ,因为a 1<a 2,所以d >0,又b 22=b 1b 3,所以a 4=(a -d )2(a +d )2=(a 2-d 2)2,则a 2=d 2-a 2或a 2=a 2-d 2(舍),则d =±2a .若d =-2a ,则q =b 2b 1=⎝ ⎛⎭⎪⎫a 2a 12=(1-2)2=3-22<1,舍去;若d =2a ,则q =⎝ ⎛⎭⎪⎫a 2a 12=3+2 2.11.[2016·衡水中学模拟]等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解 (1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数,又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0.解得-103≤d ≤-52.因此d =-3.数列{a n }的通项公式为a n =13-3n . (2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n=13⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛ 110-3n -⎭⎪⎫113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n 10(10-3n ). 12.[2016·冀州中学期中]已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,判断{a n }是否为等差数列,并说明你的理由.解 数列{a n }不是等差数列,a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, ∴S n -S n -1+2S n S n -1=0(n ≥2), ∴1S n-1S n -1=2(n ≥2),又S 1=a 1=12,∴⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列. ∴1S n=2+(n -1)×2=2n ,故S n =12n .∴当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),∴a n +1=-12n (n +1),而a n +1-a n =-12n (n +1)--12n (n -1)=-12n⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1). ∴当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.能力组13.[2016·衡水中学猜题]已知正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ≥2),则a 6等于( )A .16B .8C .2 2D .4答案 D解析 由2a 2n =a 2n +1+a 2n -1(n ≥2)可得,数列{a 2n }是首项为a 21=1,公差为a 22-a 21=3的等差数列,由此可得a 2n =1+3(n -1)=3n -2,即得a n =3n -2,∴a 6=3×6-2=4,故应选D.14.[2016·衡水中学一轮检测]已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使S n >0的n 的最大值为( )A .11B .19C .20D .21答案 B解析 ∵a 11a 10<-1,且S n 有最大值,∴a 10>0,a 11<0,且a 10+a 11<0, ∴S 19=19(a 1+a 19)2=19·a 10>0, S 20=20(a 1+a 20)2=10(a 10+a 11)<0, 故使得S n >0的n 的最大值为19.15.[2016·武邑中学猜题]已知等差数列{a n }中,a 5=12,a 20=-18. (1)求数列{a n }的通项公式; (2)求数列{|a n |}的前n 项和S n . 解 (1)设数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧a 5=a 1+4d =12a 20=a 1+19d =-18,解得⎩⎪⎨⎪⎧a 1=20d =-2,∴a n =20+(n -1)×(-2)=-2n +22.(2)由(1)知|a n |=|-2n +22|=⎩⎪⎨⎪⎧-2n +22,n ≤112n -22,n >11,∴当n ≤11时,S n =20+18+…+(-2n +22)=n (20-2n +22)2=(21-n )n ;当n >11时,S n =S 11+2+4+…+(2n -22)=110+(n -11)(2+2n -22)2=n 2-21n +220. 综上所述,S n =⎩⎪⎨⎪⎧(21-n )n ,n ≤11n 2-21n +220,n >11.16.[2016·冀州中学仿真]已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4.(1)求证{a n }为等差数列; (2)求{a n }的通项公式. 解 (1)证明:当n =1时,有2a 1=a 21+1-4,即a 21-2a 1-3=0,解得a 1=3(a 1=-1舍去). 当n ≥2时,有2S n -1=a 2n -1+n -5,又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1, 即a 2n -2a n +1=a 2n -1,也即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1. 若a n -1=-a n -1,则a n +a n -1=1, 而a 1=3,所以a 2=-2,这与数列{a n }的各项均为正数相矛盾, 所以a n -1=a n -1,即a n -a n -1=1, 因此{a n }为等差数列.(2)由(1)知a 1=3,d =1,所以数列{a n }的通项公式a n =3+(n -1)=n +2,即a n =n +2.。
