5.1函数(1)
- 格式:ppt
- 大小:1.93 MB
- 文档页数:13
5.1 函数(1)教案班级 姓名 学号学习目标1.通过简单实例,了解变量与常量的意义,了解函数的概念和表示方法,能说出一些函数的实例。
2.能根据图象对简单实际问题中的函数关系进行分析。
学习难点根据图象对实际问题中的函数进行分析.教学过程一、自主预习:1.自学课本140~142页,知道“常量、变量和函数”。
2.在圆的面积公式s=πr 2中,变量是 ,常量是 。
3.边长为a 的等边三角形,其面积S=243a ,其中常量是 ,变量是 , 是 的函数,自变量是 。
二、合作研讨:1.问题情境:在行驶的列车上,围绕位置变化与数量变化的话题,小丽、小明、小亮和小华谈论车速、路程、时间的变化。
(1)列车在行使,位置在改变,因此与位置有关的数量在改变,这里有不变的数量吗?(2)除了小丽、小明所说的那些不变的数量外,在这个问题中还有不变的数量吗?(3)除了小亮和小华所说的那些不变的数量外,在这个问题中还有变的数量吗?2.新授:①探索活动:活动一:展示一幅列车行驶或车厢内的图片,用问题引导学生加入小明、小丽、小亮和小华的讨论,感受常量与变量的意义:方法:常量与变量必须存在于一个变化过程中。
判断一个量是常量还是变量,需要两个方面:①看它是否存在一个变化的过程中,②看它在这个变化过程中的取值情况。
活动二:体会函数的意义:(1)你从水库工作人员制作的表格里获得哪些信息?水位高低与水库容量有什么关系?(2)小鱼的条数n 与所需火柴棒的根数S 的关系为S=8+6(n -1),说说你从中获得的信息;(3)变化中的圆面积与半径的大小密切相关,你能大致描述它们之间的关系吗?(4)上述问题有共同之处吗?说说你的看法。
②归纳函数的概念:一般地,设在一个变化的过程中有两个变量x、y,如果对于变量x的每一个值,变量y都有惟一的值与它对应,我们称y是x的函数,其中x是自变量,y是因变量。
3.例题讲解:例1、用60m的篱笆围成矩形,使矩形一边靠墙,另三边用篱笆围成(1)写出矩形面积s(m2)与平行于墙的一边长a(m)的关系式;(2)写出矩形面积s(m2)与垂直于墙的一边长b(m)的关系式。
专题四《函数》讲义5.1函数的三要素知识梳理.函数的概念1.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的三种表示法解析法图象法列表法就是把变量x,y之间的关系用一个关系式y=f(x)来表示,通过关系式可以由x的值求出y的值.就是把x,y之间的关系绘制成图象,图象上每个点的坐标就是相应的变量x,y的值.就是将变量x,y的取值列成表格,由表格直接反映出两者的关系.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.题型一.定义域考点1.具体函数定义域1.函数f(x)=(1﹣)−12+(2x﹣1)0的定义域是()A.(﹣∞,1]B.(−∞,12)∪(12,1)C.(﹣∞,1)D.(12,1)2.函数op=M,g(x)=ln(x2+3x+2)的定义域为N,则M∪∁R N=A.[﹣2,1)B.(﹣2,1)C.(﹣2,+∞)D.(﹣∞,1)考点2.抽象函数定义域3.若函数f(3﹣2x)的定义域为[﹣1,2],则函数f(x)的定义域是.4.函数y=f(x)的定义域为[﹣1,2],则函数y=f(1+x)+f(1﹣x)的定义域为()A.[﹣1,3]B.[0,2]C.[﹣1,1]D.[﹣2,2]考点3.已知定义域求参5.已知函数f(x)=lg(ax2+3x+2)的定义域为R,则实数a的取值范围是.6.若函数f(x)=(2a2+5a+3)x2+(a+1)x﹣1的定义域、值域都为R,则实数a满足()A.a=﹣1或a=−32B.−139<<−1C.a≠﹣1或a≠−32D.a=−32题型二.解析式考点1.待定系数法1.