全国高职高专高等数学1-1汇编
- 格式:ppt
- 大小:775.50 KB
- 文档页数:25
高等职业教育教材高等数学答案**第1章:函数的基本概念与运算**1. 函数的定义函数是一种特殊的关系,它将一个集合的元素映射到另一个集合。
函数通常用符号表示为y = f(x),其中x是自变量,y是因变量。
2. 函数的分类函数可以分为线性函数、二次函数、指数函数、对数函数、三角函数等多种类型。
每种函数有不同的特点和图像。
3. 函数的运算函数的运算包括函数的四则运算、函数的复合运算和函数的反函数等。
这些运算可以帮助我们研究函数之间的关系和特性。
**第2章:极限与连续**1. 极限的定义极限是用来描述函数在某一点附近的性质的概念。
当自变量无限接近某个值时,函数的取值趋于一个确定的常数,这个常数就是函数在该点的极限。
2. 极限的性质与计算极限具有唯一性、有界性和保序性等性质。
可以使用极限运算法则和极限性质来计算各种类型函数的极限值。
3. 连续函数连续函数是指在其定义域上具有连续性的函数。
如果函数在某一点的左极限、右极限和函数值都相等,那么该函数就是连续的。
**第3章:导数与微分**1. 导数的定义导数是函数在某一点的变化率的极限。
导数可以用来描述函数的切线斜率和函数的局部变化情况。
2. 导数的计算可以使用导数的定义以及常用的导数法则(如求和法则、乘积法则、链式法则)来计算各种类型的函数的导数。
3. 微分的应用微分可以用来近似计算函数值、求解最值问题、研究函数的单调性和凹凸性等。
微分还可以用来描述函数的高阶导数。
**第4章:不定积分与定积分**1. 不定积分不定积分是积分的一种形式,表示函数的原函数(或称为不定积分)的全体。
不定积分可以通过反向求导来计算。
2. 定积分定积分是积分的另一种形式,用来计算曲线下的面积、弧长、体积等。
定积分可以通过数值积分、换元积分和分部积分等方法来计算。
3. 积分的应用积分在物理、经济学、几何学等领域中有广泛的应用。
例如,可以通过积分来计算质心位置、曲线长度、弹性势能等。
**第5章:微分方程**1. 微分方程的基本概念微分方程是描述函数与其导数之间关系的方程。
职高数学一集合习题集及详细答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(职高数学一集合习题集及详细答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为职高数学一集合习题集及详细答案的全部内容。
1。
1集合的概念习题练习1。
1.11、下列所给对象不能组成集合的是---—-—--—-—-—------——( )A.正三角形的全体B。
《高一数学》课本中的所有习题C.所有无理数D。
《高一数学》课本中所有难题2、下列所给对象能形成集合的是—-—--——-—--—-—-——————( )A.高个子的学生B。
方程﹙x—1﹚·2=0的实根C.热爱学习的人 D。
大小接近于零的有理数3、:用符号“∈”和“∉”填空.(1)—11.8 N, 0 R,—3 N, 5 Z(2)2.1 Q , 0.11 Z, -3。
3 R, 0.5 N(3)2。
5 Z, 0 Φ, -3 Q 0。
5 N+答案:1、D2、B3、(1)∉∈∉∈(2)∈∉∈∉(3)∉∉∈∉练习1。
1。
21、用列举法表示下列集合:(1)能被3整除且小于20的所有自然数(2)方程x2-6x+8=0的解集2、用描述法表示下列各集合:(1)有所有是4的倍数的整数组成的集合.(2)不等式3x+7>1的解集3、选用适当的方法表示出下列各集合:(1)由大于11的所有实数组成的集合;(2)方程(x-3)(x+7)=0的解集;(3)平面直角坐标系中第一象限所有的点组成的集合;答案:1、(1){0,3,6,9,12,15,18}; (2) {2,4}2、(1) {x︱x=4k ,k∈Z}; (2) {x︱3x+7>1}3、(1) {x︱x>11}; (2){—7,3}; (3) {(x,y)︱x>0,y>0}1。
