坐标系与参数方程章节综合学案练习(三)带答案新教材高中数学
- 格式:doc
- 大小:217.50 KB
- 文档页数:5
高中数学专题复习《坐标系与参数方程》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题1.直线323y x=+与圆心为D的圆33cos,([0,2))13sinxyθθπθ⎧=+⎪∈⎨=+⎪⎩交于A、B两点,则直线AD与BD的倾斜角之和为()(A)76π(B)54π(C)43π(D)53π(汇编重庆理)第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题2.在平面直角坐标系中,已知直线l与曲线C的参数方程分别为l:1,1x s y s=+⎧⎨=-⎩(s 为参数)和C :22,x t y t =+⎧⎨=⎩(t 为参数),若l 与C 相交于A 、B 两点,则AB = .(坐标系与参数方程选做题)3.曲线⎩⎨⎧+=-=1212t y t x (t 为参数)的焦点坐标是_____.(汇编上海理,8)评卷人得分 三、解答题4.若两条曲线的极坐标方程分别为1ρ=与2cos()3πρθ=+,它们相交于A 、B 两点,求直线AB 的极坐标方程.5.若两条曲线的极坐标方程分别为1=ρ与θρsin 2=,它们相交于B A ,两点,求线段AB 的长.6.已知某圆的极坐标方程为:ρ2 -42ρcos(θ-4π)+6=0. (1)将极坐标方程化为普通方程;(2)若点P (x ,y )在该圆上,求x +y 的最大值和最小值.7.已知圆M 的参数方程为03sin 4cos 4222=+--+R Ry Rx y x αα(R>0).(1)求该圆的圆心的坐标以及圆M 的半径。
(2)若题中条件R 为定值,则当α变化时,圆M 都相切于一个定圆,试写出此圆的极坐标方程。
8.若两条曲线的极坐标方程分别为ρ =l 与ρ =2cos(θ+π3),它们相交于A ,B 两点,求线段AB 的长.9.已知椭圆C 的极坐标方程为222123cos 4sin ρθθ=+,点1F ,2F 为其左,右焦点,直线l 的参数方程为22,2()2,2x t t t y t ⎧=+⎪⎪∈⎨⎪=⎪⎩R 为参数,. (Ⅰ)求直线l 和曲线C 的普通方程;(Ⅱ)求点1F ,2F 到直线l 的距离之和.1.(坐标系与参数方程选做题)【参考答案】***试卷处理标记,请不要删除评卷人得分 一、选择题1.C 数形结合 301-=∠α βπ-+=∠302由圆的性质可知21∠=∠ βπα-+=-∴ 3030故=+βα43π 第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.23.(0,1)解析:将参数方程化为普通方程:(y -1)2=4(x+1)该曲线为抛物线y2=4x 分别向左,向上平移一个单位得来.解析:(0,1)解析:将参数方程化为普通方程:(y -1)2=4(x +1)该曲线为抛物线y 2=4x 分别向左,向上平移一个单位得来. 评卷人得分 三、解答题4.选修4-4:坐标系与参数方程解:将极坐标方程1ρ=化为直角坐标方程为221x y +=; ……………………2分将极坐标方程2cos()cos 3sin 3πρθθθ=+=-两边同乘以ρ,化为直角坐标方程为2230x y x y +-+=, ……………………5分两式相减得310x y --=,此即为直线AB 的直角坐标方程.所以,直线AB 的极坐标方程为c o s 3s i n 10ρθρθ--=,即1s i n (30)2ρθ-=. ……………………10分 5.6.解:(1)x 2+y 2-4x -4y +6=0;22cos 22sin x y αα⎧=+⎪⎨=+⎪⎩6分(2)x +y =4+2sin (4πα+) 最大值6,最小值 2 4分7.C 解:(1)依题意得 圆M 的方程为222)sin 2()cos 2(R R y R x =-+-αα 故圆心的坐标为M (R R R 半径为).sin 2,cos 2αα。
高中数学教案学案坐标系与参数方程学习目标:1.了解坐标系的有关概念,理解简单图形的极坐标方程.2.会进行极坐标方程与直角坐标方程的互化.3.理解直线、圆及椭圆的参数方程,会进行参数方程与普通方程的互化,并能进行简单应用.1.极坐标系的概念在平面上取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做________;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个____________.设M 是平面上任一点,极点O 与点M 的距离OM 叫做点M 的________,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的________,记为θ.