课时跟踪检测(二十九) 数列的概念与简单表示法 一抓基础,多练小题做到眼疾手快1.(2016·徐州调研)设数列{a n }的前n 项和S n =n 2+n ,则a 4的值为________. 解析:a 4=S 4-S 3=20-12=8.答案:82.数列1,23,35,47,59,…的一个通项公式a n =________. 解析:由已知得,数列可写成11,23,35,…,故通项为n 2n -1. 答案:n2n -1 3.在数列{a n }中,a 1=1,a n =n -1na n -1(n ≥2),则a n =________. 解析:a n =a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1·a 1 =n -1n ·n -2n -1·…·23·12·1=1n. 答案:1n4.已知数列{a n }的前n 项和为S n =n 2-2n +2,则数列{a n }的通项公式为________. 解析:当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -3,由于n =1时a 1的值不适合n ≥2的解析式,故a n =⎩⎪⎨⎪⎧1,n =1, 2n -3,n ≥2,n ∈N *. 答案:a n =⎩⎪⎨⎪⎧1,n =1, 2n -3,n ≥2,n ∈N *5.(2016·泰州调研)数列{a n }定义如下:a 1=1,当n ≥2时,a n =⎩⎪⎨⎪⎧ 1+a n 2,n 为偶数, 1a n -1,n 为奇数,若a n =14,则n =________. 解析:因为a 1=1,所以a 2=1+a 1=2,a 3=1a 2=12,a 4=1+a 2=3,a 5=1a 4=13,a 6=1+a 3=32,a 7=1a 6=23,a 8=1+a 4=4,a 9=1a 8=14,所以n =9. 答案:9二保高考,全练题型做到高考达标1.设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是________. 解析:因为a n =-3⎝⎛⎭⎪⎫ n -52 2+34,且n ∈Z ,所以当n =2或n =3时,a n 取得最大值,即最大值为a 2=a 3=0.答案:02.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为________.解析:∵a n +a n +1=12,a 2=2, ∴a n =⎩⎪⎨⎪⎧ -32,n 为奇数, 2, n 为偶数.∴S 21=11×⎝ ⎛⎭⎪⎫-32+10×2=72. 答案:723.(2015·无锡调研)在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 016=________.解析:由题意得:a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8;所以数列中的项从第3项开始呈周期性出现,周期为6,故a 2 016=a 335×6+6=a 6=6.答案:64.已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q 且a 2=6,那么a 10=________. 解析:a 4=a 2+a 2=12,a 6=a 4+a 2=18,a 10=a 6+a 4=30. 答案:305.若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为________.解析:∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n -1)×(-3)=22-3n .设{a n }的前k 项和数值最大,则有⎩⎪⎨⎪⎧ a k ≥ 0, a k +1≤0k ∈N *,∴⎩⎪⎨⎪⎧22-3k ≥0, 22-3k +1≤0, ∴193≤k ≤223, ∵k ∈N *,∴k =7.∴满足条件的n 的值为7.答案:76.在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第____________项.解析:令n -2n 2=0.08,得2n 2-25n +50=0,即(2n -5)(n -10)=0.解得n =10或n =52(舍去). 答案:107.(2016·南京四校联考)已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *,则a 2 013=________,a 2 016=________.解析:由题意可得a 2 013=a 4×504-3=1,a 2 016=a 1 008=a 504=a 252=a 126=a 63=a 4×16-1=0.答案:1 08.在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.解析:依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.答案:289.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值;(2)求数列{a n }的通项公式.解:(1)由S n =12a 2n +12a n (n ∈N *),可得 a 1=12a 21+12a 1,解得a 1=1; S 2=a 1+a 2=12a 22+12a 2,解得a 2=2;同理,a 3=3,a 4=4.(2)S n =12a 2n +12a n ,① 当n ≥2时,S n -1=12a 2n -1+12a n -1,② ①-②得(a n -a n -1-1)(a n +a n -1)=0.由于a n +a n -1≠0,所以a n -a n -1=1,又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n .10.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值;(2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0,解得1<n <4.因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3.因为a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -52 2-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)由a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3. 