高职专科高等数学教材封面编写者:XXX版权所有,未经许可禁止复制或转载目录导言1第一章数列和极限21.1 数列的概念21.2 数列的极限31.2.1 数列极限的定义31.2.2 数列极限的性质41.3 极限的运算性质 5第二章函数与解析几何72.1 函数的概念72.1.1 函数的定义72.1.2 函数的性质92.2 解析几何基础102.2.1 点、直线、平面102.2.2 坐标系与坐标112.2.3 曲线的方程12第三章导数与微分133.1 导数的引入133.2 导数的计算143.2.1 基本求导公式143.2.2 复合函数的导数公式153.3 微分的概念163.3.1 微分的定义163.3.2 微分的应用17第四章不定积分194.1 不定积分的定义 194.2 基本积分公式204.3 分部积分法224.4 定积分与不定积分的关系23第五章二元函数与偏导数255.1 二元函数的概念 255.2 偏导数的定义265.2.1 偏导数的计算265.2.2 高阶偏导数275.3 多元函数的极值与条件极值285.3.1 多元函数的极值285.3.2 条件极值与拉格朗日乘数法29第六章无穷级数与幂级数316.1 无穷级数的收敛性316.1.1 无穷级数的概念316.1.2 收敛级数与发散级数326.2 幂级数的性质336.2.1 幂级数的收敛半径和收敛域33 6.2.2 幂级数的求和34附录36A.1 常用数学符号表36A.2 比例关系与近似计算37A.3 常用函数表39导言本教材是为高职专科数学专业学生编写的高等数学教材,以帮助学生建立扎实的数学基础,为其日后的学习和实践打下坚实的基础。
本教材内容涵盖了数列和极限、函数与解析几何、导数与微分、不定积分、二元函数与偏导数、无穷级数与幂级数等重要内容。
在编写过程中,我们注重理论与实践的结合,力求将抽象的数学概念与实际问题联系起来,提供具有实用性和应用性的教材。
1.1集合的概念习题练习1.1.11、下列所给对象不能组成集合的是---------------------()A.正三角形的全体B。
《高一数学》课本中的所有习题C.所有无理数D。
《高一数学》课本中所有难题2、下列所给对象能形成集合的是---------------------()A.高个子的学生B。
方程﹙x-1﹚·2=0的实根C.热爱学习的人D。
大小接近于零的有理数3、:用符号“∈”和“∉”填空。
(1)-11.8 N,0 R,-3 N, 5 Z(2)2.1 Q ,0.11 Z,-3.3 R,0.5 N(3)2.5 Z,0 Φ,-3 Q 0.5 N+答案:1、D2、B3、(1)∉∈∉∈(2)∈∉∈∉(3)∉∉∈∉练习1.1.21、用列举法表示下列集合:(1)能被3整除且小于20的所有自然数(2)方程x2-6x+8=0的解集2、用描述法表示下列各集合:(1)有所有是4的倍数的整数组成的集合。
(2)不等式3x+7>1的解集3、选用适当的方法表示出下列各集合:(1)由大于11的所有实数组成的集合;(2)方程(x-3)(x+7)=0的解集;(3)平面直角坐标系中第一象限所有的点组成的集合;答案:1、(1) {0,3,6,9,12,15,18}; (2) {2,4}2、(1) {x︱x=4k ,k∈Z}; (2) {x︱3x+7>1}3、(1) {x︱x>11}; (2){-7,3}; (3) {(x,y)︱x>0,y>0}1.2集合之间的关系习题练习1.2.1.1、用符号“⊆”、“⊇”、“∈”或“∉”填空:(1)3.14 Q (2) 0 