有序数对(ρ,θ)叫做点M 的__________,记作(ρ,θ).2.极坐标和直角坐标的互化把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设M 是平面内任意一点,它的直角坐标是(x ,y),极坐标为(ρ,θ),则它们之间的关系为x =__________,y =__________.另一种关系为:ρ2=__________,tan θ=______________.3.简单曲线的极坐标方程(1)一般地,如果一条曲线上任意一点都有一个极坐标适合方程φ(ρ,θ)=0,并且坐标适合方程φ(ρ,θ)=0的点都在曲线上,那么方程φ(ρ,θ)=0叫做曲线的____________.(2)常见曲线的极坐标方程 ①圆的极坐标方程____________表示圆心在(r,0)半径为|r|的圆;____________表示圆心在(r ,π2)半径为|r|的圆;________表示圆心在极点,半径为|r|的圆. ②直线的极坐标方程____________表示过极点且与极轴成α角的直线; ____________表示过(a,0)且垂直于极轴的直线;____________表示过(b ,π2)且平行于极轴的直线;ρsin (θ-α)=ρ0sin (θ0-α)表示过(ρ0,θ0)且与极轴成α角的直线方程. 4.常见曲线的参数方程 (1)直线的参数方程若直线过(x 0,y 0),α为直线的倾斜角,则直线的参数方程为⎩⎪⎨⎪⎧x =x 0+l cos α,y =y 0+l sin α.这是直线的参数方程,其中参数l 有明显的几何意义.(2)圆的参数方程若圆心在点M(a ,b),半径为R ,则圆的参数方程为⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α,0≤α<2π.(3)椭圆的参数方程中心在坐标原点的椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos φy =b sin φ(φ为参数).(4)抛物线的参数方程抛物线y 2=2px(p>0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt. 1.(2010·北京)极坐标方程(ρ-1)(θ-π)=0(ρ≥0)表示的图形是( )A .两个圆B .两条直线C .一个圆和一条射线D .一条直线和一条射线2.(2010·湖南)极坐标方程ρ=cos θ和参数方程⎩⎪⎨⎪⎧x =-1-t ,y =2+3t (t 为参数)所表示的图形分别是( )A .圆、直线B .直线、圆C .圆、圆D .直线、直线3.(2010·重庆)直线y =33x +2与圆心为D 的圆⎩⎨⎧x =3+3cos θ,y =1+3sin θ(θ∈[0,2π))交于A 、B 两点,则直线AD 与BD 的倾斜角之和为( )A .76πB .54πC .43πD .53π 4.(2011·广州一模)在极坐标系中,直线ρsin (θ+π4)=2被圆ρ=4截得的弦长为________.5.(2010·陕西)已知圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin θ=1,则直线l 与圆C 的交点的直角坐标为________________.考点一 求曲线的极坐标方程例1 在极坐标系中,以(a 2,π2)为圆心,a2为半径的圆的方程为________.举一反三1 如图,求经过点A(a,0)(a>0),且与极轴垂直的直线l 的极坐标方程.考点二 极坐标方程与直角坐标方程的互化 例2 (2009·辽宁)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1,M 、N 分别为C 与x 轴,y 轴的交点. (1)写出C 的直角坐标方程,并求M 、N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.举一反三2 (2010·东北三校第一次联考)在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin (θ-π4)=22,(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标.考点三 参数方程与普通方程的互化例3 将下列参数方程化为普通方程:(1)⎩⎨⎧x =3k 1+k 2y =6k21+k2;(2)⎩⎪⎨⎪⎧x =1-sin 2θy =sin θ+cos θ;(3)⎩⎪⎨⎪⎧x =1-t 21+t 2y =t 1+t 2.