所以实数k 的取值范围为(-3,+∞).三上台阶,自主选做志在冲刺名校1.已知{a n }满足a n +1=a n +2n ,且a 1=33,则a nn的最小值为________.解析:由已知条件可知,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=33+2+4+…+2(n -1)=n 2-n +33,又n =1时,a 1=33满足此式.所以a n n =n +33n-1. 令f (n )=a n n =n +33n-1, 则f (n )在[1,5]上为减函数,在[6,+∞)上为增函数,又f (5)=535,f (6)=212, 则f (5)>f (6),故f (n )=a n n 的最小值为212. 答案:2122.若单调递增数列{a n }满足a n +a n +1+a n +2=3n -6,且a 2=12a 1,则a 1的取值范围是________.解析:由a n +a n +1+a n +2=3n -6,a 2=12a 1得,a 3=-3-32a 1,所以a 4=a 1+3,由{a n }是单调递增数列知,a 4>a 3>a 2>a 1,即a 1+3>-3-32a 1>12a 1>a 1,解得-125<a 1<-32. 答案:⎝ ⎛⎭⎪⎫-125,-32 3.(2016·扬州模拟)已知数列{a n }中,a 1=1,且a n +a n +1=2n .求数列{a n }的通项公式. 解:∵a n +a n +1=2n ,①∴a n +1+a n +2=2n +1,②②-①,得a n +2-a n =2n ,由a 1=1,a 1+a 2=2,得a 2=1. 当n 为奇数时,a n =(a n -a n -2)+(a n -2-a n -4)+…+(a 3-a 1)+a 1 =2n -2+2n -4+…+2+1=13×2n +13; 当n 为偶数时,a n =(a n -a n -2)+(a n -2-a n -4)+…+(a 4-a 2)+a 2=2n -2+2n -4+…+22+1=13×2n -13.故a n =⎩⎪⎨⎪⎧13×2n +13,n 为奇数,13×2n -13,n 为偶数.。
课时跟踪检测(三十二) 数列求和一抓基础,多练小题做到眼疾手快1.已知等差数列{a n }的前n 项和为S n ,若S 3=9,S 5=25,则S 7=________. 解析:设S n =An 2+Bn ,由题知,⎩⎪⎨⎪⎧S 3=9A +3B =9,S 5=25A +5B =25,解得A =1,B =0,∴S 7=49. 答案:49 2.数列{1+2n -1}的前n 项和为________.解析:由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n-1.答案:n +2n-13.(2016·江西新余三校联考)数列{a n }的通项公式是a n =(-1)n(2n -1),则该数列的前100项之和为________.解析:根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100. 答案:1004.已知数列{a n }满足:a 1=1,a n +1=a n +1nn +(n ∈N *),则数列{a n }的通项公式为________.解析:a n =(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)+a 1=11×2+12×3+…+1n -n+1=⎝ ⎛⎭⎪⎫ 1-12 +⎝ ⎛⎭⎪⎫ 12-13 +…+⎝ ⎛⎭⎪⎫ 1n -1-1n +1=2-1n .答案:a n =2-1n5.(2015·苏北四市调研)已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n .若a 1=2,则数列{a n }的前n 项和为________.解析:∵a 2n +1-6a 2n =a n +1a n , ∴(a n +1-3a n )(a n +1+2a n )=0, ∵a n >0,∴a n +1=3a n ,又a 1=2,∴{a n }是首项为2,公比为3的等比数列, ∴S n =-3n1-3=3n-1.答案:3n-1二保高考,全练题型做到高考达标1.已知数列{a n }的前n 项和为S n ,并满足:a n +2=2a n +1-a n ,a 5=4-a 3,则S 7=________. 解析:由a n +2=2a n +1-a n 知数列{a n }为等差数列, 由a 5=4-a 3得a 5+a 3=4=a 1+a 7, 所以S 7=a 1+a 72=14.答案:142.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫ 1a n 的前5项和为________.解析:设{a n }的公比为q ,显然q ≠1,由题意得-q 31-q=1-q 61-q,所以1+q 3=9,得q =2,所以⎩⎨⎧⎭⎬⎫ 1a n 是首项为1,公比为12的等比数列,前5项和为1-⎝ ⎛⎭⎪⎫ 1251-12=3116.答案:31163.已知数列{a n }的通项公式是a n =2n -3⎝ ⎛⎭⎪⎫ 15 n,则其前20项和为________.解析:令数列{a n }的前n 项和为S n ,则S 20=a 1+a 2+…+a 20=2(1+2+…+20)-3⎝ ⎛⎭⎪⎫15+152+…+1520=2×+2-3×15⎝ ⎛⎭⎪⎫ 1-1520 1-15=420-34⎝ ⎛⎭⎪⎫1-1520.答案:420-34⎝ ⎛⎭⎪⎫1-15204.已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.解析:由已知得b 1=a 2=-3,q =-4, ∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列. ∴|b 1|+|b 2|+…+|b n |=-4n1-4=4n-1.答案:4n-1 5.122-1+132-1+142-1+…+1n +2-1的值为________.