真空预压排水固结法设计及计算(详细)
- 格式:ppt
- 大小:7.59 MB
- 文档页数:43
真空排水预压加固地基计算说明以ZK1为例进行计算: 1 沉降计算固结沉降量c S 采用单向压缩分层总和法进行计算,公式如下:i iii ci h e e e S ∆+-=∆0101 总压缩量为:∑=∆=ni ci c S S 1式中:ci S ∆——第i 层的压缩量;i e 0——第i 层中点土的自重应力所对应的初始孔隙比,由室内压缩试验e-p 曲线求得;i e 1——第i 层中点土的自重应力与附加应力之和所对应的初始孔隙比;i h ∆——第i 层土层的厚度。
根据工程地质报告,岩土层物理力学指标及承载力建议值如下表:相关计算结果如下:因此,固结沉降量cm S S ni ci c 5.961=∆=∑=最终沉降量S 包含三部分:初始沉降量、固结沉降量、次固结沉降量,计算公式为:cm S m S c s 8.1155.962.1'=⨯==式中25.1~1'=s m ,地基软弱土层厚度大时取大值。
鉴于填土深度大于22.3m 的土层压缩量非常低,因此固结度主要计算0~22.3m 土层。
固结度计算公式为:t t ae U β--=1式中:2/8π=a ,2224)(8HC d G J F C ve n h ππβ+++= h C C v 、——竖向和水平固结系数,根据试验确定为s cm /10123-⨯;n F ——井径比因子,计算公式为2222413)ln(1n n n n n F n ---=,式中w ed d n =,排水圆柱等效直径d a d e 1=,d 为垂直排水通道间距,取值100cm ,1a 为换算系数,对正三角形布置取值1.05;等值砂井直径πδ)(2+=b d w ,b 为塑料排水板宽度,取值10cm ,δ为塑料排水板厚度,取值0.4cm 。
G ——井阻因子,计算公式为ws w h d LF q qG 4/⨯=,其中,垂直排水通道的 流量L d k q w h h π=)/(3s cm ;w q 为垂直排水通道的通行能力,取值 25s cm /3;h k 为水平向渗透系数,取值s cm /1047-⨯;L 为垂直排 水通道的打入深度,取值2500cm ;s F 为安全系数,取值6。
第四章 排水固结法排水固结法:是利用天然在地基土层本身的透水性或设置在地基中的竖向排水体,通过预先在地表进行加载预压或利用建筑物自重使土体中孔隙水逐渐排出、土体逐渐固结,地基土逐渐压密,强度逐步提高的方法,或者利用井点降水,利用插入土中的通电电极使土中水发生渗流以达到区域土体自重应力的增加,从而使土体逐渐压密的方法。
排水固结法由排水系统和加压系统两部分组成。
⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧--⎪⎩⎪⎨⎧联合法电渗法降低地下水位法真空法堆载法加压系统砂垫层水平排水体塑料排水带袋装砂井普通砂井竖向排水体排水系统排水固结 排水系统:主要在于改变地基原有的排水边界条件,增加孔隙水排出的途径,缩短排水距离。
该系统是由水平排水层和竖向排水体构成。
可以由在土中打设的砂井、袋装砂井、或塑料排水带等竖向排水体同地面铺设的砂石垫层构成;也可以利用天然地基中夹粉砂薄层的“千层糕”状土;当软土层较薄,或土的渗透性较好时,而施工工期允许时,可仅在地表铺设一定厚度的砂垫层作为排水系统。
加压系统:起固结作用的荷载,使地基土的固结压力增加而产生固结。
根据排水系统和加压系统的不同,排水固结法可分为:堆载预压法;砂井(袋装砂井、塑料排水带)堆载预压法;真空(砂井、袋装砂井、塑料排水带)预压法;堆载——真空预压法、降水预压法和电渗法。