已知函数f(x)是一次函数,且f[f(x)]=9x+4,求函数f(x)的解析式.2.已知f(x)是二次函数,且满足f(0)=1,f(x+1)﹣f(x)=2x,则f(x)的解析式是.考点2.换元法3.已知o−1)=−2,则函数f(x)的解析式为.4.已知f(1−1+)=1−21+2,求f(x)的解析式.考点3.凑配法5.(1)已知f(1)=1−2,求f(x)的解析式;(2)已知f(x+1)=x2+12,求f(x).6.已知f(3x)=4x log23+10,则f(2)+f(4)+f(8)+…+f(210)的值等于.考点4.方程组法7.已知函数f(x)满足f(x)+2f(﹣x)=3x,则f(1)=.8.已知函数f(x),g(x)分别是定义在R上的偶函数和奇函数,f(x)+g(x)=2•3x,则函数f(x)=.考点5.求谁设谁9.已知函数f(x)为奇函数,当x∈(0,+∞)时,f(x)=log2x,(1)求f(x)的解析式;(2)当f(x)>0时.求x的取值范围.10.定义域为R的函数f(x)满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x2﹣x,则当x∈(﹣1,0]时,f(x)的值域为()A.[−18,0]B.[−14,0]C.[−18,−14]D.[0,14]考点6.利用对称求解析式11.下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1﹣x)B.y=ln(2﹣x)C.y=ln(1+x)D.y=ln(2+x)12.设函数y=f(x)的图象与y=2x+a的图象关于y=﹣x对称,且f(﹣2)+f(﹣4)=1,则a=()A.﹣1B.1C.2D.4题型三.值域考点1.利用单调性求值域1.下列函数中,与函数op=(15)的定义域和值域都相同的是()A.y=x2+2x,x>0B.y=|x+1|C.y=10﹣x D.=+12.已知函数f(x)=log3(x﹣2)的定义域为A,则函数g(x)=(12)2﹣x(x∈A)的值域为()A.(﹣∞,0)B.(﹣∞,1)C.[1,+∞)D.(1,+∞)考点2.换元法3.函数=2+41−的值域为()A.(﹣∞,﹣4]B.(﹣∞,4]C.[0,+∞)D.[2,+∞)4.函数f(x)=log2(x2﹣2x+3)的值域为()A.[0,+∞)B.[1,+∞)C.R D.[2,+∞)考点3.分离常数5.函数=2r1r1在x∈[0,+∞)上的值域是.6.已知函数op=2+4,则该函数在(1,3]上的值域是()A.[4,5)B.(4,5)C.[133,5)D.[133,5] 7.函数=2+2r2r1的值域是.8.下列求函数值域正确的是()A.函数=5K14r2,x∈[﹣3,﹣1]的值域是{U≠54}B.函数=2−3r1的值域是{U≤−1,≥−15}C.函数=sB+1K2,∈[2,2)∪(2,p的值域是{U≤4K4,≥1K2} D.函数=+1−2的值域是{U−1≤≤2}课后作业.函数的三要素1.函数op=−2+9+10−2B(K1)的定义域为()A.[1,10]B.[1,2)∪(2,10]C.(1,10]D.(1,2)∪(2,10]2.已知函数f(x)=l2,>03,<0,则no14)]的值为()A.19B.13C.﹣2D.3 3.已知o p=2−2,则函数f(x)的解析式为()A.f(x)=x4﹣2x2(x≥0)B.f(x)=x4﹣2x2C.op=−2o≥0)D.op=−24.已知函数f(x)满足2f(x﹣1)+f(1﹣x)=2x﹣1,求:f(x)解析式.5.已知f(x)=(1−2p+3o<1)Bo≥1)的值域为R,那么a的取值范围是()A.(﹣∞,﹣1]B.(﹣1,12)C.[﹣1,12)D.(0,1)6.用min{a,b,c}表示a,b,c三个数中的最小值设f(x)=min{2x,x+2,10﹣x}(x≥0),则f(x)的最大值为.。