解析:∵1n +2-1=1n 2+2n =1n n +=12⎝ ⎛⎭⎪⎫1n -1n +2, ∴122-1+132-1+142-1+…+1n +2-1=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2.答案:34-12⎝ ⎛⎭⎪⎫1n +1+1n +26.已知数列{a n }满足a n +1=12+a n -a 2n ,且a 1=12,则该数列{a n }的前2 017项的和为________.解析:因为a 1=12,又a n +1=12+a n -a 2n ,所以a 2=1,a 3=12,a 4=1,…,即得a n =⎩⎪⎨⎪⎧12,n =2k -k ∈N *,1,n =2k k ∈N *故数列{a n }的前2 017项的和为S 2 017=1 008×⎝ ⎛⎭⎪⎫1+12+12=3 0252.答案:3 02527.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项公式为2n,则数列{a n }的前n 项和S n =________.解析:∵a n +1-a n =2n ,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n.∴S n =2-2n +11-2=2n +1-2.答案:2n +1-28.(2016·苏州名校联考)在数列{a n }中,已知a 1=1,a n +1+(-1)na n =cos(n +1)π,记S n 为数列{a n }的前n 项和,则S 2 015=________.解析:∵a n +1+(-1)na n =cos(n +1)π=(-1)n +1,∴当n =2k 时,a 2k +1+a 2k =-1,k ∈N *,∴S 2 015=a 1+(a 2+a 3)+…+(a 2 014+a 2 015)=1+(-1)×1 007=-1 006. 答案:-1 0069.已知数列{a n } 的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n } 的通项公式;(2)设b n =2a n +(-1)na n ,求数列{b n } 的前2n 项和. 解:(1)当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=n 2+n2-n -2+n -2=n .故数列{a n }的通项公式为a n =n .(2)由(1)知,a n =n ,故b n =2n +(-1)nn . 记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+ (22))+(-1+2-3+4-…+2n ). 记A =21+22+ (22),B =-1+2-3+4-…+2n ,则A =-22n1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.10.已知数列{}a n 与{}b n ,若a 1=3且对任意正整数n 满足a n +1-a n =2,数列{}b n 的前n 项和S n =n 2+a n .(1)求数列{}a n ,{}b n 的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n . 解:(1)因为对任意正整数n 满足a n +1-a n =2, 所以{}a n 是公差为2的等差数列. 又因为a 1=3,所以a n =2n +1. 当n =1时,b 1=S 1=4; 当n ≥2时,b n =S n -S n -1=(n 2+2n +1)-[(n -1)2+2(n -1)+1]=2n +1, 对b 1=4不成立.所以数列{}b n 的通项公式为b n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.(2)由(1)知当n =1时,T 1=1b 1b 2=120.当n ≥2时,1b n b n +1=1n +n +=12⎝ ⎛⎭⎪⎫12n +1-12n +3,所以T n =120+12⎣⎢⎡⎝ ⎛⎭⎪⎫15-17+⎝ ⎛⎭⎪⎫17-19+…+⎝⎛ 12n +1⎦⎥⎤⎭⎪⎫-12n +3 =120+12⎝ ⎛⎭⎪⎫15-12n +3 =120+n -110n +15. 当n =1时仍成立, 所以T n =120+n -110n +15.三上台阶,自主选做志在冲刺名校1.(2016·南京师大附中检测)已知数列{a n }中,a 1=2,a 2n =a n +1,a 2n +1=n -a n ,则{a n }的前100项和为________.解析:由a 1=2,a 2n =a n +1,a 2n +1=n -a n , 得a 2n +a 2n +1=n +1,∴a 1+(a 2+a 3)+(a 4+a 5)+…+(a 98+a 99) =2+2+3+…+50=1 276, ∵a 100=1+a 50=1+(1+a 25) =2+(12-a 12)=14-(1+a 6) =13-(1+a 3)=12-(1-a 1)=13, ∴a 1+a 2+…+a 100=1 276+13=1 289. 答案:1 2892.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,那么数列{b n }=⎩⎨⎧⎭⎬⎫1a n a n +1 的前n 项和S n 为________.解析:由已知条件可得:数列{a n }的通项为a n =1+2+3+…+n n +1=n2.所以b n =1a n a n +1=4nn +=4×⎝ ⎛⎭⎪⎫ 1n -1n +1 .S n =4⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1 =4⎝⎛⎭⎪⎫1-1n +1=4nn +1. 答案:4n n +13.已知数列{a n }的前n 项和S n =3n,数列{b n }满足b 1=-1,b n +1=b n +(2n -1)(n ∈N *). (1)求数列{a n }的通项公式; (2)求数列{b n }的通项公式; (3)若c n =a n ·b nn,求数列{c n }的前n 项和T n . 解:(1)∵S n =3n,∴S n -1=3n -1(n ≥2),∴a n =S n -S n -1=3n -3n -1=2×3n -1(n ≥2).