Φ(3) {-2} {偶数}(4){-1,0,1}{-1,1}(5)Φ{x︱x2=7,x∈R}2、设集合A={m,n,p},试写出A的所有子集,并指出其中的真子集.3、设集合A={x︱x>-10},集合B={x︱-3<x<7},指出集合A与集合B之间的关系答案:1、∈∉⊆⊇⊆2、所有的子集:Φ,﹛m﹜,﹛n﹜,﹛p﹜,﹛m,n﹜,﹛m,p﹜,﹛n,p﹜,﹛m,n,p﹜;真子集: Φ,﹛m﹜,﹛n﹜,﹛p﹜,﹛m,n﹜,﹛m,p﹜,﹛n,p﹜.3、A⊇B练习1.2.2、1.2.31、用适当的符号填空:⑴{1,2,7}{1,2,3,4,5,6,7,9};⑵{x│x2=25}{5,-5};⑶{-2}{ x| |x|=2};⑷ 2 Z;⑸m{ a,m };⑹{0}∅;⑺{-1,1}{x│x2-1=0}.2、判断集合A={x︱(x+3)(3x-15)=0}与集合B={x︱x=-3或x=5}的关系.3、判断集合A={2,8 }与集合B={x︱x2-10x+16=0}的关系.答案:1、⊆=⊆∈∈⊇=2、A=B3、A=B1.3集合的运算习题练习1.3.1.1、已知集合A,B,求A∩B.(1) A={-3,2},B={0,2,3};(2) A={a,b,c},B={a,c,d , e , f ,h};(3) A={-1,32,0.5},B= ∅;(4) A={0,1,2,4,6,9},B={1,3,4,6,8}.I.2、设A={(x,y)︱x+y=2},B={(x,y)︱2x+3y=5},求A BI.3、设A={x︱x<2},A={x︱-6<x<5},求A B答案:1、{2}, {a,c}, ∅, {1,4,6}2、{(1,1)}3、{x︱-6<x<2}1、已知集合A ,B ,求A ∪B .(1) A ={-1,0,2},B ={1,2,3};(2) A ={a },B ={c , e , f };(3) A ={-11,3,6,15},B = ∅;(4) A ={-3,2,4},B ={-3,1,2,3,4}.2、集合A={x │x>-3},B ={x │9>x ≥1},求A B 。
《高职数学I》试题库一、填空题(每空 2 分)1、函数y lg( 3x )arcsin x 1 的定义域为。
3(知识点:函数的定义域,难度:一般)2、函数 y= lnx +36x 2的定义域是_________。
(知识点:定义域的求法,难度:一般)3、函数y=arccos(x-1)的定义域是。
(知识点:函数的定义域,难度:一般)4、函数y=arccos(x-1)的定义域是。
(知识点:函数的定义域,难度:一般)5、函数f ( x )1的定义域是。
(知识点:函数,难度:较低)x26、函数y ln(x2 -2x1)的定义域是。
(知识点:函数的定义域,难度:一般)7、函数f ( x)arcsin 2 x 1的定义域是。
(知识点:函数定义域,难7度:一般)8、函数f ( x )的定义域是。
(知识点:函数定义域,难度:一般)arcsin ( x - 1)9、函数 y=x 21+ln (4-x2)的定义域为___________。
(知识点:函数定义域,难度:一般)10、函数y 3 - x arc cos x 1 的定义域为。
(知识点:函数定义域,难度:3一般)11、函数y5x 23的复合过程为。
(知识点:复合函数的分解,难度:较低)12、函数 y=arcsin[ln( x+1)] 的复合过程为。
(知识点:复合函数的分解,难度:一般)13、函数y cos x 1 的复合过程为。
(知识点:复合函数的分解,难度:一般)14、函数 y= cos25x的复合过程为。
(知识点:函数,难度:一般)15、函数 y=x31的复合过程为。
(知识点:复合函数分解,难度:较低)16、函数 y=sin2 2x 的复合过程为。
(知识点:复合函数的分解,难度:较高)17、函数 y=arctan( x 3 1 )的复合过程为。
(知识点:复合函数分解,难度:18、函数 y sinx 1 的复合过程为 ________________ 。