降水预压法和电渗法费用较高,在我国工程应用极少。
堆载预压法和砂井预压法的区别:堆载预压法是利用天然地基作为排水系统,其固结排水过程是一维排水过程;而砂井预压法则是在地基中设置了竖向排水体,其固结排水过程为三维排水过程。
如果饱和软土较薄(〈5m 〉或固结系数较大(s cm c v /1022->)或土层内为“千层糕”状土时,则不需要很长时间就可获得较好的预压效果;反之,饱和粘土层比较深厚(10m ),而固结系数又较小(s cm c v /1023-<),则排水固结所需的时间很长,堆载预压的地基就受到了限制,则宜在软土中设置竖向排水体。
软基处理工艺的造价分析一、插板排水固结真空联合堆载预压法1、设计说明(1)真空联合堆载预压原则上按 1.2 ~2.0 万平米分为一个处理区,相当于约 200m道路纵向长度分为一个处理区。
(2)吹填场地在吹填砂(土)表面以上设 0.3m 厚砂垫层。
(3)沿纵向处理边界打设双排泥浆搅拌桩密封墙;沿横向分区打设双排水泥搅拌桩密封墙;搅拌桩直径 700mm,桩距 500mm,桩入淤泥层不小于 3.0m。
(4)打设塑料排水板,插板采用 SPB 系列 C 型,间距 1.0m,正三角形布置。
若淤泥下卧透水砂层,插板底端采用插板靴及塑料套封闭后打入,且不得穿透淤泥层进入砂层;若淤泥层超深,插板未打穿淤泥层,设置插板靴防止回带。
(5)铺设真空滤管网,分滤管、主管与干管,滤管长 6m、间距 6m,主管间距 13m,干管在处理分区内形成回路闭合布置。
(6)在真空管上部铺设砂垫层,厚度不小于 0.2m。
(7)铺设密封膜 3 层,膜上、下各铺保护土工布 1 层,密封膜周边压入密封沟。
(8)按照 900~1100平米配一台真空泵的原则进行配置真空泵,要求采用射流式真空,电机功率应不小于 7.5kw。
(9)预抽真空 5~7 天,膜下真空度达到- 80kPa 后,起算真空预压时间。
(10)保证真空度达到设计要求的前提下,连续抽真空 10~20 天后开始填筑路基土。
(11)第一层填土选用细砂或粉细土,厚度 0.3m,要求压实。
(12)其余路基填土分层填筑,压实度满足表 6-1 要求。
(13)路基填土应在 90 天内填筑到位,满载后抽真空联合预压时间应120 天左右。
(14)设计要求膜下真空度稳定在 -80kpa 后,连续抽真空 210 天左右。
(15)由沉降观测数据推算工后沉降,结合实测沉降速率确定抽真空停泵时间,要求实测沉降三点法或ASAOKA(浅岗)法推算工后沉降满足设计要求,沉降速率小于 2mm/天。
(16)在停泵之后,应按设计要求钻孔取样送实验室化验软土的性质指标,进行十字板等原位试验,确定土的工程性质指标。
排水固结计原始数据输入项单位袋装砂井直径d w=7cm砂井间距L=140cm砂井深度H1=2000cm加荷时间t=1E+07s土的固结系数Cv=Ch=0.0018cm²/s受压土层厚度H=3000cm砂井以下剩余土层厚度H2=1000cm土层的天然抗剪强度τf0=16kPa土的内摩擦角 υ=15度预压荷载总压力σz=100kPa安全系数 K=1.3基底压力P=120kPa第i层中点土自重应力所对应的孔隙比e0i=1.28第i层中点土自重应力和附加应力之和相对应的孔隙比e1i=1.12第i层厚度 Δhi=7m(通常堆载预压取m=1.1~1.4;真空预压取m=0.8~1.0)m=1.2砂料渗透系数kw=0.02cm/s土层水平向渗透系数k h=1E-07cm/s涂抹区土的渗透系数ks=kh/5=2E-08cm/s(不考虑井阻和涂抹作用时取S=1,考虑时取S=2)S=2一级荷载加荷量q1=60kPa二级荷载加荷量q2=40kPat0=0天t1=10天t2=30天t3=40天t=120天(1)单向压缩固结沉降计算第i层的压缩量 Δsi=(e0i-e1i)*Δhi/(1+e0i)=0.49总压缩量为S c=∑_(i=1)^n式中e0i—第i层中点土自重应力所对应的孔隙比;e1i—第i层中点土自重应力和附加应力之和相对应的孔隙比;Δhi—第i层厚度e0i和e1i从室内固结试验所得的e-σ'c曲线上查得。