当n =1时,2×31-1=2≠S 1=a 1=3,∴a n =⎩⎪⎨⎪⎧3,n =1,2×3n -1,n ≥2.(2)∵b n +1=b n +(2n -1), ∴b 2-b 1=1,b 3-b 2=3, b 4-b 3=5,…,b n -b n -1=2n -3(n ≥2).以上各式相加得b n -b 1=1+3+5+…+(2n -3)=n -+2n -2=(n -1)2(n ≥2).∵b 1=-1,∴b n =n 2-2n (n ≥2). 又上式对于n =1也成立, ∴b n =n 2-2n (n ∈N *).(3)由题意得c n =⎩⎪⎨⎪⎧-3,n =1,n -n -1,n ≥2.当n ≥2时,T n =-3+2×0×31+2×1×32+2×2×33+…+2(n -2)×3n -1,∴3T n =-9+2×0×32+2×1×33+2×2×34+…+2(n -2)×3n. 相减得-2T n =6+2×32+2×33+…+2×3n -1-2(n -2)×3n.∴T n =(n -2)×3n-(3+32+33+…+3n -1)=(n -2)×3n-3n-32=n -n+32.∴T n =⎩⎪⎨⎪⎧-3,n =1,n -n+32,n ≥2.∴T n =n -n+32(n ∈N *).。
姓名___________________学号___________________一、填空题:1.已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S ______.2.已知{}n a 为等差数列,n S 为其前n 项和,927S =,10=8a ,则100=a ______.3.若n S 为等差数列{}n a 的前n 项和,936S =-,13104S =-,则6a =______.4.设等差数列{}n a 的前n 项和为n S ,若5353a a =,则53S S =______.5.已知等差数列{}n a 的公差0≠d ,且39108a a a a +=-.若0n a =,则n =______.6.设等差数列{}n a 的前n 项和为n S ,12130,0S S ><,当n =______时,n S 取得最大值.7.设n S 是等差数列{}n a 的前n 项和,已知,144,324,3666===-n n S S S 则n =______.8.数列{}n a 满足12a =,21a =,且1111(2)n n n n n n n n a a a a n a a a a -+-+--=≥,则此数列的第10项为______.二、解答题:9.设等差数列{n a }的前n 项和为n S ,已知3a =24,011=S .(1)求n a .(2)求数列{n a }的前n 项和n S .(3)当n 为何值时,n S 最大,并求n S 的最大值.10.已知数列}{n a 的首项为2,前n 项的和为n S ,且142111-=-+n n n S a a (*∈N n ). (1)求2a 的值.(2)设nn n n a a a b -=+1,求数列}{n b 和{}n a 的通项公式.等差数列一、填空题:1.解析:16a =,2d =-,6166562S a d ∴=+⨯= 2.解析:19959()9272a a S a +===,53a =,10515a a d -==,100109098a a d =+=3.解析:19959()9362a a S a +===-,54a =-;11313713()131042a a S a +===-,78a =-57662a a a +∴==-4.解析:由5353a a =,得1a d =,51315105332S a d S a d +==+5.解析:由39108a a a a +=-,得622a d =,6a d =6(6)(5)0n a a n d n d =+-=-=,5n ∴=6.解析:12112671212()()022S a a a a =+=+>,670a a ∴+>,13113713()1302S a a a =+=<, 70a ∴<,60a ∴>,∴当n =6时,n S 取得最大值.7.解析:6180n n S S --=,661()180366()n n n S S S a a --+=+=+,136n a a +=, 1()183242n n n S a a n =+==,18n ∴= 8.解析:111111n n n n a a a a -+-=-,即11211n n n a a a -+=+,1{}na 是等差数列,公差211112d a a =-= 111(1)222n n n a =+-=,2n a n =, 1015a =二、解答题:9.解:(1)3a =24,011=S .∴⎪⎩⎪⎨⎧=⨯+=+0210111124211d a d a ,解得⎩⎨⎧-==8401d a ,∴n a n 848-=. (2)由(1)知,1a =40,n a n 848-=, ∴ n S =1()(40488)22n a a n n n ++-==2444n n -+.(3)由(2)有,n S =2444n n -+=-42112n ⎛⎫- ⎪⎝⎭+121, 故当5=n 或6=n 时,n S 最大,且n S 的最大值为120.10.解:(1)142111-=-+n n n S a a ,当1n =时,解得3142=a . (2)由142111-=-+n n n S a a ,得14211-=-++n n n n n S a a a a ,所以nn n n n a a a a S -=-++11214① 所以21121241n n n n n a a S a a +++++-=-②,由②-①,得n n n n n n n n n a a a a a a a a a ---=+++++++1112121222,因为01≠+n a , 所以n n n n n n a a a a a a ---=++++11222,所以211121=---+++++nn n n n n a a a a a a , 即11121=---++++nn n n n n a a a a a a ,即11=-+n n b b ,所以数列}{n b 是公差为1的等差数列. 因为431211=-=a a a b ,所以数列}{n b 的通项公式为41-=n b n . ∴411-=-+n a a a n n n ,即143414111-+=+-=+n n n a a n n ,即141)1(41-=-++n a n a n n ,104(1)141n n a a n n +-=+--,所以数列}14{-n a n 是等差数列. 由321141=-⨯a ,所以)14(32-=n a n .。