举一反三3 化下列参数方程为普通方程,并作出曲线的草图.(1)⎩⎪⎨⎪⎧x =12sin 2θy =sin θ+cos θ(θ为参数);(2)⎩⎨⎧x =1ty =1tt 2-1(t 为参数).考点四 参数方程与极坐标的综合应用例4 求圆ρ=3cos θ被直线⎩⎪⎨⎪⎧x =2+2t y =1+4t (t 是参数)截得的弦长.举一反三4 (2011·课标全国)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α.(α为参数)M 是C 1上的动点,P 点满足OP →=2OM →,P 点的轨迹为曲线C 2. (1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB|.一、选择题(每小题5分,共25分)1.在极坐标系中,与点(3,-π3)关于极轴所在直线对称的点的极坐标是( )A .(3,23π)B .(3,π3)C .(3,43π)D .(3,56π)2.曲线的极坐标方程为ρ=2cos 2θ2-1的直角坐标方程为( )A .x 2+(y -12)2=14B .(x -12)2+y 2=14C .x 2+y 2=14D .x 2+y 2=13.(2010·湛江模拟)在极坐标方程中,曲线C 的方程是ρ=4sin θ,过点(4,π6)作曲线C的切线,则切线长为( )A .4B .7C .2 2D .2 34.(2010·佛山模拟)已知动圆方程x 2+y 2-x sin 2θ+22·y sin (θ+π4)=0(θ为参数),那么圆心的轨迹是( )A .椭圆B .椭圆的一部分C .抛物线D .抛物线的一部分5.(2010·安徽)设曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),直线l 的方程为x-3y +2=0,则曲线C 上到直线l 距离为71010的点的个数为( )A .1B .2C .3D .4二、填空题(每小题4分,共12分)6.(2010·天津)已知圆C 的圆心是直线⎩⎪⎨⎪⎧x =t ,y =1+t (t 为参数)与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为________.7.(2011·广东)已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),它们的交点坐标为________.8.(2010·广东深圳高级中学一模)在直角坐标系中圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos αy =2+2sin α(α为参数),若以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,则圆C 的极坐标方程为________.三、解答题(共38分)9.(12分)(2011·江苏)在平面直角坐标系xOy 中,求过椭圆⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数)的右焦点,且与直线⎩⎪⎨⎪⎧x =4-2t ,y =3-t (t 为参数)平行的直线的普通方程.10.(12分)(2010·福建)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3-22t ,y =5+22t (t为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|P A |+|PB |.11.(14分)(2010·课标全国)已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α,y =t sin α(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点,当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.。
高中数学专题复习《坐标系与参数方程》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.曲线的参数方程是⎪⎩⎪⎨⎧-=-=2111t y t x (t 是参数,t ≠0),它的普通方程是( )A .(x -1)2(y -1)=1B .y =2)1()2(x x x --C .y =1)1(12--x D .y =21xx-+1(汇编全国理,9)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知点(m ,n)在椭圆8x 2+3y 2=24上,则2m +4的取值范围是____________.3.