(2)最终沉降S∞的计算最终沉降量 S∞=mSc=0.59瞬时沉降量 Sd=S∞-Sc=0.10荷载作用下地基沉降随时间的发展式 St=Sd+Ut*Sc=1.55(不考虑井阻和涂抹影响)瞬时加荷(砂井未打穿土层)等效圆直径 de=1.05L=147袋装砂井纵向通水量qw=kw*πd²w/4=0.769井径比 n=de/dw=21井径比 n=de/dw=21径向固结时间因数 Th=Ch*t/de²=0.86与井径比n有关的参数 Fn=In(n)-3/4=2.29与井径比n有关的参数 Fn=[n²*In(n)/n²-1]-[(3n²-1)/4n²]=2.30井阻影响 Fr=(π²H²/4)*(kh/qw)=1.28竖向固结时间因数 Tv=Cvt/H²=0.0021涂抹扰动影响 Fs=(kh/ks-1)*InS=2.77径向排水平均固结度 Ur=1-e^-8*Th/Fn=0.95综合影响参数 F=Fn+Fr+Fs=6.35竖向排水平均固结度 Uz=1-[(8*e^-π²*Tv/4)/π²]=0.19α=8/π²=0.81竖向地基总的平均固结度 Urz=1-(1-Ur)*(1-Uz)=0.96β=(8Ch/Fde²)+(π²Cv/4H²)=0.0092第一级荷载的平均加荷速率为 q'1=Δq1/Δt1=6第二级荷载的平均加荷速率为 q'2=Δq2/Δt2=4竖向排水距离 H'=(1-aQ)H=1082.46第一级荷载固结度Ut1=q'1/Δσz*[(t1-t0)-(α/β)*e^-βt*(e^βt1-e^βt0)=0.43Q=H1/(H1+H2)=0.67第一级荷载固结度Ut3=q'2/Δσz*[(t3-t2)-(α/β)*e^-βt*(e^βt3-e^βt2)=0.25βr=8*Ch/Fn*de²=2.89482E-07Ut=Ut1+Ut3=0.68βz=π²*Cv/4*H²=4.9298E-10a=1-√βz/(βr+βz)=0.96Tv=Ch*t/H'²=0.016砂井以下土层平均固结度 U'z=1-[(8*e^-π²*Tv/4)/π²]=0.22整个土层的平均固结度 Ut=Q*Urz+(1-Q)*U'z=0.71抗剪强度 τft=τf0+Δσz*Ut*tan υ=34.7承载力P≈5.52*τft/K≈147.2地基承载力计算结果满足设计要求固结计算砂井以下土层的平均固结度计算计算预压完成后地基抗剪强度及承载力砂井范围土层平均固结度计算平均固结度计算(考虑井阻和涂抹影响)二级等速加荷(砂井打穿土层)。
一、真空预压法组合加固软基技术(一)技术内容(1)真空预压法是在需要加固的软粘土地基内设置砂井或塑料排水板,然后在地面铺设砂垫层,其上覆盖不透气的密封膜使软土与大气隔绝,然后通过埋设于砂垫层中的滤水管,用真空装置进行抽气,将膜内空气排出,因而在膜内外产生一个气压差,这部分气压差即变成作用于地基上的荷载。
地基随着等向应力的增加而固结。
(2)真空堆载联合预压法是在真空预压的基础上,在膜下真空度达到设计要求并稳定后,进行分级堆载,并根据地基变形和孔隙水压力的变化控制堆载速率。
堆载预压施工前,必须在密封膜上覆盖无纺土工布以及粘土(粉煤灰)等保护层进行保护,然后分层回填并碾压密实。
与单纯的堆载预压相比,加载的速率相对较快。