课时跟踪检测(六) 数 列层级一 学业水平达标1.有下面四个结论:①数列可以看作是一个定义在正整数集(或它的有限子集)上的函数; ②数列的项数一定是无限的; ③数列的通项公式的形式是唯一的;④数列1,3,2,6,3,9,4,12,5,15,…不存在通项公式. 其中正确的是( ) A .① B .①② C .③④D .②④解析:选A 结合数列的定义与函数的概念可知,①正确;有穷数列的项数就是有限的,因此②错误;数列的通项公式的形式不一定唯一,③错误;数列1,3,2,6,3,9,4,12,5,15,…存在通项公式,④错误.故选A.2.数列{a n }中,a n =3n -1,则a 2等于( )A .2B .3C .9D .32解析:选B 因为a n =3n -1,所以a 2=32-1=3.3.数列0,33,22,155,63,…的一个通项公式是( ) A .a n = n -2n B .a n = n -1n C .a n =n -1n +1D .a n = n -2n +2解析:选C 已知数列可化为:0,13,24,35,46,…,故a n = n -1n +1. 4.已知数列12,23,34,…,nn +1,则0.96是该数列的( )A .第20项B .第22项C .第24项D .第26项解析:选C 由nn +1=0.96,解得n =24.5.设a n =1n +1+1n +2+1n +3+ (12)(n ∈N *),那么a n +1-a n 等于( ) A.12n +1B.12n +2C.12n +1+12n +2D.12n +1-12n +2解析:选D ∵a n =1n +1+1n +2+1n +3+ (12), ∴a n +1=1n +2+1n +3+…+12n +12n +1+12n +2, ∴a n +1-a n =12n +1+12n +2-1n +1=12n +1-12n +2. 6.数列0,13,12,35,23,…的通项公式为________.解析:数列可化为02,13,24,35,46,…观察可得:a n =n -1n +1. 答案:a n =n -1n +17.已知数列{a n }满足a m ·n =a m ·a n (m ,n ∈N *),且a 2=3,则a 8=________. 解析:由a m ·n =a m ·a n , 得a 4=a 2·2=a 2·a 2=9,a 8=a 2·4=a 2·a 4=3×9=27.答案:278.数列{a n }的通项公式为a n =n 2-5n ,则{a n }的第______项最小.解析:a n =⎝ ⎛⎭⎪⎫n -522-254.∵n ∈N *,∴当n =2或3时,a n 最小, ∴{a n }的第2或3项最小. 答案:2或39.数列{a n }的通项公式是a n =n 2-7n +6. (1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项? 解:(1)当n =4时,a 4=42-4×7+6=-6. (2)是.令a n =150, 即n 2-7n +6=150,解得n =16或n =-9(舍去), 即150是这个数列的第16项.10.已知数列2,74,2,…的通项公式为a n =an 2+bcn ,求a 4,a 5.解:将a 1=2,a 2=74代入通项公式,得⎩⎪⎨⎪⎧a +bc=2,4a +b 2c =74,解得⎩⎪⎨⎪⎧b =3a ,c =2a ,∴a n =n 2+32n,∴a 4=42+32×4=198,a 5=52+32×5=145.层级二 应试能力达标1.已知数列{a n }的通项公式a n =log (n +1)(n +2),则它的前30项之积是( ) A.15 B .5 C .6D.log 23+log 31325解析:选B a 1·a 2·a 3·…·a 30=log 23×log 34×log 45×…×log 3132=lg 3lg 2×lg 4lg 3×…×lg 32lg 31=lg 32lg 2=log 232=log 225=5.2.一个无穷数列{a n }的前三项是1,2,3,下列不可以作为其通项公式的是( ) A .a n =nB .a n =n 3-6n 2+12n -6 C .a n =12n 2-12n +1D .a n =6n 2-6n +11解析:选C 对于A ,若a n =n ,则a 1=1,a 2=2,a 3=3,符合题意;对于B ,若a n =n 3-6n 2+12n -6,则a 1=1,a 2=2,a 3=3,符合题意;对于C ,若a n =12n 2-12n +1,当n =3时,a 3=4≠3,不符合题意;对于D ,若a n =6n 2-6n +11,则a 1=1,a 2=2,a 3=3,符合题意.故选C.3.数列1,12,21,13,22,31,14,23,32,41,…,则89是该数列的( )A .第127项B .第128项C .第129项D .第130项解析:选B 把该数列的第一项1写成11,再将该数列分组,第一组一项:11;第二组两项:12,21;第三组三项:13,22,31;第四组四项:14,23,32,41;…容易发现:每组中每个分数的分子、分母之和均为该组序号加1,且每组的分子从1开始逐一增加,因此89应位于第十六组中第八位.由1+2+…+15+8=128,得89是该数列的第128项.4.已知数列{a n }的通项公式为a n =2 019-3n ,则使a n ≥0成立的最大正整数n 的值为________.解析:由a n =2 019-3n ≥0,得n ≤2 0193=673.∴n 的最大值为673. 答案:6735.已知无穷数列a n =12n 2-λn +1(n ∈N *)是单调递增数列,则λ的取值范围是________.解析:利用定义,a n +1-a n >0对n ∈N *恒成立得λ<32.答案:⎝⎛⎭⎪⎫-∞,32 6.已知数列{a n}的通项为a n=⎩⎪⎨⎪⎧n +15n,n ≤5,a ln n -14,n >5,若{a n }的最小值为314,则实数a的取值范围是________.