已知曲线C 的参数方程为2co s2s i nx t y t ⎧=⎪⎨=⎪⎩(t 为参数),C 在点()1,1处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为_____________.(汇编年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))(坐标系与参数方程选讲选做题) 评卷人得分三、解答题4.已知曲线:C θθsin 3cos 3{==y x ,直线:l 31)s in 3c os 2=-θθρ(.(1)将直线l 的极坐标方程化为直角坐标方程;(2)设点P 在曲线C 上,求P 点到直线l 的距离的最小值.(本小题满分13分)5.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 2 2.4πρθρθ⎛⎫==-= ⎪⎝⎭. (I)求1C 与2C 交点的极坐标;(II)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为()3312x t a t R b y t ⎧=+⎪∈⎨=+⎪⎩为参数,求,a b 的值. (汇编年高考辽宁卷(文))选修4-4:坐标系与参数方程6.在平面直角坐标系xOy 中,已知(0 1)A ,,(0 1)B -,,( 0)C t ,,()3 0D t,,其中0t ≠.设直线AC 与 BD 的交点为P ,求动点P 的轨迹的参数方程(以t 为参数)及普通方程.7.在极坐标系中,点A ⎝⎛⎭⎫22,-π4,圆O 1:ρ=4cos θ+4sin θ.(1) 将圆O 1的极坐标方程化为直角坐标方程; (2) 判断点A 与圆O 1的位置关系.8.在极坐标系中,已知圆C :θρcos 22=和直线)(4:R l ∈=ρπθ相交于A 、B两点,求线段AB 的长。
高中数学专题复习《坐标系与参数方程》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.点P (1,0)到曲线⎩⎨⎧==ty t x 22(其中参数t ∈R )上的点的最短距离为( )A .0B .1C .2D .2(汇编全国理,6)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2. 参数方程2,(cos 3tan ,x y θθθ⎧=⎪⎨⎪=⎩为参数)化为普通方程为___________.3.极坐标方程4cos ρθ=化为直角坐标方程是评卷人得分三、解答题4.在平面直角坐标系xoy 中,直线l 的参数方程为⎩⎨⎧=+=t y t x 21(t 为参数),曲线C 的参数方程为⎩⎨⎧==θθtan 2tan 22y x (θ为参数),试求直线l 与曲线C 的普通方程,并求出它们的公共点的坐标. (汇编年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))C.[选修4-4:坐标系与参数方程]本小题满分10分. 5.(理)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α.(α为参数),M 是C 1上的动点,P 点满足OM OP 2=,P 点的轨迹为曲线C 2. (Ⅰ)求C 2的参数方程;(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |值.(本题满分14分) (文)设.ln 2)(x x kkx x f --=(Ⅰ)若0)2(='f ,求过点(2,)2(f )的直线方程; (Ⅱ)若)(x f 在其定义域内为单调增函数,求k 的取值范围.6.在平面直角坐标系xoy 中,椭圆C 的参数方程为⎩⎨⎧==θθsin cos 3y x ,其中θ为参数.以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为63)3cos(2=+πθρ.求椭圆C 上的点到直线l 距离的最大值和最小值.7.已知某圆的极坐标方程为:ρ2-42ρcos(θ-4π)+6=0. (1)将极坐标方程化为普通方程;(2)若点P (x ,y )在该圆上,求x +y 的最大值和最小值.8.在极坐标系中,圆C 的极坐标方程为2sin ρθ=,(1)过极点的一条直线l 与圆相交于O ,A 两点,且∠︒=45AOX ,求OA 的长。
高中数学专题复习
《坐标系与参数方程》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.若直线y x b =-与曲线2cos ,sin x y θθ=+⎧⎨=⎩
([0,2)θπ∈)有两个不同的公共点,则实数b 的取值范围为( )