在堆载结束后,进入联合预压阶段,直到地基变形的速率满足设计要求,然后停止抽真空,结束真空联合堆载预压。
(二)技术指标(1)真空预压施工时首先在加固区表面用推土机或人工铺设砂垫层,层厚约0.5m;(2)真空管路的连接点应密封,在真空管路中应设置止回阀和闸阀;滤水管应设在排水砂垫层中,其上覆盖厚度100~200mm 的砂层;(3)密封膜热合粘结时宜用双热合缝的平搭接,搭接宽度应大于15mm 且应铺设二层以上。
密封膜的焊接或粘接的粘缝强度不能低于膜本身抗拉强度的60%;(4)真空预压的抽气设备宜采用射流真空泵,空抽时应达到95kPa 以上的真空吸力,其数量应根据加固面积和土层性能等确定;(5)抽真空期间真空管内真空度应大于90kPa,膜下真空度宜大于80kPa;(6)堆载高度不应小于设计总荷载的折算高度;(7)对主要以变形控制设计的建筑物地基,地基土经预压所完成的变形量和平均固结度应满足设计要求;对以地基承载力或抗滑稳定性控制设计的建筑物地基,地基土经预压后其强度应满足建筑物地基承载力或稳定性要求。
主要参考标准:《建筑地基基础工程施工规范》GB51004、《建筑地基处理技术规范》JGJ79。
(三)适用范围该软土地基加固方法适用于软弱粘土地基的加固。
真空排水预压法施工工艺真空排水预压法是一项比较新的加固软土技术,是属于排水固结法的一种,它经过铺设水平排水砂垫层和设置在软基中的竖向排水体,再在砂垫层上铺设不透气的薄膜封闭装置,借助于埋设在砂垫层内的管道,经过抽真空装置,使土体中形成负压,将土体孔隙中的孔隙水抽出,进而降低孔隙水压力,增添有效应力,使土体产生固结,减少后期沉降,提高地基承载能力。
其施工内容主要由四部分构成:(1 )施工一个垂直的和水平的排水通道,即施工塑料排水板和砂垫层;(2 )要施工一个使被加固地基与大气隔断的保证不透气的密封层;(3 )要设置一套高效率的抽真空装置。
即在砂垫层内铺设主管和滤管管网和在密封系统外安装真空泵等设备;(4 )要设置一套保证能按设计要求进行施工的检测系统。
以下图一为真空排水预压法施工工艺流程图丈量放线消除表层耕植土、排放鱼塘水、消除浮淤按设计要求整平场所铺设第一层 20cm厚砂垫层打设塑料排水板铺设第二层 20cm厚砂垫层,挖密封沟开挖真空管路沟槽及主、支滤管的铺设和主管和支滤管的加工抽真空设备的安装与真空度测头的埋设开挖密封沟铺设第一层土工布铺设二层密封膜出膜连结真空泵系统、回填密封沟不良试抽真空、检查密封系统性能补漏铺设第二层土工布接以下图接上图设置沉降观察标、侧向位移桩并丈量预压前的标高铺设第三层 40cm砂垫层(设计要求真空预压达成后才进行此道工序)进行真空预压,保持真空度80Kpa 以上达 90~120 天依据沉降观察计算土体固结度达到90%即可停机卸泵持续观察边桩位移和地面沉降结束(图 1)真空预压施工工艺流程图一、施工前的准备工作1 、要做好充足的技术准备,包含采集并熟习与本工程项目相关的技术规程、规范及地质状况,认识设计企图,掌握设计图纸的技术要求和各项技术参数,对施工现场的现状要检查清楚等,正式动工前组织技术交底。
2 、按施工合同要求组织施工机械设备进场,并仔细进行检查和调试,对计量设备仪器按现定要求送检标定,保证机械设备完满率。
真空预压法是排水固结法一、基本原理在沿海和内陆地区广泛分布着海相、湖相和河相沉积的软弱粘土层,具有高含水量、高压缩性、低强度、低渗透性等特点,在建筑物荷载作用下会产生较大的沉降,地基承载力和稳定性差,不能满足工程需要。
为有效消除软土的沉降变形,提高地基承载力和稳定性,应对地基进行加固处理以满足工程建设的需要。