解析:由题可知当n ≤5时结合函数y =x +15x (x >0),可知a n ≥a 4=4+154=314,又∵{a n }的最小值为314,∴当n >5时,y =a ln n -14≥314,即a ln n ≥8,又∵ln n >ln 5>0,∴当n >5时,a ≥8ln n 恒成立,∴a ≥8ln 6.答案:⎣⎢⎡⎭⎪⎫8ln 6,+∞7.已知数列{a n }的通项公式为a n =p n+q (p ,q ∈R),且a 1=-12,a 2=-34.(1)求{a n }的通项公式; (2)-255256是{a n }中的第几项?解:(1)∵a n =p n+q ,又a 1=-12,a 2=-34,∴⎩⎪⎨⎪⎧p +q =-12,p 2+q =-34,解得⎩⎪⎨⎪⎧p =12,q =-1,因此{a n }的通项公式是a n =⎝ ⎛⎭⎪⎫12n-1.(2)令a n =-255256,即⎝ ⎛⎭⎪⎫12n-1=-255256,所以⎝ ⎛⎭⎪⎫12n =1256,解得n =8.故-255256是{a n }中的第8项.8.已知数列{a n }的通项公式为a n =3n -23n +1.(1)求证:0<a n <1.(2)在区间⎝ ⎛⎭⎪⎫13,23内有无数列中的项?若有,有几项?若没有,说明理由. 解:(1)证明:因为a n =3n -23n +1=1-33n +1.又因为n ∈N *,所以3n +1>3, 所以0<33n +1<1,所以0<1-33n +1<1,即0<a n <1.(2)令13<a n <23,即13<1-33n +1<23.所以13<33n +1<23,所以92<3n +1<9,所以76<n <83.因为n ∈N *,所以n =2,即在区间⎝ ⎛⎭⎪⎫13,23内有数列中的项,且只有1项,此项为第2项.。
课时跟踪检测(三十) 等差数列及其前n 项和 一抓基础,多练小题做到眼疾手快1.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=________. 解析:由S 5=a 2+a 42⇒25=+a 42⇒a 4=7,所以7=3+2d ⇒d =2,所以a 7=a 4+3d =7+3×2=13.答案:132.(2016·苏州名校联考)在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为________.解析:a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37,所以m =37. 答案:373.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =________.解析:3a n +1=3a n -2⇒a n +1=a n -23⇒{a n }是等差数列,则a n =473-23n .∵a k +1·a k <0, ∴⎝ ⎛⎭⎪⎫473-23k ⎝ ⎛⎭⎪⎫453-23k <0,∴452<k <472, ∴k =23.答案:234.设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________. 解析:设数列{a n }的公差为d ,S 3=6,S 4=12,∴⎩⎪⎨⎪⎧ 3a 1+3×22d =6,4a 1+4×32d =12,∴⎩⎪⎨⎪⎧ a 1=0,d =2,∴S 6=6a 1+6×52d =30. 答案:305.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于________.解析:∵2a n =a n -1+a n +1,又a n -1+a n +1-a 2n =0,∴2a n -a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=2(2n -1)=38,解得n =10.答案:10二保高考,全练题型做到高考达标1.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=________. 解析:由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32. ∴公差d =a 4-a 22=12.∴a 1=a 2-d =0. 答案:02.(2016·南京调研)数列{a n }的前n 项和S n =2n 2+3n (n ∈N *),若p -q =5,则a p -a q =________.解析:当n ≥2时,a n =S n -S n -1=2n 2+3n -[2(n -1)2+3(n -1)]=4n +1, 当n =1时,a 1=S 1=5,符合上式,∴a n =4n +1,∴a p -a q =4(p -q )=20.答案:203.设等差数列{a n }的公差为正数,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=________.解析:由条件可知,a 2=5,从而a 1+a 3=10,a 1a 3=16,得a 1=2,a 3=8,公差为3,所以a 11+a 12+a 13=2×3+(10+11+12)×3=105.答案:1054.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为________.解析:∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.答案:125.(2015·盐城调研)设数列{a n }的前n 项和为S n ,若S n S 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为________.解析:设等差数列{b n }的公差为d (d ≠0),S n S 2n=k , 因为b 1=1,则n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +12×2n n -d , 即2+(n -1)d =4k +2k (2n -1)d ,整理得(4k -1)dn +(2k -1)(2-d )=0.因为对任意的正整数n 上式均成立,所以(4k -1)d =0,(2k -1)(2-d )=0,解得d =2,k =14. 所以数列{b n }的通项公式为b n =2n -1.答案:b n =2n -16.在等差数列{a n }中,a 15=33,a 25=66,则a 45=________. 