(知识点:复合函数分解,难度:一般)19、函数 y=( 3 - x )20 的复合过程为 。
单独招生考试招生文化考试数学试题卷(满分120分,考试时间120分钟)一、选择题:(本题共10小题,每小题6分,共60分)1.已知函数f (x )的图象关于直线x =1对称,当x2>x1>1时,[f (x2)﹣f (x1)](x2﹣x1)<0恒成立,设a =f (−12),b =f (2),c =f (e ),则a ,b ,c 的大小关系为()A.c >a >bB.c >b >aC.a >c >bD.b >a >c2.已知函数y =f (x )在区间(﹣∞,0)内单调递增,且f (﹣x )=f (x ),若a =f (log 123),b =f (2﹣1.2),c =f (12),则a ,b ,c 的大小关系为()A.a >c >bB.b >c >aC.b >a >cD.a >b >c3.设函数f (x )=ex+x ﹣2,g (x )=lnx+x2﹣3.若实数a ,b 满足f (a )=0,g (b )=0,则()A.g (a )<0<f (b )B.f (b )<0<g (a )C.0<g (a )<f (b )D.f (b )<g (a )<04.下列命题是假命题的是()A.(0,sin 2x x xπ∀∈> B.000,sin cos 2x R x x ∃∈+=C.,30xx R ∀∈> D.00,lg 0x R x ∃∈=5.已知11tan(),tan()tan()62633πππαββα++=-=-+=则()A.16B.56C.﹣1D.16.下列函数中,在定义域内单调递增且是奇函数的是()A.y =log 2(x 2+1−x)B.y =sinxC.y =2x ﹣2﹣xD.y =|x ﹣1|7.设函数f (x )=x (ex+e ﹣x ),则对f (x )的奇偶性和在(0,+∞)上的单调性判断的结果是()A.奇函数,单调递增B.偶函数,单调递增C.奇函数,单调递减D.偶函数,单调递减8.若函数f (x )=xln (x +a +x 2)为偶函数,则a 的值为()A.0B.1C.﹣1D.1或﹣19.设函数f (x )=ln|2x+1|﹣ln|2x ﹣1|,则f (x )()A.是偶函数,且在(12,+∞)单调递增B.是奇函数,且在(−12,12)单调递增C.是偶函数,且在(−∞,−12)单调递增D.是奇函数,且在(−∞,−12)单调递增10.已知函数f (x )是定义在R 上的偶函数,且在[0,+∞)上单调递增,则三个数a =f (﹣log313),b =f (2cos2π5),c =f (20.6)的大小关系为()A.a >b >cB.a >c >bC.b >a >cD.c >a >b 二、填空题:(共30分.)1.若圆锥曲线15222=++-k y k x 的焦距与k 无关,则它的焦点坐标是__________.2.定义符号函数⎪⎩⎪⎨⎧-=101sgn x 000<=>x x x ,则不等式:x x x sgn )12(2->+的解集是__________.3.若数列}{n a ,)(*N n ∈是等差数列,则有数列)(*21N n na a ab nn ∈+++=也为等差数列,类比上述性质,相应地:若数列}{n C 是等比数列,且)(0*N n C n ∈>,则有=n d __________)(*N n ∈4.若n S 是数列}{n a 的前n 项的和,2n S n =,则=++765a a a ________.三、解答题:(本题共6小题,每小题10分,共30分.解答应写出文字说明、证明过程或演算步骤.)1.圆C 的圆心在x 轴上,并且过点A(-1,1)和B(1,3),求圆C 的方程。