(A )(22,1)- (B )[22,22]-+ (C )(,22)
(22,)-∞-++∞
(D )(22,22)-+(汇编重庆文8)
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题
2.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若
极坐标方程为cos 4ρθ=的直线与曲线23x t y t ⎧=⎪⎨=⎪⎩(t 为参数)相交于,A B 两点,则。
高中数学专题复习
《坐标系与参数方程》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.曲线⎩
⎨⎧==θθsin cos y x (θ为参数)上的点到两坐标轴的距离之和的最大值是( ) A .2
1 B .2
2 C .1 D .2(汇编天津
理,1)
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题
2.圆锥曲线2
2x t y t ⎧=⎨=⎩
(t 为参数)的焦点坐标是____________ . (汇编年高考陕西卷(文))(坐标系与参数方程选做题)。
高中数学专题复习《坐标系与参数方程》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.若直线y x b =-与曲线2cos,sin x y θθ=+⎧⎨=⎩([0,2)θπ∈)有两个不同的公共点,则实数b 的取值范围为( )(A )(22,1)- (B )[22,22]-+ (C )(,22)(22,)-∞-++∞(D )(22,22)-+(汇编重庆文8)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为c o s 4ρθ=的直线与曲线23x ty t⎧=⎪⎨=⎪⎩(t 为参数)相交于,A B 两点,则______AB =(汇编年普通高等学校招生统一考试重庆数学(理)试题(含答案))3. 已知椭圆的参数方程为4cos ,5sin ,x y θθ=⎧⎨=⎩(R θ∈),则该椭圆的焦距为 . 评卷人得分三、解答题4.已知曲线C 1的参数方程为45cos 55sin x ty t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2sin ρθ=.(Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π). (汇编年高考新课标1(理))选修4—4:坐标系与参数方程5.已知圆C 的参数方程为()为参数θθθ⎩⎨⎧+=+=sin 23,cos 21y x ,若P 是圆C 与x 轴正半轴的交点,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,设过点P 的圆C 的切线为l ,求直线l 的极坐标方程.6.以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且在两种坐标系中取相同的长度单位.直线l 极坐标方程为sin()224πρθ+=,圆C 的参数方程为3cos 5()3sin 5x t t y t =+⎧⎨=+⎩其中为参数. (1)将直线l 极坐标方程化成直角坐标方程; (2)试判断直线l 与圆C 的位置关系.7.已知某圆的极坐标方程为:ρ2-42ρcos(θ-4π)+6=0. (1)将极坐标方程化为普通方程;(2)若点P (x ,y )在该圆上,求x +y 的最大值和最小值.8.在直角坐标系xoy 中,直线l 的参数方程为23,2252x t y t ⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数)。
高中数学《坐标系与参数方程》练习题(附答案解析)一、单选题1.在极坐标系中,圆2cos ρθ=的垂直于极轴的一条切线方程为( ) A .cos 2ρθ=B .cos 1ρθ=C .sin 2ρθ=D .sin 1ρθ=2.参数方程2x t y t ⎧=⎨=⎩(其中t ∈R )表示的曲线为( )A .圆B .椭圆C .双曲线D .抛物线3.极坐标方程2sin 0ρθρ-=的直角坐标方程为( ) A .220x y +=或1y = B .1x =C .220x y +=或1x =D .1y =4.在极坐标系中,下列方程表示圆的是( ) A .tan 1θ= B .sin 1ρθ= C .π6θ=D .π6ρ=5.已知点P 的直角坐标为12⎛- ⎝⎭,则P 的极坐标为( )A .21,3π⎛⎫ ⎪⎝⎭B .21,3π⎛⎫- ⎪⎝⎭C .41,3π⎛⎫ ⎪⎝⎭D .41,3π⎛⎫- ⎪⎝⎭6.