解析:a 25-a 15=10d =66-33=33,∴a 45=a 25+20d =66+66=132.答案:1327.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得 ⎩⎪⎨⎪⎧ d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧ d <0,7+7d >0,7+8d <0,解得-1<d <-78. 答案:⎝⎛⎭⎪⎫-1,-78 8.(2016·苏北四市调研)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则正整数m 的值为________.解析:因为等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3, 所以a m =S m -S m -1=2,a m +1=S m +1-S m =3,数列的公差d =1,a m +a m +1=S m +1-S m -1=5, 即2a 1+2m -1=5,所以a 1=3-m .由S m =(3-m )m +m m -2×1=0,解得正整数m 的值为5.答案:59.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值;(2)设数列{b n }的通项b n =S n n,证明:数列{b n }是等差数列,并求其前n 项和T n . 解:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k k -2·d =2k +k k -2×2=k 2+k . 由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10.(2)证明:由(1)得S n =n +2n 2=n (n +1), 则b n =S n n =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n +n +2=n n +2.10.(2015·苏州调研)设数列{a n }的前n 项和为S n,4S n =a 2n +2a n -3,且a 1,a 2,a 3,a 4,a 5成等比数列,当n ≥5时,a n >0.(1)求证:当n ≥5时,{a n }成等差数列;(2)求{a n }的前n 项和S n .解:(1)证明:由4S n =a 2n +2a n -3,4S n +1=a 2n +1+2a n +1-3, 得4a n +1=a 2n +1-a 2n +2a n +1-2a n ,即(a n +1+a n )(a n +1-a n -2)=0.当n ≥5时,a n >0,所以a n +1-a n =2,所以当n ≥5时,{a n }成等差数列.(2)由4a 1=a 21+2a 1-3,得a 1=3或a 1=-1, 又a 1,a 2,a 3,a 4,a 5成等比数列,所以a n +1+a n =0(n ≤5),q =-1,而a 5>0,所以a 1>0,从而a 1=3,所以a n =⎩⎪⎨⎪⎧ -n -1,1≤n ≤4,2n -7,n ≥5,所以S n =⎩⎪⎨⎪⎧32[1--n ],1≤n ≤4,n 2-6n +8,n ≥5. 三上台阶,自主选做志在冲刺名校 1.设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是________. 解析:设数列{a n }的公差为d ,依题意得2S 2=S 1+S 3,因为a 1=1,所以22a 1+d =a 1+3a 1+3d ,化简可得d =2a 1=2,所以a n =1+(n -1)×2=2n -1,S n =n +n n -2×2=n 2, 所以S n +10a 2n =n +2n -2=⎝ ⎛⎭⎪⎫n +102n -12 =⎣⎢⎢⎡⎦⎥⎥⎤12n -+2122n -12 =14⎝⎛⎭⎪⎫1+212n -12≤121. 故S n +10a 2n的最大值是121. 答案:1212.(2016·常州调研)设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意n ∈N *都有S n T n =2n -34n -3,则a 7b 3+b 9+a 5b 4+b 8=________. 解析:因为数列{a n },{b n }为等差数列,所以a 7b 3+b 9+a 5b 4+b 8=a 72b 6+a 52b 6=2a 62b 6=a 6b 6, 因为S 11T 11=a 1+a 11b 1+b 11=2a 62b 6, 所以a 7b 3+b 9+a 5b 4+b 8=2×11-34×11-3=1941. 答案:19413.已知数列{a n }满足,a n +1+a n =4n -3(n ∈N *).(1)若数列{a n }是等差数列,求a 1的值;(2)当a 1=2时,求数列{a n }的前n 项和S n .解:(1)法一:数列{a n }是等差数列,∴a n =a 1+(n -1)d ,a n +1=a 1+nd .由a n +1+a n =4n -3,得(a 1+nd )+[a 1+(n -1)d ]=4n -3,∴2dn +(2a 1-d )=4n -3,即2d =4,2a 1-d =-3,解得d =2,a 1=-12. 法二:在等差数列{a n }中,由a n +1+a n =4n -3, 得a n +2+a n +1=4(n +1)-3=4n +1,∴2d =a n +2-a n =(a n +2+a n +1)-(a n +1+a n )=4n +1-(4n -3)=4, ∴d =2.又∵a 1+a 2=2a 1+d =2a 1+2=4×1-3=1,∴a 1=-12. (2)①当n 为奇数时,S n =a 1+a 2+a 3+…+a n =a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n )=2+4[2+4+…+(n -1)]-3×n -12=2n 2-3n +52.②当n 为偶数时,S n =a 1+a 2+a 3+…+a n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n )=1+9+…+(4n -7)=2n 2-3n 2.。