5.1 函数(1)班级 姓名【必做题】1.一张3.5寸软盘3元,则买x 张这样的软盘所付钱数y 与x 之间的关系式是 , 其中 是常量, 是变量。
2.一幢住宅楼,底层为店面房,层高为4米,以上每层高3米,则楼高h 与层数n 之间的关系式为 ,其中可以将 看成自变量, 是因变量。
3.用总长为40m 的篱笆围成矩形场地,矩形的面积S(m 2)与一边长a(m)之间的函数关系式为 。
4.下表反映了两个变量x 与y 之间的关系,你能发现表中的x 与y 之间的关系吗?请用解析式表示出来 。
5.下面是用棋子摆成的“上”字:第一个“上”字 第二个“上”字 第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用 和 枚棋子;(2)第n 个“上”字需用 枚棋子.6.如图:将长为30厘米、宽为10厘米的长方形白纸共x 张,按来,粘合部分的宽度为2厘米,粘合后的总长度为y 厘米;则y 关于x 的函数关系式是( )A .x y 30=B .x y 28=C .228-=x yD .228+=x y7.下列图形都是由若干个棋子围成的方形图案,图案的每条边(包括两个顶点)上都有n 个棋子,每个图案的棋子总数为s ,根据下图的规律用式子表示出s 与n 的关系,并说出其中的变量与常量.n=2,s=4 n=3,s=8 n=4,s=12 n=5,s=16【选做题】通话费分别是多少?(2)给定一个x值,y都有唯一的值与它对应吗?y是x的函数吗?9.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x吨(x >10),应交水费y元,请用方程的知识来求有关x和y的关系式,并判断其中一个变量是否为另一个变量的函数?。
5.1正弦函数的图像(1)贾 伟一、教学目标:知识与技能(1)掌握任意角的正弦函数的定义;(2)理解有向线段的概念;(3)了解正弦函数图像的画法;(4)掌握五点作图法,并会用此方法画出[0,2π]上的正弦曲线。
过程与方法在直角坐标系中来找直角三角形,从而引出单位圆;利用单位圆的独特性,是高中数学中的一种重要方法,在第二节课的正弦函数图像,以及在后面的正弦函数的性质中都有直接的应用;讲解例题,总结方法,巩固练习。
情感态度与价值观体会特殊与一般的关系,形成一种辩证统一的思想;通过单位圆的学习,建立数形结合的思想,激发学习的学习积极性;培养学生分析问题、解决问题的能力。
二、教学重、难点重点: 1.任意角的正弦函数定义,以及正弦函数值的几何表示。
2.正弦函数图像的画法。
难点: 1.正弦函数值的几何表示。
2.利用正弦线画出y =sinx ,x ∈[0, 2π]的图像。
三、学法与教学用具在初中,我们知道直角三角形中锐角的对边比上斜边就叫着这个角的正弦,当把锐角放在直角坐标系中时,角的终边与单位圆交于一点,正弦函数对应于该点的纵坐标,当是任意角时,通过函数定义的形式引出正弦函数的定义;作正弦函数y =sinx 图像时,在正弦函数定义的基础上,通过平移正弦线得出其图像,再归结为五点作图法。
教学用具:投影机、三角板第一课时 锐角的正弦函数,任意角的正弦函数教学思路【创设情境,揭示课题】我们学习角的概念的推广和弧度制,就是为了学习三角函数。
请同学们回忆(1)角的概念的推广及弧度制、象限角等概念;(2)初中所学的正弦函数是如何定义的?并想一想它有哪些性质?学生思考回答以后,教师小结。
(板书课题)【探究新知】 在初中,我们学习了锐角α的正弦函数值:sin α=斜边对边, 如图:sinA =c a,由于a 是直角边,c 是斜边,所sinA ∈(0,1)。
由于我们通常都角放到平面直角坐标系中,我们来看看会发生什么?B C Aa b c在直角坐标系中,(如图所示),设角α(α∈(0,2π)) 的终边与半经为r 的圆交于点P (a ,b ),则角α的正弦值是:sin α=r b .根据相似三角形的知识可知,对于确定的角α,r b都不会随圆的半经的改变而改变。