已知实数a ,b 满足226a b +=,则ab 的取值范围是( ) A .(]0,3B .(],3-∞C .(][),33,∞∞--⋃+D .[]3,3-7.P 是椭圆4sin x y αα⎧=⎪⎨=⎪⎩(α为参数)上一点,且在第一象限,OP (O 为原点)的倾斜角为6π,则点P的坐标为( )A .()3,2B .⎝⎭C .()D .()4,38.在极坐标系中,直线sin 4πρθ⎛⎫-= ⎪⎝⎭4ρ=截得的弦长为( )A BC D .9.已知复数1z ,2z 满足1111z z ++-=,22i 2z -=,(其中i 是虚数单位),则12z z -的最大值为( )A .3B .5 C.D.210.在平面直角坐标系xOy 中,圆x 2+y 2=4上三点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)构成正三角形ABC ,那么222123x x x ++=( )A .0B .2C .3D .6二、填空题11.在同一平面直角坐标系中,已知伸缩变换φ:3,2,x x y y ''=⎧⎨=⎩则点A 1(,2)3-经过变换后所得的点A ′的坐标为________.12.在直角坐标系xOy 中,曲线C的参数方程为,sin x y αα⎧=⎪⎨=⎪⎩(其中α为参数),则曲线C 的普通方程为______.13.参数方程12?33x t y t =+⎧⎨=-+⎩(t 为参数,[]0,1t ∈)对应曲线的长度为______.14.变量x 、y满足x y ⎧⎪⎨⎪⎩=t 为参数),则代数式22y x ++的取值范围是___________.三、解答题15.将下列曲线的极坐标方程化为直角坐标方程 (1)4sin ρθ= (2)sin 2cos ρθθ=+ (3)6πθ=16.(1)我们知道,以原点为圆心,r 为半径的圆的方程是222x y r +=,那么cos sin x r y r θθ=⎧⎨=⎩表示什么曲线?(其中r 是正常数,θ在0,2π内变化)(2)在直角坐标系中,cos sin x a r y b r θθ=+⎧⎨=+⎩,表示什么曲线?(其中a 、b 、r 是常数,且r 为正数,θ在0,2π内变化)17.在直角坐标系xOy 中,直线l的参数方程为cos sin x t y t αα⎧=⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C 的极坐标方程为2853cos 2ρθ=-,直线l 与曲线C 相交于A ,B 两点,)M.(1)求曲线C 的直角坐标方程; (2)若2AM MB =,求直线l 的斜率.18.在直角坐标系xOy 中,曲线1C 的方程为()2211x y +-=.P 为曲线1C 上一动点,且2OQ OP =,点Q 的轨迹为曲线2C .以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线1C ,2C 的极坐标方程; (2)曲线3C 的极坐标方程为2221sin ρθ=+,点M 为曲线3C 上一动点,求MQ的最大值.参考答案与解析:1.A【分析】利用圆的极坐标方程,结合直线的极坐标方程进行求解即可. 【详解】在极坐标系中,圆2cos ρθ=的圆心为(1,0),半径为1,如图所示:所以该圆的垂直于极轴的切线方程为:2πθ=,或cos 2ρθ=,故选:A 2.D【分析】将参数方程化为普通方程即可得到结果.【详解】由参数方程可得曲线普通方程为:2y x =,∴曲线为抛物线. 故选:D. 3.A【分析】利用直角坐标与极坐标的互化公式222cos sin x y x y ρρθρθ⎧+=⎪=⎨⎪=⎩,即可得到答案.【详解】由曲线的极坐标方程2sin 0ρθρ-=,两边同乘ρ,可得()2sin 10ρρθ-=,再由222cos sin x y x y ρρθρθ⎧+=⎪=⎨⎪=⎩,可得:()()2222100x y y x y +-=⇔+=或1y =,故选:A 4.D【分析】将极坐标方程化为直角坐标方程,根据直角坐标方程可得答案. 【详解】由tan 1θ=及tan yxθ=,可得0x y -=,该方程表示直线;故A 不正确; 由sin 1ρθ=及sin y ρθ=,可得1y =,该方程表示直线;故B 不正确; 由π6θ=及tan ,0y x x θ=>,得,0y x =>,该方程表示射线;故C 不正确;由π6ρ=及222x y ρ+=,得222π6x y ⎛⎫+= ⎪⎝⎭,该方程表示圆;故D 正确.故选:D 5.A【分析】极径OP ρ=,极角θ满足tan yxθ=,但要注意点P 所在的象限. 【详解】∵1OP =,∵1ρ=, ∵极角θ满足tan y x θ==12⎛- ⎝⎭在第二象限,∵23πθ=, 点P 的极坐标为21,3π⎛⎫⎪⎝⎭.故选:A . 