真空预压法是排水固结法的一种,主要由排水系统和加压系统两部分组成:排水系统主要包括竖向排水体和水平排水体,竖向排水体常用塑料排水板、袋装砂井、透水软管等,水平排水体常用砂垫层(纯净中粗砂),对于砂源紧缺、砂价较贵的地区可采用技术可靠的塑料盲沟或透水软管等土工合成材料,以降低工程造价。
设置排水系统主要为了改变地基原有的排水边界条件,传递真空压力,增加孔隙水的排出通道,缩短排水距离,以便在上部荷载作用下能以较快的时间使地基土的有效应力增加,地基土产生固结,完成预定的地基加固效果,满足工程建设需要。
加压系统主要是指抽真空装置。
真空预压原理见图2-1所示。
在实施真空预压法的同时在地基上部进行堆载(包括堆土、充水等),真空预压与上部堆载联合作用就形成了真空联合堆载预压法,见图2-2。
二、优缺点真空联合堆载预压法加大了超载压力,堆载预压中的超载部分为真空压力,增大了地基土体内的附加应力,同时发挥真空预压和堆载预压各自的优势,可提高加荷速率、缩短工期、增大加固深度,使地基沉降在施工期内得以基本完成,从而有效减少地基工后沉降。
真空联合堆载预压法对地基实施超载预压加固,超载部分由真空荷载来代替,其最大荷载可达80~90kPa,相当于4~5m的填土荷载,大大超过地面设计荷载;真空荷载施加方便、迅速,几天之内就可达到80kPa以上,不存在分级施加的问题;由于有真空预压,只要塑料排水板有足够大的通水量,真空度就可以传递到土层深部而损失较小,使地基深层软土得到较好加固,从而在加固期间能消除较多的地基沉降。
采用真空联合堆载法处理场地软基,除了施工简单、有效消除地基土的沉降、填土速率不受限制、施工费用低廉等特点外,还可以大幅度提高地基土承载力,改善地基土土性,提高地基土强度。
真空预压竖井地基固结解析解及数值分析摘要软土地基具有强度较低、孔隙比大、含水量较高等特点,因此需要经过地基加固处理后才能用于工程建设。
排水固结法是一种常见的处理软土地基的措施,其中,真空预压法是目前常用的排水固结法之一。
经过几十年的研究,真空预压竖井地基固结在工程中的应用和理论研究得到了长足的发展,并且取得了丰富的成果,但是通过简化研究得到的解析解结果与工程实际情况仍有一定的差异。
为了促进竖井地基固结理论的发展,在前人研究成果的基础上,本文对真空预压条件下竖井地基固结问题进行研究,主要工作内容和成果如下:(1)针对真空预压条件下竖井地基固结问题,考虑竖井井阻随时间变化,忽略土体的竖向渗流,根据计算简图,建立计算模型,确定边界条件,由实际情况确定初始条件,根据基本假定确定连续条件,采用解析解法进行理论研究,推导了真空预压下井阻随时间变化的竖井地基固结解析解。
基于此解,编制了计算程序,分析了地基固结的性状。
研究表明,井阻变化率对平均孔压和平均固结度产生较大影响;影响区半径与竖井半径之比对固结度有一定的影响但不明显;未扰动区的土体径向渗透系数与扰动区的土体径向渗透系数之比对固结度的影响比较明显;真空度越大,孔压随深度消散速率越慢。
(2)在真空预压条件下,考虑涂抹区渗透系数变化、井阻随时间变化,根据不同的渗透系数变化规律,给出了竖井地基固结解析解,编制了计算程序,分析了竖井地基的固结性状。
结果表明,井阻变化率对固结速率有较大影响;在土体扰动区径向渗透系数变化的三种模式中,土体涂抹区径向渗透系数为抛物线变化时固结速率最快、为线性时次之、为常数时固结速率最慢。
(3)研究了考虑影响区范围土体非线性的真空预压竖井地基固结问题。
推导出了考虑土体非线性、径向渗透系数变化、荷载随时间变化的竖井地基固结解析解。
编制了计算程序,分析了瞬时加载和线性加载模式下的竖井地基固结性状。
结果表明,线性加载下孔隙水压力消散比瞬时加载慢;竖井渗透系数越大固结速率越快;压缩指数与渗透指数之比越小固结速率越快。