宿迁泽达职业技术学院20 11级清考试卷《高等数学》试卷 (闭卷)(A 卷) 出卷人: 高超…一、选择题(每题5分,共25分)1、设函数f (x )在[0,1]内可导,且0)('>x f ,则( ) A 、f(x)<0 B 、f(1)>0 C 、f(1)>f(0) D 、f(1)<f(0)·2、函数323x x y -= ()A 、有极大值0和极小值4B 、有极大值4和极小值0C 、有极小值0和极大值3D 、有极小值4和极大值13、设函数a ax ax ax x f ---=23)()(在x=1处取得极大值-2,则a=( ) A 、1 B 、1/3 C 、0 D 、-1/34、若f(x)是函数y=lnx 的导数,则=)('x f ( ) A 、xlnx B 、lnx C 、1/x D 、-1/x 25、若F (x )是f(x)的一个原函数,则有( )成立。
#A 、∫f(x)dx=F(x)+cB 、∫F(x)dx=f(x)+cC 、∫F(x)dx=f(x)+cD 、∫F(x)dx=f(x){1、设函数f(x)在x 0处可导,则f(x)在x 0取得极值的必要条件是=)('x f2、函数y=f(x)的自变量x 从x 0的左邻域变到右邻域时,)('x f 的符号由负变正,则x=x 0是函数y=f(x)的 点。
3、若连续函数f(x)在区间[a,b]内恒有0)('>x f ,则此函数在[a,b]上的最大值是4、若y=f (x )与y=g(x)是[a,b]上的两条光滑曲线的方程,则由这两条曲线及直线x=a,x=b 所围成的平面区域的面积为5、将曲线y=x 2,X 轴及直线x=2所围成的平面图形绕X 轴旋转成的旋转体的体积应该为 三、计算题(每题5分,共20分) 1、求下列函数的导数y=x 2(e x +sinx)xy 3sin 3=~2、 求下列不定积分⎰dx xe x⎰xdx x ln&@2、求由曲线y=cosx(x≥0)与直线y=1所围成的图形的面积《3、,4、求以点(1,3,-2)为球心且过原点的球面方程。
(完整版)中职升⾼职数学试题及答案(1--5套)⼀、单项选择题(在每⼩题的四个备选答案中选出⼀个正确的答案。
本⼤题共 8⼩题,每⼩题3分,共24分)2中职升⾼职招⽣考试数学试卷(⼀)7、直线x y 1 0的倾斜⾓的度数是()A. 60B. 30C. 45D.&如果直线a 和直线b 没有公共点,那么 A.共⾯ B. 平⾏ C. 是异⾯直线135 a 与 b ()D 可能平⾏,也可能是异⾯直线1、设集合 A {0,5} , B {0,3,5} , C {4,5,6},则(B UC) I A A. {0,3,5} B. {0,5} C. {3} D.2、命题甲:a b ,命题⼄:a b ,甲是⼄成⽴的( A.充分不必要条件 B. 必要不充分条件 C.充分必要条件 D 既不充分⼜不必要条件⼆、填空题(本⼤题共 4⼩题,每⼩题4分,共16分)9、在 ABC 中,已知AC=8,AB=3, A 60则BC 的长为 __________________________ 10、函数f (x ) log 2(x 2 5x 6)的定义域为 ____________________________ 11、设椭圆的长轴是短轴长的 2倍,则椭圆的离⼼率为 ________________ 1 9 312、(x -)9的展开式中含x 3的系数为 ____________________x参考答案3、下列各函数中偶函数为()2A. f (x ) 2xB. f (x ) xC.f(x) 2xD.f (x) log 2x4、若 COS 1 2, (0,—),则 sin 2 的值为()A.巨B. 乜C. 乜D.23 25、已知等数⽐列{a n },⾸项a 1 2,公⽐q 3,则前4项和S 4等于(题号12 3 4 5 6 7 8 答案B ABCAD CD中职升⾼职招⽣考试数学试卷(⼀)⼀、单项选择题(在每⼩题的四个备选答案中选出⼀个正确的答案。