6.D【分析】根据圆的参数方程可设a θ=,b θ=,再用二倍角公式整理计算. 【详解】∵226a b +=,不妨设a θ=,b θ= 则[]6sin cos 3sin 23,3b a θθθ==∈-故选:D . 7.B【分析】设点(),4sin 02P πααα⎛⎫<< ⎪⎝⎭,由已知条件可得出关于sin α、cos α的方程组,解出sin α、cos α的值,即可得出点P 的坐标.【详解】设点(),4sin 02P πααα⎛⎫<< ⎪⎝⎭,OP k α==所以,1tan 2α=, 所以,22sin 1tan cos 2sin cos 1sin 0αααααα⎧==⎪⎪+=⎨⎪>⎪⎩,解得sin cos αα⎧=⎪⎪⎨⎪=⎪⎩因此,点P的坐标为⎝⎭.故选:B. 8.D【分析】根据题意,将极坐标方程化为直角坐标方程,然后利用直线与圆的位置关系,直接列公式求出弦长即可【详解】由已知,sin 4πρθ⎛⎫-= ⎪⎝⎭20x y -+=和2216x y +=,圆心到直线的距离d ==L ==故选:D 9.B【分析】转化椭圆与圆上的动点的距离的最大值即可【详解】复数1z 在复平面的对应点的轨迹为焦点分别在()1,0-,()1,0的椭圆,方程为2212x y +=;复数2z 在复平面的对应点的轨迹为圆心在()0,2,半径为2的圆,方程为()2224x y +-=,12z z - 即为椭圆 2212x y += 上的点A 与圆22(2)4x y +-= 上的点B 的距离. 12z z -的最大值即为点A 到圆心 (0,2)C 的距离的最大值加半径.设,sin )A θθ.22222||2cos (sin 2)2cos sin 4sin 4OC θθθθθ=+-=+-+ 226sin 4sin (sin 2)10[1,9]θθθ=--=-++∈所以 ||[1,3]OC ∈.12max 325z z -=+=故选:B 10.D【分析】分别设()22442cos ,2sin ,2cos ,2sin ,2cos ,2sin 3333A B C ππππθθθθθθ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,计算222123x x x ++,利用三角函数化简即可.【详解】因为三角形ABC 为正三角形,所以设()222cos ,2sin ,2cos ,2sin 33A B ππθθθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,442cos ,2sin 33C ππθθ⎛⎫⎛⎫⎛⎫++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 故222222123244cos 4cos 4cos 33x x x ππθθθ⎛⎫⎛⎫++=++++ ⎪ ⎪⎝⎭⎝⎭222114cos 4cos 4cos 22θθθθθ⎛⎫⎛⎫=+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭222224cos cos 3sin cos 3sin θθθθθ=++++()226cos sin 6θθ=+=,故选:D【点睛】关键点点睛:根据A,B,C 在圆上且构成正三角形ABC ,设三点坐标为()222cos ,2sin ,2cos ,2sin 33A B ππθθθθ⎛⎫⎛⎫⎛⎫++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,442cos ,2sin 33C ππθθ⎛⎫⎛⎫⎛⎫++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,是解题的关键. 11.(1,-1)【解析】由伸缩变换得312x x y y ='='⎧⎪⎨⎪⎩即可求出.【详解】设A ′(x ′,y ′),由伸缩变换φ:32x x y y ''=⎧⎨=⎩得到312x xy y ='='⎧⎪⎨⎪⎩,由于点A 的坐标为1,23⎛⎫- ⎪⎝⎭,于是1131,(2)132x y =⨯='=⨯-=-',所以A ′的坐标为(1,-1). 故答案为:(1,1)-. 12.2215x y +=【分析】根据22sin cos 1αα+=消去参数,即可得到曲线的普通方程; 【详解】解:因为曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(其中α为参数),又22sin cos 1αα+=,所以曲线C 的普通方程为2215x y +=;故答案为:2215x y +=13【分析】把参数方程化为普通方程,并判断曲线形状,进而得出曲线的长度.【详解】参数方程12?33x t y t=+⎧⎨=-+⎩(t 为参数,[]0,1t ∈),消去t 得3290x y --=,[]1,3x ∈,其表示一条线段,线段的两个端点分别为(1,3)-,(3,0),14.2,23⎡⎤⎢⎥⎣⎦【分析】根据参数方程求出动点(x ,y )的轨迹方程,()()2222y y x x --+=+--可看成点(-2,-2)与点(x ,y )连线斜率,数形结合即可求解.【详解】由x y ⎧⎪⎨⎪⎩=t 可得221(0,0)4y x x y +=≥≥,则M (x ,y )的轨迹为椭圆在第一象限的部分(包含与坐标轴的交点),()()2222y y x x --+=+--可看成点A (-2,-2)与点M (x ,y )连线斜率,如图,B (1,0),C (0,2),()()[]222,,2223AB AC y y k k x x --+⎡⎤=∈=⎢⎥+--⎣⎦, 故答案为:2,23⎡⎤⎢⎥⎣⎦.15.(1)()2224x y +-=;(2)()2215124x y ⎛⎫-+-= ⎪⎝⎭;(3)y =.【分析】由极坐标与直角坐标之间的转化关系求解即可.【详解】(1)()222224sin 4sin 424x y y x y ρθρρθ=⇒=⇒+=⇒+-=;(2)()2222215sin 2cos sin 2cos 2124x y y x x y ρθθρρθρθ⎛⎫=+⇒=+⇒+=+⇒-+-= ⎪⎝⎭;(3)6y x πθ=⇒=【点睛】本题考查将极坐标方程转化为直角坐标方程,属于基础题.16.(1)表示以原点为圆心,r 为半径的圆;(2)表示以(),a b 为圆心,r 为半径的圆.【分析】消参法:同角三角函数的平方关系消去cos ,sin θθ,将参数方程化为一般方程,即可判断方程所代表的曲线.【详解】(1)cos sin x r y r θθ=⎧⎨=⎩化为222x y r +=,∵cos sin x r y r θθ=⎧⎨=⎩(其中r 是正常数,θ在0,2π内变化)表示以原点为圆心,r 为半径的圆. (2)cos sin x a r y b r θθ=+⎧⎨=+⎩,化为()()222x a y b r -+-=,∵cos sin x a r y b r θθ=+⎧⎨=+⎩,表示以(),a b 为圆心,r 为半径的圆.17.(1)2214x y +=(2)【分析】(1)根据极坐标与直角坐标直角的转化222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,运算求解;(2)联立直线l 的参数方程和曲线C 的直角坐标方程,根据参数的几何意义结合韦达定理运算求解.【详解】(1)∵()()222222288453cos 2cos 4sin 5cos sin 3cos sin ρθθθθθθθ===-++--,则2222cos 4sin 4ρθρθ+=,∵2244x y +=,即2214x y +=,故曲线C 的直角坐标方程为2214x y +=.(2)将直线l的参数方程为cos sin x t y t αα⎧=⎪⎨=⎪⎩(t 为参数)代入曲线C 的直角坐标方程为2214x y +=,得)()22cossin14ttαα+=,整理得()()222cos4sin10t tααα++-=,设A,B两点所对应的参数为12,t t,则1212221cos4sint t t tαα+==-+,∵2AM MB=,则122t t=-,联立12122t tt t=-⎧⎪⎨+=⎪⎩12tt⎧=⎪⎪⎨⎪=⎪⎩,将12,t t代入12221cos4sint tαα=-+得221cos4sinαα⎛=-+⎝⎭⎝⎭,解得2223tan4kα==,故直线l的斜率为.18.(1)2sinρθ=;4sinρθ=(2)5【分析】(1)利用直角坐标和极坐标的互化关系求1C的极坐标方程,利用代入法求2C的极坐标方程;(2)M为2212xy+=上一点,Q为()2224x y+-=上一点,可知max max2MQ MN=+,即可求解.(1)由题意可知,将cossinxyρθρθ=⎧⎨=⎩代入()2211x y+-=得2sinρθ=,则曲线1C的极坐标方程为2sinρθ=,设点P的极坐标为()00,ρθ,则2sinρθ=,点Q的极坐标为(),ρθ,由2OQ OP=得02ρρθθ=⎧⎨=⎩,即012ρρθθ⎧=⎪⎨⎪=⎩,将012ρρθθ⎧=⎪⎨⎪=⎩代入02sinρθ=得4sinρθ=,所以点Q轨迹曲线2C的极坐标方程为4sinρθ=;第 11 页 共 11 页 (2)曲线3C 直角坐标方程为2212x y +=,设点),sin M ϕϕ, 曲线2C 的直角坐标方程为()2224x y +-=,则圆心为()0,2N ,max max 2MQ MN =+, 即MN =当sin 1ϕ=-时,max 3MN = ,所以max 325MQ =+=.。